Lecture 6

CSE 331 Feb 12, 2021 If you need it, ask for help. Take advantage of OHs (No one came on Wed!)

Reading Assignments and Preparation Videos

Date	Торіс	Notes
Mon, Feb 1	Introduction 🔑 🖻 🕒 S21 🕞 S20 🅞 F19	HW 0 out
Wed, Feb 3	Main Steps in Algorithm Design 🔎 🖻 🍽 S21 🗗 S20 🍽 F19	
Fri, Feb 5	Stable Matching Problem 🔀 🗗 🗈 🖻 S21 🗩 S20 🍞 F19	[KT, Sec 1.1]
Mon, Feb 8	Perfect Matchings 🔀 🖻 🖹 D ^{S21} D ^{S20} D ^{F19} x ²	HW 0 due [KT, Sec 1.1] 📑 🖸 Week 2 recitation notes
Wed, Feb 10	Stable Matching Problem 🔎 📄 🗈 🖻 S21 🖻 S20 🌔 F19 x ²	[KT, Sec 1.1]
Fri, Feb 12	Gale Shapley algorithm ▶ S20 ▶ F19 x ²	HW 1 out [KT, Sec 1.1] 📑 🖸
Mon, Feb 15	Gale Shapley alg. outputs a stable matching ▶ ^{S20} ▶ ^{F19} x ²	[KT, Sec 1.1] Reading Assignment: Pigeonhole principle Reading Assignment: Asymptotic notation care package Reading Assignment: Using a Progress Measure
Wed, Feb 17	Efficient algorithms and asymptotic analysis ^{S20} ^{S20} ^{F19} ^{x²}	[KT, Sec 1.1] Reading Assignment: Worst-case runtime analysis notes Reading Assignment: [KT, Sec 1.1, 2.1, 2.2, 2.4]

Sign-up for mini projects

Deadline: Friday, Mar 5, 8:00pm

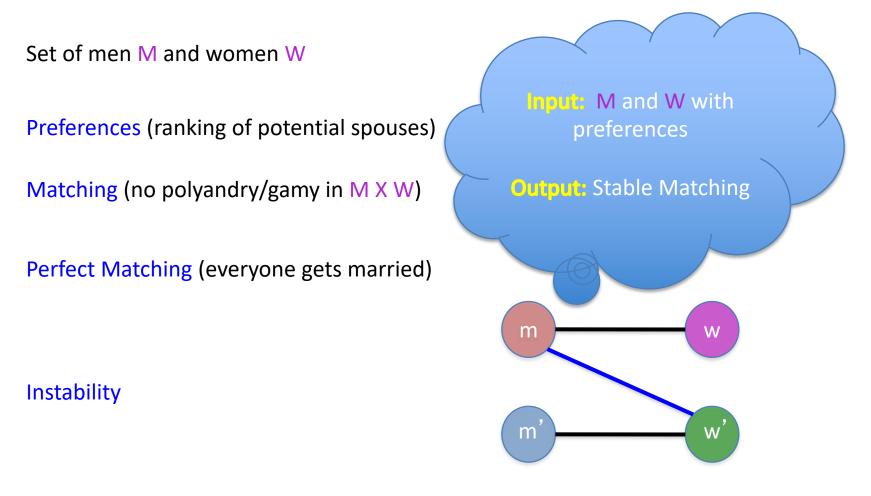
📄 note @100 💿 🚖 🔓 🗸

109 views

Video Project Team Composition and Case Study due on Mar 5

This is a reminder that the Video Project Team Composition and Case Study is due on Mar 5. Please submit the required information for you team via this google form. Once we received the form, your chosen algorithm and case study will be reviewed by our TA.A list of case studies already chosen can be found online .Remember that while two groups can pick the same (class of) algorithm that solve (similar) problems, the ethical impacts have to be different for different group.

video_project


~ An instructor (A. Erdem Sariyuce) thinks this is a good note ~

edit · undo good note 1

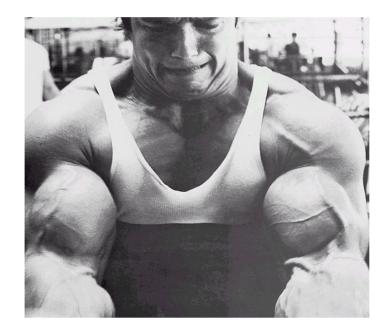
Updated 21 hours ago by Chik Lam

Questions/Comments?

Stable Marriage problem

Stable matching = perfect matching+ no instablity

Remember Two Questions


Does a stable marriage always exist?

If one exists, how quickly can we compute one?

Moral of the story...

Rest of today's agenda

GS algorithm

Run of GS algorithm on an instance

Prove correctness of the GS algorithm

Gale-Shapley Algorithm (cont.)

Gale-Shapley Algorithm

Intially all men and women are free

While there exists a free woman who can propose

```
Let w be such a woman and m be the best man she has not proposed to

w proposes to m

If m is free

(m,w) get engaged

Else (m,w') are engaged

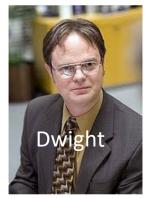
If m prefers w' to w

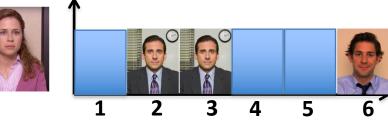
w remains free

Else

(m,w) get engaged and w' is free
```

Output the engaged pairs as the final output


Preferences



GS algorithm: The Office Edition

