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High level view of CSE 331

Problem Statement

Problem Definition

)
Three general ‘ O
techniques

Algorithm

“Implementation” Data Structures

Analysis Correctness+Runtime Analysis




Greedy Algorithms

Natural algorithms

Reduced exponential running time to polynomial



Divide and Conquer

Recursive algorithmic paradigm
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Reduced large polynomial time to smaller polynomial time



A new algorithmic technique

Dynamic Programming



Dynamic programming vs. Divide &
Conquer

ITS KINDA THE SAME




Same same because

Both design recursive algorithms
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BUT DIFFERENT
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Different because

Dynamic programming is smarter about solving recursive sub-problems
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End of Semester blues

Can only do one thing at any day: what is the optimal

schedule to obtain maximum value?

Write up a term paper (10)

Party! (2)
Exam study (5)

Project (30)

Monday Tuesday Wednesday Thursday Friday




Previous Greedy algorithm

Write up a termgpaper (10)

O
¢ Party! (2)

Exam study (5)

Project (30)

————————————

Monday Tuesday Wednesday Thursday Friday



Today’s agenda

Formal definition of the problem

Start designing a recursive algorithm for the problem
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Weighted Interval Scheduling
input: N jobs/intervals. Interval i is triple (s;, f, v;)

output: A valid schedule S € [n] that maximizes v(S)
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Previous Greedy Algorithm

R = original set of jobs
S=¢

While R is not empty
Choose i in R where f; is the smallest
Addito S
Remove all requests that conflict with i from R

Return S* =S




Perhaps be greedy differently?

R = original set of jobs
S=¢

While R is not empty
Choose i in R where v/(fi — s;) is the largest
Addito S
Remove all requests that conflict with i from R

Return S* =S




Can this work?

R = original set of jobs
S=¢

While R is not empty
Choose i in R where v/(fi — s;) is the largest
Addito S
Remove all requests that conflict with i from R

Return S* =S




Avoiding the greedy rabbit hole

Provably
IMPOSSIBLE
for a large
class of
greedy algos

https://www.writerightwords.com/down-the-rabbit-hole/

There are no known greedy algorithm to solve this problem ‘




Perhaps a divide & conquer algo?

Divide the problem in 2 or more many EQUAL SIZED
INDEPENDENT problems

Recursively solve the sub-problems

Patchup the SOLUTIONS to the sub-problems



Perhaps a divide & conquer algo?

RecurWeightedInt([n])

if n = 1 return the only interval

L = first n/2 intervals

Would this
general

R = last n/2 intervals

S, = RecurWeightedInt(L)

scheme work?
Sgr = RecurWeightedInt(R)

PatchUp(S,, Sg)

Divide the problem in 2 or more many EQUAL SIZED
INDEPENDENT problems



Sub-problems NOT independent!
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Perhaps patchup can help?

Patchup the SOLUTIONS to the sub-problems




Sometimes patchup NOT needed!




Check for two cases?

6 is in the optimal solution




Check if v is the largest value?

6 is in the optimal solution

Cannot decide this
greedily. Need to
have a global view!




Check out both options!

0 1 2 3

Case 1: 6 is in the optimal solution




6 is not in optimal solution




IEAMHAEEHEEZEURGER.



So what sub-problems?

Divide the problem in 2 or more many EQuAi==SiZED
RBERENDENT problems

Sub problem 3

Original problem
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Sub-problem 2

Sub-problem 5

Sub problem 1

Sub problem 4
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