Lecture 30

CSE 331
Apr 14, 2021

Video mini project

- Due TODAY 8:00pm
- Work with your teammates
- You need to submit one PDF file to Autolab.
- The only thing the PDF needs to have is the link to your video.
- Each group member must submit the exact same PDF

Weighted Interval Scheduling

Input: n jobs $\left(s_{i}, f_{i}, v_{i}\right)$

Output: A schedule S s.t. no two jobs in S have a conflict

$$
\text { Goal: } \max \Sigma_{\mathrm{i} \text { in } s} v_{j}
$$

Assume: jobs are sorted by their finish time

Couple more definitions

$\mathrm{p}(\mathrm{j})=\operatorname{largest} \mathrm{i}$ < j s.t. i does not conflict with j
$=0$ if no such i exists

OPT(j) = optimal value on instance $1, . ., \mathrm{j}$

Property of OPT

A recursive algorithm

Compute-Opt(j)

```
If j = 0 then return 0
return max { v
```

$$
\operatorname{OPT}(\mathrm{j})=\max \left\{\mathrm{v}_{\mathrm{j}}+\mathrm{OPT}(\mathrm{p}(\mathrm{j})), \operatorname{OPT}(\mathrm{j}-1)\right\}
$$

Exponential Running Time

A recursive algorithm

M-Compute-Opt(j)

M-Compute-Opt(j)
= OPT(j)

If $\mathrm{j}=0$ then return 0
If $\mathrm{M}[\mathrm{j}]$ is not null then return $\mathrm{M}[\mathrm{j}]$
$\mathrm{M}[\mathrm{j}]=\max \left\{\mathrm{v}_{\mathrm{j}}+\mathrm{M}\right.$-Compute-Opt($\mathrm{p}(\mathrm{j}) \mathrm{)}, \mathrm{M}$-Compute-Opt(j-1) \}
return $\mathrm{M}[\mathrm{j}]$
Run time = O(\# recursive calls)

Bounding \# recursions

M-Compute-Opt(j)

$$
\begin{aligned}
& \text { If } j=0 \text { then return } 0 \\
& \text { If } M[j] \text { is not null then return } M[j] \\
& \left.M[j]=\max \left\{v_{j}+M \text {-Compute-Opt(} p(j)\right) \text {, M-Compute-Opt }(j-1)\right\} \\
& \text { return } M[j]
\end{aligned}
$$

Whenever a recursive call is made an M value is assigned

At most n values of M can be assigned

Property of OPT

OPT(j) $=\max \left\{\mathrm{v}_{\mathrm{j}}+\mathrm{OPT}(\mathrm{p}(\mathrm{j})), \mathrm{OPT}(\mathrm{j}-1)\right\}$

Given OPT(1), ..., OPT(j-1),
 one can compute OPT(j)

Recursion+ memory = Iteration

Iteratively compute the OPT(j) values

Iterative-Compute-Opt

$$
\begin{aligned}
& M[0]=0 \\
& \text { For } j=1, \ldots, n \\
& M[j]=\max \left\{v_{j}+M[p(j)], M[j-1]\right\}
\end{aligned}
$$

Reading Assignment

Sec 6.1, 6.2 of [KT]

When to use Dynamic Programming

There are polynomially many sub-problems
OPT(1), ..., OPT(n)

Richard Bellman

Optimal solution can be computed from solutions to sub-problems

$$
\text { OPT }(j)=\max \left\{v_{j}+\operatorname{OPT}(p(j)), O P T(j-1)\right\}
$$

There is an ordering among sub-problem that allows for iterative solution
OPT (j) only depends on OPT(j-1), ..., OPT(1)

Scheduling to min idle cycles

n jobs, $\mathrm{i}^{\text {th }}$ job takes w_{i} cycles

You have W cycles on the cloud

What is the maximum number of cycles you can schedule?

Rest of today's agenda

Dynamic Program for Subset Sum problem

