Lecture 28

CSE 331
Apr, 10 2020

High level view of CSE 331

Problem Statement

Problem Definition

)
Three general ‘ O
techniques

Algorithm

“Implementation” Data Structures

Analysis Correctness+Runtime Analysis

Greedy Algorithms

Natural algorithms

Reduced exponential running time to polynomial

Divide and Conquer

Recursive algorithmic paradigm

MICHAEL SCOTT

PAPER COMPANY INC.

Serving Scranton’s Paper Needs Since 2009

Reduced large polynomial time to smaller polynomial time

A new algorithmic technique

Dynamic Programming

Dynamic programming vs. Divide &
Conquer

ITS KINDA THE SAME

Same same because

Both design recursive algorithms

N]
) _
4 “ »
" + : [s y
s . -

BUT DIFFERENT

TaKeameme.or

'y

Different because

Dynamic programming is smarter about solving recursive sub-problems

'« ')

'y

BUT DIFFE

RENT

TaKeameme.or

End of Semester blues

Can only do one thing at any day: what is the optimal

schedule to obtain maximum value?

Write up a term paper (10)

Party! (2)
Exam study (5)

Project (30)

Monday Tuesday Wednesday Thursday Friday

Previous Greedy algorithm

Write up a termgpaper (10)

O
¢ Party! (2)

Exam study (5)

Project (30)

————————————

Monday Tuesday Wednesday Thursday Friday

Today’s agenda

Formal definition of the problem

Start designing a recursive algorithm for the problem

i
e) e 4
B“T nIFFEnE“T makeameme org

Weighted Interval Scheduling
input: N jobs/intervals. Interval i is triple (s;, f, v;)

output: A valid schedule S € [n] that maximizes v(S)

Cows2 T
Cowme =2

v, =30

Previous Greedy Algorithm

R = original set of jobs
S=¢

While R is not empty
Choose i in R where f; is the smallest
Addito S
Remove all requests that conflict with i from R

Return S* =S

Perhaps be greedy differently?

R = original set of jobs
S=¢

While R is not empty
Choose i in R where v/(fi — s;) is the largest
Addito S
Remove all requests that conflict with i from R

Return S* =S

Can this work?

R = original set of jobs
S=¢

While R is not empty
Choose i in R where v/(fi — s;) is the largest
Addito S
Remove all requests that conflict with i from R

Return S* =S

Avoiding the greedy rabbit hole

Provably
IMPOSSIBLE
for a large
class of
greedy algos

https://www.writerightwords.com/down-the-rabbit-hole/

There are no known greedy algorithm to solve this problem ‘

Perhaps a divide & conquer algo?

Divide the problem in 2 or more many EQUAL SIZED
INDEPENDENT problems

Recursively solve the sub-problems

Patchup the SOLUTIONS to the sub-problems

Perhaps a divide & conquer algo?

RecurWeightedInt([n])

if n = 1 return the only interval

L = first n/2 intervals

Would this
general

R = last n/2 intervals

S, = RecurWeightedInt(L)

scheme work?
Sgr = RecurWeightedInt(R)

PatchUp(S,, Sg)

Divide the problem in 2 or more many EQUAL SIZED
INDEPENDENT problems

Sub-problems NOT independent!

—

=1 =2

0

1

2

Vy =

4 V=5

3

Perhaps patchup can help?

Patchup the SOLUTIONS to the sub-problems

Sometimes patchup NOT needed!

Check for two cases?

6 is in the optimal solution

Check if v is the largest value?

6 is in the optimal solution

Cannot decide this
greedily. Need to
have a global view!

Check out both options!

0 1 2 3

Case 1: 6 is in the optimal solution

6 is not in optimal solution

IEAMHAEEHEEZEURGER.

So what sub-problems?

Divide the problem in 2 or more many EQuAi==SiZED
RBERENDENT problems

Sub problem 3

Original problem
- 1
e
e]
]]

Sub-problem 2

Sub-problem 5

Sub problem 1

Sub problem 4

IEAMHAEEHEEZEURGER.

