Lecture 25

CSE 331
Apr 3, 2020

Logistics

- Homework 6 is out today
- Deadline for regrading requests is Mon (Apr 6)
- Mid-semester temp grades will be out on Tue (Apr 7)
- Based on 4 hws, midterms, quiz 1 (nothing dropped)
- Video Project (remember?)
- Due April 20
- See mini project website for details
- New S/U policy: It's about you, not me ©
- I'll assign letter grades as usual;
- YOU choose to convert your letter grade to S/U
- Chance to prevent any possible damage to your GPA
- C and above: S
- C- and below: U
- Most importantly: Take care of yourself!
- I mean mentally!
- Go easy on yourself!

Divide and Conquer

Divide up the problem into at least two sub-problems

Recursively solve the sub-problems
"Patch up" the solutions to the sub-problems for the final solution

Improvements on a smaller scale

Greedy algorithms: exponential \rightarrow poly time
(Typical) Divide and Conquer: $\mathrm{O}\left(\mathrm{n}^{2}\right) \rightarrow$ asymptotically smaller running time

Multiplying two numbers

Given two numbers a and b in binary

$$
a=\left(a_{n-1}, . ., a_{0}\right) \text { and } b=\left(b_{n-1}, \ldots, b_{0}\right)
$$

Compute c $=\mathrm{a} \times \mathrm{b}$

Elementary
 school
 algorithm is
 $O\left(n^{2}\right)$

The current algorithm scheme

$$
\begin{aligned}
& T(n) \leq 4 T(n / 2)+c n \circ o \quad T(n) \text { is } O\left(n^{2}\right) \\
& T(1) \leq c
\end{aligned}
$$

The key identity

$$
a^{1} b^{0}+a^{0} b^{1}=\left(a^{1}+a^{0}\right)\left(b^{1}+b^{0}\right)-a^{1} b^{1}-a^{0} b^{0}
$$

The final algorithm

Input: $a=\left(a_{n-1}, . ., a_{0}\right)$ and $b=\left(b_{n-1}, \ldots, b_{0}\right)$
Malt (a, b)

$$
\begin{aligned}
& \text { If } n=1 \text { return } a_{0} b_{0} \\
& a^{1}=a_{n-1}, \ldots, a_{[n / 2]} \text { and } a^{0}=a_{[n / 2]-1}, \ldots, a_{0}
\end{aligned}
$$

Compute b^{1} and b^{0} from b
$x=a^{1}+a^{0}$ and $y=b^{1}+b^{0}$

Let $p=\operatorname{Mult}(x, y), D=\operatorname{Mult}\left(a^{1}, b^{1}\right), E=\operatorname{Mult}\left(a^{0}, b^{0}\right)$
$F=p-D-E$
return $D \cdot 2^{2[n / 2]}+F \cdot 2^{[n / 2]}+E$
All green operations are $O(n)$ time

