Lecture 9

CSE 331 Feb 19, 2021

Main Steps in Algorithm Design

Definition of Efficiency

An algorithm is efficient if, when implemented, it runs quickly on real instances

Implemented where?

Definition-II

Analytically better than brute force

How much better? By a factor of 2?

Definition-III

Should scale with input size

If N increases by a constant factor, so should the measure

Polynomial running time

At most c·N^d steps (c>0, d>0 absolute constants)

Step: "primitive computational step"

More on polynomial time

Problem centric tractability

Can talk about problems that are not efficient!

Asymptotic Analysis

Travelling Salesman Problem

(http://xkcd.com/399/)

See the reading assignment!

Which one is better?

Now?

And now?

The actual run times

Asymptotic Notation

 \leq is O with glasses \geq is Ω with glasses = is Θ with glasses

Another view

remain anonymous on the web, let me know).

Silly way to remember asymptotic notation... Stick figure:

Big O "Ceiling of Functn" Big O B/W Big-04 Big_D Big SL "Floor of Functn" Feet

© Aleksandra Patrzalek, 2012

Properties of O (and Ω)

Another Reading Assignment

Analyzing the worst-case runtime of an algorithm

Some notes on strategies to prove Big-Oh and Big-Omega bounds on runtime of an algorithm.

The setup

Let \mathcal{A} be the algorithm we are trying to analyze. Then we will define T(N) to be the worst-case run-time of \mathcal{A} over all inputs of size N. Slightly more formally, let $t_{\mathcal{A}}(\mathbf{x})$ be the number of steps taken by the algorithm \mathcal{A} on input \mathbf{x} . Then

$$T(N) = \max_{\mathbf{x}:\mathbf{x} \text{ is of size } N} t_{\mathcal{A}}(\mathbf{x}).$$

In this note, we present two useful strategies to prove statements like T(N) is O(g(N)) or T(N) is $\Omega(h(N))$. Then we will analyze the run time of a very simple algorithm.

Preliminaries

We now collect two properties of asymptotic notation that we will need in this note (we saw these in class today).

Reading Assignments

Sections 1.2, 2.1, 2.2 and 2.4 in [KT]

Questions?

Today's agenda

O(n²) implementation of the Gale-Shapley algorithm

More practice with run time analysis

Gale-Shapley Algorithm

At most n² iterations

Intially all men and women are free

While there exists a free woman who can propose

Output the engaged pairs as the final output

Arrays and Linked Lists

Implementation Steps

(0) How to represent the input?

(1) How do we find a free woman w?

(2) How would w pick her best unproposed man m?

(3) How do we know who m is engaged to?

(4) How do we decide if m prefers w' to w?

Overall running time

Init(1-4)

n² X (Query/Update(1-4))