## Lecture 21

CSE 331
Mar 24, 2021

## Minimum Spanning Tree Problem

Input: Undirected, connected $G=(V, E)$, edge costs $C_{e}$
Output: Subset $\mathrm{E}^{\prime} \subseteq \mathrm{E}$, s.t. $\mathrm{T}=\left(\mathrm{V}, \mathrm{E}^{\prime}\right)$ is connected $C(T)$ is minimized

If all $c_{e}>0$, then $T$ is indeed a tree

## Kruskal's Algorithm



Input: $G=(V, E), c_{e}>0$ for every e in $E$


## Prim's algorithm

Similar to Dijkstra's algorithm



Robert Prim

Input: $G=(V, E), c_{e}>0$ for every e in E $S=\{s\}, T=\varnothing$

While $S$ is not the same as $V$


Among edges $e=(u, w)$ with $u$ in $S$ and $w$ not in $S$, pick one with minimum cost Add $w$ to $S$, e to $T$

## Reverse-Delete Algorithm



Input: $G=(V, E), c_{e}>0$ for every e in E

$$
\mathrm{T}=\mathrm{E}
$$

Sort edges in decreasing order of their cost

Consider edges in sorted order
If an edge can be removed $T$ without disconnecting $T$ then remove it

## (Old) History of MST algorithms

1920: Otakar Borůvka

1956: Kruskal


1957: Prim
1959: Dijkstra

## Cut Property Lemma for MSTs

Condition: S and $\mathrm{V} \backslash \mathrm{S}$ are non-empty


Cheapest crossing edge is in all MSTs

Assumption: All edge costs are distinct

## Today's agenda

Optimality of Prim's algorithm

Prove Cut Property Lemma

Optimality of Kruskal's algorithm

Remove distinct edge weights assumption

