Lecture 3

CSE 331
Jan 31, 2020

Make broadband more available

Cattaraugus County

Population: 79518
Median Income: $\$ 41,368.88$
Access to any cable technology: 67.5\%
Access to two or more wireline providers: 61.2\%

Say you are tasked to come up with the infrastructure

Erie County

Population: 913295
Median Income: \$49,817.67
Access to any cable technology: 98.9%
Access to two or more wireline providers:
96.8\%

Make broadband more available

Input requirements
Where are the customers located?
What are the bandwidth requirements?
How is the input represented?
What objective are we optimizing?
How should the connections be configured?
Output requirements
Problem Definition
Where should we lay down the physical stuff?
What algorithm should be use to do this?
Algorithm Design

Implement the scheme

How should we do testing and maintenance?

Decide whether this will be for-profit enterprise

What are technology should we use?

Get regulatory approval
Get funding
Hire people
Get access to physical space
Outreach

Main Steps in Algorithm Design

Real world problem

Precise mathematical def

Data Structures

Correctness/Run time

National Resident Matching

Preparing for \#Match2018?

Prequently | An NRMP ID is |
| :---: |
| NOT Required for |
| Submitting Your |
| Apmentications |
| \gg Learn more |

VIDEO: The Match Process for
Applicants

(Screen) Docs are coming to BUF

IVillard Filtinore (suburtan)

What can go wrong?

The situation is unstable!

What happens in real life

NRMP plays matchmaker

Stable Matching Problem

David Gale

Lloyd Shapley

Questions/Comments?

Matching Employers \& Applicants

Input: Set of employers (E)
Set of applicants (A)
Preferences

Output: An assignment of applicants to employers that is "stable"

For every x in A and y in E such that x is not assigned to y, either
(i) y prefers every accepted applicant to x; or
(ii) x prefers her employer to y

Simplicity is good

I DUNNO...
DYNAMIC TYPING?
WHITESPACE?
COME JOIN US!
PROGRAMMING
IS FUN AGAIN!
IT'S A WHOLE
NEW WORLD
UP HERE!
BUT HOW ARE
YOU FLYING?

http://xkcd.com/353/

What questions to think about?

1) How do we specify preferences?

Preference lists

1:1
2) Ratio of applicant vs employers
3) Formally what is an assignment?
(perfect) matching
4) Can an employer get assigned >1 applicant?
5) Can an applicant have >1 job?

```
NO
```

6) How many employer/applicants in an applicants/employers preferences?

All of them
7) Can an employer have 0 assigned applicants?
8) Can an applicant have 0 jobs?

Lost in Notation....

CSE 331 Spring 2020 Schedule

Previous schedules: 2019, 2018, 2017, 2016, 2014 〕

A Future Lectures

The topics for lectures in the future are tentative and subject to change. Also the links for future lectures are from Fall 2018 and Fall 2019. Recordings of Spring 2020 lectures are also available from UBLearns.

Date	Topic	Notes
Mon, Jan 27	Introduction \triangle P $\square^{\text {S20 }} \square^{\text {F19 }} D^{\mathrm{F} 18}$	(HW O out) C Week 1 recitation notes
Wed, Jan 29	Main Steps in Algorithm Design \triangle P $D^{\text {S20 }} \nabla^{\mathrm{F} 19} \nabla^{\mathrm{F} 18}$	-
Fri, Jan 31	Stable Matching Problem $\nabla^{F 19} D^{F} \mathrm{x}^{2}$	[KT, Sec 1.1]

notations

Questions/Comments?

Non-feminist reformulation

n men
Each with a preference list
n women

Match/marry them in a "stable" way

