Lecture 30

CSE 331 Apr 15, 2020

Video mini project

- Due April 20 (next Monday)
- Work with your teammates
- You need to submit one PDF file to Autolab.
- The only thing the PDF needs to have is the link to your video.
- Each group member must submit the exact same PDF

Weighted Interval Scheduling

Input: n jobs (s_i, f_i, v_i)

Output: A schedule S s.t. no two jobs in S have a conflict

Goal: $\max \Sigma_{i \text{ in S}} V_j$

Assume: jobs are sorted by their finish time

Couple more definitions

```
p(j) = largest i < j s.t. i does not conflict with j
= 0 if no such i exists</pre>
```

OPT(j) = optimal value on instance 1,..,j

Property of OPT

A recursive algorithm

Compute-Opt(j)

```
If j = 0 then return 0 return max { v_j + Compute-Opt( p(j) ), Compute-Opt( j-1 ) }
```

$$OPT(j) = max \{ v_j + OPT(p(j)), OPT(j-1) \}$$

Exponential Running Time

A recursive algorithm

```
 \begin{tabular}{ll} M-Compute-Opt(j) & & & & & \\ M-Compute-Opt(j) & & & & \\ If j = 0 then return 0 & & & \\ If M[j] is not null then return M[j] & & & \\ M[j] = max \{ v_j + M-Compute-Opt(p(j)), M-Compute-Opt(j-1) \} & \\ return M[j] & & \\ \end{tabular}
```

Run time = O(# recursive calls)

Bounding # recursions

M-Compute-Opt(j)

Whenever a recursive call is made an value is assigned

At most n values of M can be assigned

Property of OPT

Recursion+ memory = Iteration

Iteratively compute the OPT(j) values

Iterative-Compute-Opt

```
M[0] = 0
For j=1,...,n
M[j] = max \{ v_j + M[p(j)], M[j-1] \}
```

M[j] = OPT(j)

O(n) run time

Reading Assignment

Sec 6.1, 6.2 of [KT]

When to use Dynamic Programming

There are polynomially many sub-problems

Richard Bellman

Optimal solution can be computed from solutions to sub-problems

$$OPT(j) = max \{ v_j + OPT(p(j)), OPT(j-1) \}$$

There is an ordering among sub-problem that allows for iterative solution

Scheduling to min idle cycles

n jobs, ith job takes w_i cycles

You have W cycles on the cloud

What is the maximum number of cycles you can schedule?

Rest of today's agenda

Dynamic Program for Subset Sum problem