Lecture 30

CSE 331
Apr 15, 2020

Video mini project

Due April 20 (next Monday)

Work with your teammates

You need to submit one PDF file to Autolab.

The only thing the PDF needs to have is the link to your

video.
Each group member must submit the exact same PDF

Weighted Interval Scheduling

Input: n jobs (s;,f,v:)

Output: A schedule S s.t. no two jobs in S have a conflict

Goal: max 2,5V,

Assume: jobs are sorted by their finish time

Couple more definitions

p(j) = largest i < s.t. i does not conflict with |
° @

= 0 if no such i exists

OPT(j) = optimal value on instance 1,..,]

Property of OPT

F

OPT(j) = max { Y 1— OPT(p(j)), OPT(j-1) }

Given o
how can one figure out if

in optimal solution or not?

A recursive algorithm

Compute-Opt(j)

OPT(j) = max{ v, + OPT(p(j)), OPT(j-1) }

Exponential Running Time

—
RN

=

—

L
I

Only 5 OPT
values!

OPT(3) OPT(4)

Formal
proof: Ex.

OPT(2)

OPT(1)

A recursive algorithm

M-Compute-Opt(j) M-Compute-Opt()
= OPT()

Run time = O(# recursive calls)

Bounding # recursions

M-Compute-Opt(j)

overall

Whenever a recursive call is made an
value is assigned

At most values of can be assigned

Property of OPT

OPT(j) = max{ v, + OPT(p(j)), OPT(j-1) }

Given

one can compute

Recursion+ memory = lteration

lteratively compute the OPT(j) values

Iterative-Compute-Opt

IEAMHAEEHEEZEURGER.

Reading Assighment

Sec 6.1, 6.2 of [KT]

When to use Dynamic Programming

There are polynomially many sub-problems

OPT(1), ..., OPT(n)

Richard Bellman

Optimal solution can be computed from solutions to sub-problems
OPT(j) = max { v; + OPT(p(j)), OPT(j-1) }

There is an ordering among sub-problem that allows for iterative solution

OPT (j) only depends on OPT(j-1), ..., OPT(1)

Scheduling to min idle cycles

n jobs, it job takes w; cycles

You have W cycles on the cloud iazon

What is the maximum number of cycles you can schedule?

Rest of today’s agenda

Dynamic Program for Subset Sum problem

