Lecture 3

CSE 331 Feb 5, 2021

Who is Algorithm named after?

Abū 'Abd Allāh Muhammad ibn Mūsā al-Khwārizmī

9th century Persian astronomer/mathematician

825 AD: "On Calculation with Arabic Numerals"

Latin translation 12th century

"Algorithmi de numero Indorum"

What are Algorithms?

Don Knuth

Knuth's Definition

An algorithm is a finite, definitive, effective procedure with some input and some output

Broadband access

https://assets.bwbx.io/images/users/iqjWHBFdfxIU/iZSjibxE1KJs/v1/800x-1.jpg

Erie county is reasonably good

Population with access to advertised download speeds at least 6mbps

http://www.governing.com/gov-data/broadband-speeds-availability.html

One county over

Population with access to advertised download speeds at least 6mbps

http://www.governing.com/gov-data/broadband-speeds-availability.html

Make broadband more available

Cattaraugus County

Erie County

Population: 913295 Median Income: \$49,817.67 Access to any cable technology: 98.9% Access to two or more wireline providers: 96.8%

Make broadband more available

Cattaraugus County

Input requirements

Where are the customers located?

What are the bandwidth requirements?

How is the input represented?

What objective are we optimizing?

How should the connections be configured?

Output requirements

Problem Definition

Where should we lay down the physical stuff?

What algorithm should be use to do this?

Algorithm Design

Population: 79518 Median Income: \$41,368,88 Access to any cable technology: 67,5% Access to two or more wireline providers: 61,2%

Decide whether this will be for-profit enterprise

What are technology should we use?

Get regulatory approval

Get funding

Hire people

Get access to physical space

Outreach

Erie County

Population: 913295 Median Income: \$49,817.67 Access to any cable technology: 98.9% Access to two or more wireline providers: 96.8%

How should we do testing and maintenance?

Implement the scheme

Main Steps in Algorithm Design

National Resident Matching

VIDEO: The Match Process for Applicants

ARTHUR

1 CITY

SUNNY

2.MERCY

JOSEPH

1 CITY

2. GENERAL

3. MERCY

(Screen) Docs are coming to BUF

What can go wrong?

The situation is unstable!

What happens in real life

NRMP plays matchmaker

Stable Matching Problem

David Gale

Lloyd Shapley

Questions/Comments?

Matching Employers & Applicants

Input: Set of employers (E) Set of applicants (A) Preferences

Output: An assignment of applicants to employers that is "stable"

For every x in A and y in E such that x is **not** assigned to y, either

(i) y prefers *every* accepted applicant to x; or

(ii) x prefers her employer to y

Simplicity is good

http://xkcd.com/353/

Matching Employers & Applicants

Input: Set of employers (E) Set of applicants (A) Preferences

Output: An assignment of applicants to employers that is "stable"

For every x in A and y in E such that x is **not** assigned to y, either

(i) y prefers *every* accepted applicant to x; or

(ii) x prefers her employer to y

What questions to think about?

What questions to think about?

