Lecture 25

CSE 331 Apr 3, 2020

Logistics

- Homework 6 is out today
- Deadline for regrading requests is Mon (Apr 6)
- Mid-semester temp grades will be out on Tue (Apr 7)
 - Based on 4 hws, midterms, quiz 1 (nothing dropped)
- Video Project (remember?)
 - Due April 20
 - See mini project website for details
- New S/U policy: It's about you, not me ③
 - I'll assign letter grades as usual;
 - YOU choose to convert your letter grade to S/U
 - Chance to prevent any possible damage to your GPA
 - C and above: S
 - C- and below: U
- Most importantly: Take care of yourself!
 - I mean mentally!
 - Go easy on yourself!

Divide and Conquer

Divide up the problem into at least two sub-problems

Recursively solve the sub-problems

"Patch up" the solutions to the sub-problems for the final solution

Improvements on a smaller scale

Greedy algorithms: exponential \rightarrow poly time

(Typical) Divide and Conquer: $O(n^2) \rightarrow$ asymptotically smaller running time

Multiplying two numbers

Given two numbers a and b in binary

 $a=(a_{n-1},..,a_0)$ and $b = (b_{n-1},...,b_0)$

Compute c = a x b

The current algorithm scheme

The key identity

$a^{1}b^{0}+a^{0}b^{1}=(a^{1}+a^{0})(b^{1}+b^{0})-a^{1}b^{1}-a^{0}b^{0}$

The final algorithm

 $a \bullet b = a^{1}b^{1} \bullet 2^{2[n/2]} + ((a^{1}+a^{0})(b^{1}+b^{0}) - a^{1}b^{1} - a^{0}b^{0}) \bullet 2^{[n/2]} + a^{0}b^{0}$