Lecture 6

CSE 331

Feb 7, 2020

If you need it, ask for help. Take advantage of OHs (No one came on Wed!)

Read recitation notes

Recitation 2

Recitation notes for the week of February 3, 2020.

Overview

- Recitation 1 Review and HWO Answers
- Stable Matching Background
- Proof by Induction
- Proof by Counterexample
- Proof by Contradiction

Recitation 1 Review and HW0 Answers

Before we begin, go back and review the content from recitation 1, particularly the Reduction section where we go over Geometric Search.
In addition, the HWO answer key has been posted here. Going forward, the answer keys will not be given out online, but instead will be released at the end of Friday's lecture.
© Common Mistakes
The common mistakes we saw in submissions were either:

- Not using anything specific to the problem at hand (proving n !, but not how it relates to the problem).
- Simply restating the problem statement (while important to the proof, you need to show how the problem set-up proves a certain statement).

Stable Matching Review

The problem
Input:

- Set of n men $M=\left\{m_{1}, m_{2}, \ldots, m_{n}\right\}$
- Set of n women $W=\left\{w_{1}, w_{2}, \ldots, w_{n}\right\}$
- For every $m \in M, L_{m}$ a total ranking of all women
- For everv $w \in W . L$. a total rankina of all men

Reading Assignments and Preparation Videos

Date	Topic	Notes
Mon, Jan 27		(HW 0 out) - C Week 1 recitation notes
Wed, Jan 29	Main Steps in Algorithm Design Δ P $D^{\text {S20 }} D^{\mathrm{F} 19} \boldsymbol{D}^{\mathrm{F} 18}$	-
Fri, Jan 31		[KT, Sec 1.1]
Mon, Feb 3	Perfect Matchings Δ 回 $\square^{\text {S20 }} D^{F 19} D^{F 18} \mathrm{x}^{2}$	[KT, Sec 1.1] (HW 0 in) O Week 2 recitation notes
Wed, Feb 5		[KT, Sec 1.1]
Fri, Feb 7	Gale Shapley algorithm $\nabla^{\text {F19 }} \nabla^{\text {F18 }} \mathrm{x}^{2}$	[KT, Sec 1.1] Reading Assignment: Pigeonhole principle Reading Assignment: Asymptotic notation care package
Mon, Feb 10	Gale Shapley algorithm outputs a stable matching $\boldsymbol{D}^{\mathrm{F} 19} \boldsymbol{D}^{\mathrm{F} 18} \mathrm{x}^{2}$	[KT, Sec 1.1] (HW 1 out) - C
Wed, Feb 12	Efficient algorithms and asymptotic analysis $\nabla^{\mathrm{F} 19} \square^{\mathrm{F} 18} \mathrm{x}^{2}$	[KT, Sec 1.1] Reading Assignment: Worst-case runtime analysis notes Reading Assignment: [KT, Sec 1.1, 2.1, 2.2, 2.4]

Sign-up for mini projects

Deadline: Friday, Feb 28, 11:00am

Signup for Mini Video project
Folks,
Please check the video project page: https://cse.buffalo.edu/~erdem/cse331/spring20/mini-project/index.html. Go over the details and make sure you understand what's expected.
 about being left out in the remainder (I told youl :).

You can use Piazza to find teammates. Then you can decide on the topic.
The deadline for team formation and algorithm/case study selection is February 28, 11am ET.

Questions/Comments?

Stable Marriage problem

Stable matching $=$ perfect matching+ no instablity

Remember Two Questions

Does a stable marriage always exist?

If one exists, how quickly can we compute one?

Moral of the story...

Rest of today's agenda

GS algorithm

Run of GS algorithm on an instance

Prove correctness of the GS algorithm

Gale-Shapley Algorithm (cont.)

Gale-Shapley Algorithm

Intially all men and women are free
While there exists a free woman who can propose
Let w be such a woman and m be the best man she has not proposed to
w proposes to m
If m is free
(m, w) get engaged
Else (m, w^{\prime}) are engaged
If m prefers w ' to w w remains free
Else (m, w) get engaged and w ' is free

Output the engaged pairs as the final output

Preferences

GS algorithm: The Office Edition

Any other stable matching in this example? No!

Observation 1

Intially all men and women are free
While there exists a free woman who can propose
Let w be such a woman and m be the best man she has not proposed to w proposes to m

If m is free

$$
(m, w) \text { get engaged }
$$

Else ($\mathrm{m}, \mathrm{w}^{\prime}$) are engaged
If m prefers w ' to w w remains free Else

Once a man gets engaged, he remains engaged (to "better" women)

Output the engaged pairs as the final output

Observation 2

Intially all men and women are free
While there exists a free woman who can propose
Let w be such a woman and m be the best man she has not proposed to
w proposes to m
If m is free
(m, w) get engaged
Else (m, w^{\prime}) are engaged
If m prefers w ' to w w remains free
Else

$$
(m, w) \text { get engaged and w' is free }
$$

Output the set S of engaged pairs as the final output

How many iterations?

Intially all men and women are free
While there exists a free woman who can propose
Let w be such a woman and m be the best man she has not proposed to
w proposes to m
If m is free
(m, w) get engaged
Else (m, w^{\prime}) are engaged
If m prefers w ' to w w remains free
Else
(m, w) get engaged and w ' is free
Output the set S of engaged pairs as the final output

