Lecture 21

CSE 331 Mar 24, 2021

Minimum Spanning Tree Problem

Input: Undirected, connected G = (V, E), edge costs c_e

Output: Subset $E' \subseteq E$, s.t. T = (V, E') is connected C(T) is minimized

If all c_e > 0, then T is indeed a tree

Kruskal's Algorithm

Input: G=(V,E), $c_e > 0$ for every e in E

Joseph B. Kruskal

0.5

T = Ø

Sort edges in increasing order of their cost

1 3 50 51

Consider edges in sorted order

If an edge can be added to T without adding a cycle then add it to T

Prim's algorithm

Reverse-Delete Algorithm

Input: G=(V,E), $c_e > 0$ for every e in E

T = E

Sort edges in decreasing order of their cost

Consider edges in sorted order

If an edge can be removed T without disconnecting T then remove it

(Old) History of MST algorithms

1920: Otakar Borůvka

1957: Prim

1959: Dijkstra

1956: Kruskal

Cut Property Lemma for MSTs

Condition: S and V\S are non-empty

Cheapest crossing edge is in all MSTs

Assumption: All edge costs are distinct

Today's agenda

Optimality of Prim's algorithm

Prove Cut Property Lemma

Optimality of Kruskal's algorithm

Remove distinct edge weights assumption