Lecture 26

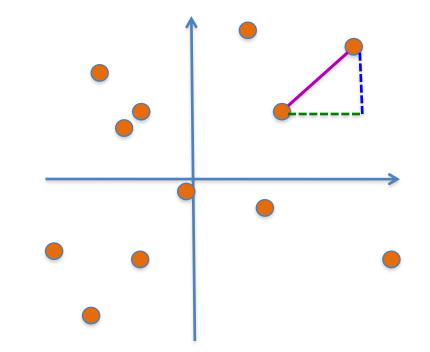
CSE 331 Apr 6, 2020

Closest pairs of points

Input: n 2-D points $P = \{p_1,...,p_n\}; p_i = (x_i, y_i)$

 $d(p_i, p_j) = ((x_i - x_j)^2 + (y_i - y_j)^2)^{1/2}$

Output: Points p and q that are closest



Naïve solutions

O(n²) time algorithm?

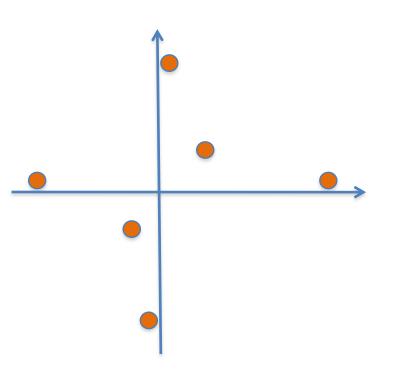
1-D problem in time O(n log n) ?

Sorting to rescue in 2-D?

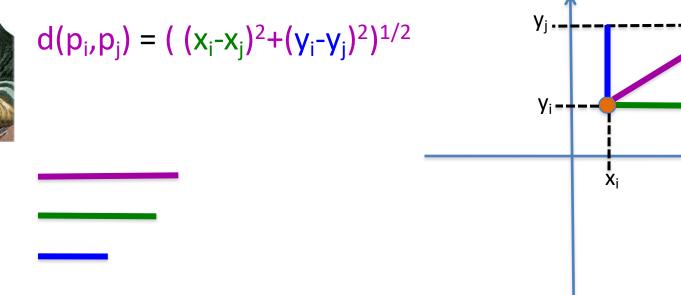
Pick pairs of points closest in x co-ordinate

Pick pairs of points closest in y co-ordinate

Choose the better of the two



A property of Euclidean distance



The distance is larger than the **x** or **y**-coord difference

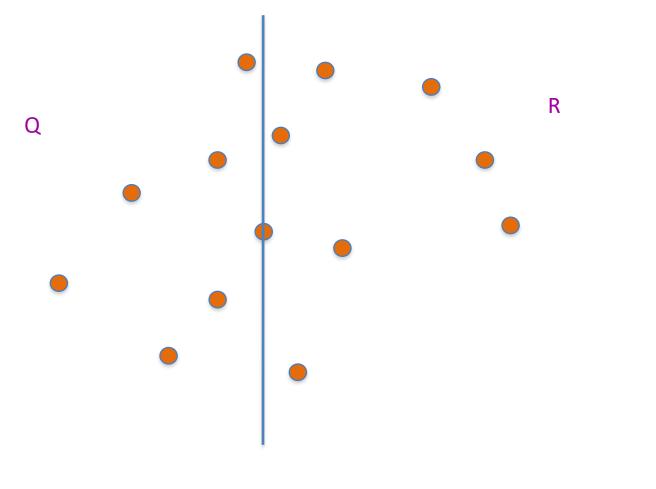
Rest of Today's agenda

Divide and Conquer based algorithm

Dividing up P R Q

First n/2 points according to the x-coord

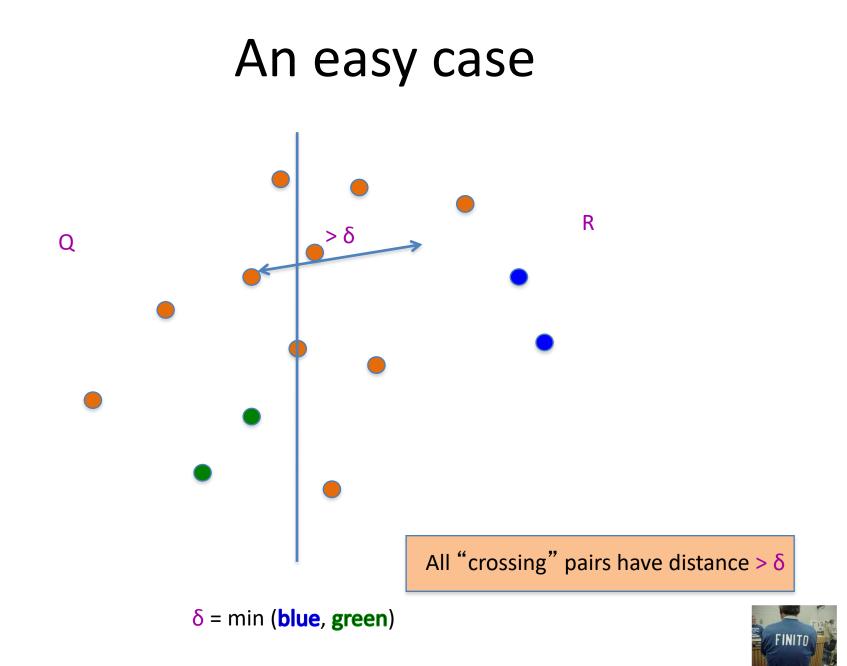
Recursively find closest pairs



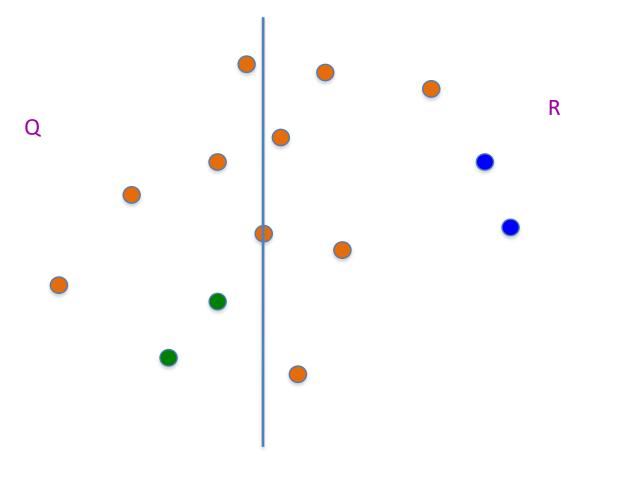
An aside: maintain sorted lists

 P_x and P_y are P sorted by x-coord and y-coord

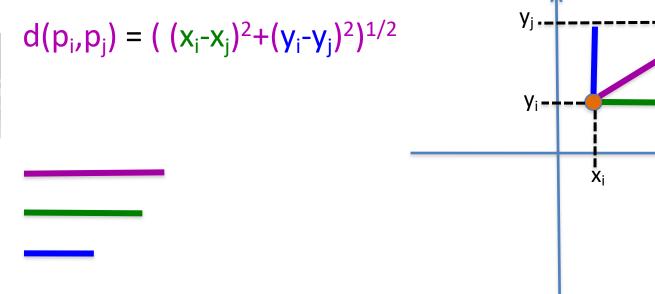
 Q_x , Q_y , R_x , R_y can be computed from P_x and P_y in O(n) time



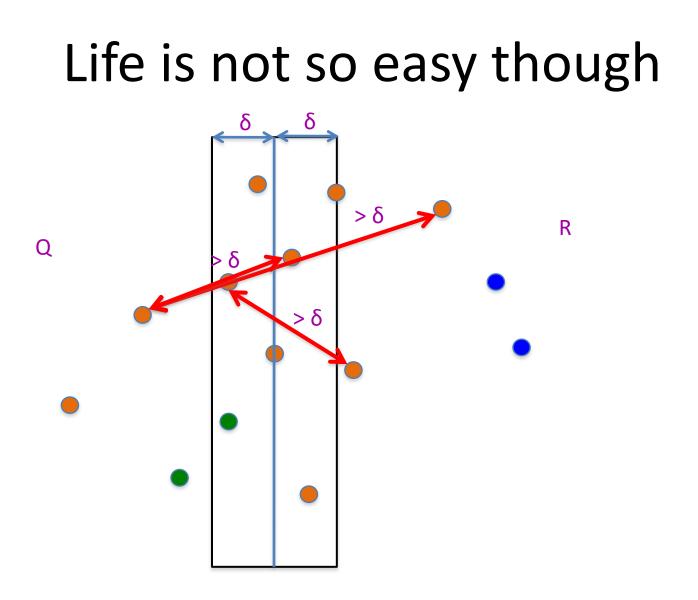
Life is not so easy though



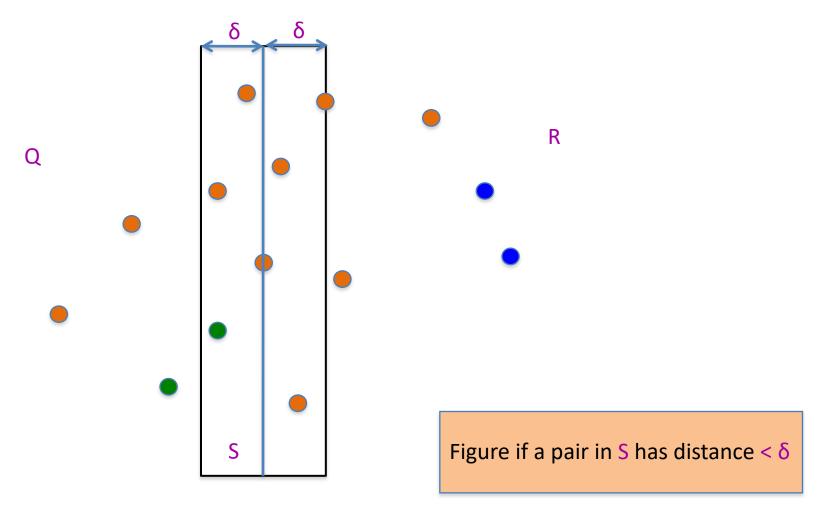
Euclid to the rescue (?)



The distance is larger than the **x** or **y**-coord difference



All we have to do now



The algorithm so far...

 $O(n \log n) + T(n)$

	Input: n 2-D points $P = \{p_1,,p_n\}; p_i=(x_i,y_i)$		O(110g H) + I(H)		
	Sort P to get P_x and P_y				
	Closest-Pair (P _x , P _y)		O(n log n)	T(< 4) = c	
	If n < 4 then find closest point by brute-force			T(n) = 2T(n/2) + cn	
	Q is first half of P _x and R is the rest		O(n)		
	Compute Q_x , Q_y , R_x and R_y		O(n)		
	$(q_0,q_1) = Closest-Pair (Q_x, Q_y)$			O(n log n) overall	
	$(r_0, r_1) = Closest-Pair (R_x, R_y)$				
	$δ = min (d(q_0,q_1), d(r_0,r_1))$		O(1)		
	S = points (x,y) in P s.t. x – x* < δ		O(n)		
	return Closest-in-box (S, (q ₀ ,q ₁), (r ₀ ,r ₁))		Assume of	can be done in O(n)	