Lecture 8

CSE 331

Feb 17, 2021

The Lemmas

Lemma 1: The GS algorithm has at most n^{2} iterations

Lemma 2: S is a perfect matching

Lemma 3: S has no instability

GS outputs a stable matching
Xeb 5 THEOREM: For any input (M, W, In pref. (ists)
the 65 alporithm outputs a stable
\Rightarrow every input has a stable matching.
LEMMA 1: For every input, GS alpo. terminates in $\leqslant n^{2}$ iters.
LEMMA 2: The output of 65 alpo (S) is a perfect matching
LEMMA 3: S has no instability
(from whom)
Lemmas $1+2+3 \Rightarrow$ Theoren
Pf Ldea lemur 1: In each iteration, a new proposal
\Rightarrow \#ites = \#proposils \leqslant \#pairs $(w, m)=\left|w_{x} M\right|$
(pf details are on p9 7

$$
\begin{aligned}
& =|w| \times|M|=n \cap=\Lambda^{2} \\
& =\mid
\end{aligned}
$$ in textboor)

Obs 0: S is a matching.
Obs 1: Once a van gets ergajed, he keeps petting ergafed to better womar.

Obs 2: If ω propnses, to m after m^{\prime}

$$
\Rightarrow m^{\prime}>m \text { in } L_{w}
$$

LEMMA 4: If at the and an iteration,
w is free $\Rightarrow w$ has not propand to all mes

Proof Details of Lemma 1

Using a Progress Measure

This is another trick that you might not have studied formally but have used (implicitly) before. This trick is generally used to bound the number of times a loop is executed in an algorithm.

Background

In this note, we will consider another trick that you might not have studied formally but have used (implicitly) before. This trick is generally used to bound the number of times a loop is executed in an algorithm. Since most non-trivial algorithms have loops in them, this is a useful trick to remember when trying to bound the run time of an algorithm (which you will have to do frequently in this course). Most of the time you will need to use the trivial version of this trick.

A simple example
Let us begin with a prototypical example that you have already seen. Consider the following simple problem:

Search Problem
Given $n+1$ numbers $a_{1}, \ldots, a_{n} ; v$, we should output $1 \leq i \leq n$ if $a_{i}=v$ (if there are multiple such i 's then output any one of them) else output -1

Below is a simple algorithm to solve this problem.

Linear Search Algorithm

```
                                    // Input: A[i] for 0<= i<
                                    // Input: v
                                    // Search
                                    for(i=0; i< n; i++
                                if(A[i] == v)
                Return i;
                            Return -1;
```


Proof technique de jour

Proof by contradiction

Assume the negation of what you want to prove

Two observations

Obs 1: Once m is engaged he keeps getting engaged to "better" women

Obs 2: If w proposes to m ' first and then to m (or never proposes to m) then she prefers m ' to m

Questions?

Proof of Lemma 2

Lemma 4:

If at the end of an iteration, w is free
then w has not proposed to all men

Pigeon-hole principle!

Proof of Lemma 3

"S has no instability"

By contradiction

Assume there is an instability ($\mathrm{m}, \mathrm{w}^{\prime}$)

Contradiction by Case Analysis

Depending on whether w^{\prime} had proposed to m or not

Case 1: w' never proposed to m w^{\prime} prefers m^{\prime} to m

Assumed w' prefers m to m^{\prime}

Case 2: w' had proposed to m

Case 2.1: m had accepted w' proposal

At the end, m is married to w

Thus, m prefers w to w'

By Obs 1

m prefers w^{\prime} to w
w' prefers m to m^{\prime}
Case 2.2: m had rejected w' proposal
m was engaged to some other woman, say w" (prefers w" to w')
By Obs 1

At the end, m is married to w (prefers w to $w^{\prime \prime}$)
By Obs 1
m prefers w to w'

Proof of the theorem is done!

Overall structure of case analysis

Extensions

Fairness of the GS algorithm

Different executions of the GS algorithm

Main Steps in Algorithm Design

NRMP
 National Resident Matching Program

Correctness Analysis

Definition of Efficiency

An algorithm is efficient if, when implemented, it runs quickly on real instances

What are real instances?
Worst-case Inputs

Efficient in terms of what?

