
GEN: A GPU-Accelerated Elastic Framework for
NFV

Zhilong Zheng, Jun Bi, Chen Sun, Heng Yu, Hongxin Hu, Zili Meng, Shuhe Wang,
Kai Gao, Jianping Wu*

ABSTRACT
Network Function Virtualization (NFV) has the potential to
enhance service delivery flexibility and reduce overall costs by
provisioning software-based service function chains (SFCs)
on commodity hardware. However, we observe that existing
CPU-based SFC solutions cannot achieve both high perfor-
mance and high elasticity simultaneously. To address such a
critical challenge, we seek beyond CPU and exploit the ca-
pability of Graphics Processing Unit (GPU) to support NFV.
We propose GEN, a GPU-based high performance and elas-
tic framework for NFV. As opposed to pipeline-based SFCs
in existing GPU-based NFV systems, GEN proposes to sup-
port RTC-based SFCs to improve processing performance.
Meanwhile, GEN offers great elasticity of network function
(NF) scaling up and down by allocating a different number
of fine-grained GPU threads to an NF during runtime. We
have implemented a prototype of GEN. Preliminary evalua-
tion results demonstrate that GEN improves performance with
RTC-based SFCs, and supports adaptive, precise, and fast NF
scaling for NFV.

CCS CONCEPTS
• Networks → Middle boxes / network appliances; Programmable
networks;

KEYWORDS
NFV; Service chain; GPU; P1erformance

*Zhilong Zheng, Jun Bi, Chen Sun, Heng Yu, Zili Meng, Shuhe Wang,
Kai Gao, and Jianping Wu are with Institute for Network Sciences and
Cyberspace, Tsinghua University and Beijing National Research Center for
Information Science and Technology (BNRist). Hongxin Hu is with the
School of Computing, Clemson University. Jun Bi (junbi@tsinghua.edu.cn)
is the corresponding author.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
APNet ’18, August 2–3, 2018, Beijing, China
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-6395-2/18/08.
https://doi.org/10.1145/3232565.3234510

ACM Reference Format:
Zhilong Zheng, Jun Bi, Chen Sun, Heng Yu, Hongxin Hu, Zili
Meng, Shuhe Wang, Kai Gao, Jianping Wu. 2018. GEN: A GPU-
Accelerated Elastic Framework for NFV. In APNet ’18: Asia-Pacific
Workshop on Networking, August 2–3, 2018, Beijing, China , 8 pages.
https://doi.org/10.1145/3232565.3234510

1 INTRODUCTION
Network Function Virtualization (NFV) [7] was recently intro-
duced to address the limitations of traditional proprietary mid-
dleboxes [26]. By leveraging virtualization techniques, NFV
could achieve the elasticity of NF scaling during runtime to
adapt to network traffic dynamics. In operator networks [23],
data centers [14, 18], mobile networks [9], and enterprise
networks [25], operators often require traffic to pass through
a sequence of NFs (e.g. firewall+IDS+proxy) [2, 10, 22],
which is commonly referred to as a service function chain
(SFC) [10, 23].

Supporting SFCs in NFV should achieve two major goals
including high performance and high elasticity. However,
Current CPU-based SFCs fail to simultaneously achieve the
above two goals in two aspects.
Low performance with negative improvement expectation:
Current CPU-based NFV systems suffer from a much lower
performance in both latency and throughput comparing to
traditional dedicated hardware [28]. This limitation prohibits
the effective support for a wide range of applications with
tight performance requirements such as algorithmic stock
trading and high performance distributed memory caches [3].
Furthermore, the end of Moore’s Law reveals a pessimistic
expectation of the improvement of CPU computation power,
which weakens the capability of CPU to satisfy the perfor-
mance requirement when handling growing volumes of traffic.
Although scaling out to more servers can improve throughput,
we still have to cope with the problem of additional cost of
NF migration [5, 24].
Coarse-grained scaling: To achieve high elasticity, an NF
instance has to be scaled out when it is overloaded by the
increasing network traffic, and scaled in when traffic rate
drops. However, NF scaling out/in in CPU exposes two major
shortcomings. First, the resource utilization efficiency is com-
promised. Suppose we have to scale out an NF instance if its
load exceeds 80% of its capacity. For an NF with 85% load,
we have to introduce another whole CPU core to carry only

57

https://doi.org/10.1145/3232565.3234510
https://doi.org/10.1145/3232565.3234510

APNet ’18, August 2–3, 2018, Beijing, China Zhilong Zheng et al.

Table 1: Test system hardware specification (total $3,333)
Item Specification Qty Unit price
CPU Intel Xeon E5-2650 v4 (12 cores, 2.2GHz) 1 $1199
RAM Samsung DDR4 16G (2440MHz) 2 $302
NIC Intel X520 (Dual 10Gbps ports) 2 $165
GPU NVIDIA TITAN Xp 1 $1200

5% of the load, with the rest 95% CPU core power wasted.
Second, to scale out an NF, states have to be migrated and
flows have to be redistributed among NF instances, which
could incur milliseconds of latency overhead [5, 24]. The
intrinsic shortcomings of NF scaling out/in limit CPU from
achieving high elasticity.

To address the limitations of CPU-based SFCs in NFV, we
seek beyond CPU and argue that another type of commodity
computation resource, Graphics Processing Unit (GPU), has
the potential to achieve both high performance and elasticity
when supporting NFV. While recent works have proposed to
use GPU to support NFV [32, 33], we focus on discussing
the potential of GPU to achieve fine-grained scaling and the
interconnection of SFC to achieve higher performance.

Concerning performance, GPU offers extreme thread-level
parallelism with thousands of GPU cores. And many prior
works have shown that GPU can provide higher performance
than CPU [11, 30, 33]. Moreover, such a significant perfor-
mance gain comes with a small cost (i.e., cost-effective [11]).
Table 1 shows that GPU is even cheaper than CPUs and only
occupy a small portion of the total hardware budget. With
respect to elasticity, GPU could allocate a different number of
fine-grained computation resources, i.e. GPU cores/threads,
to different tasks during runtime [19]. Therefore, GPU could
scale up/down NF instances to adapt to dynamic network traf-
fic volumes. In this way, GPU resources could be precisely
allocated according to the incoming traffic, which leads to
near 100% resource utilization efficiency. At the same time,
states and flows no longer need to be migrated for NF scaling.
This could fully avoid the overheads caused by NF scaling
out/in, showing the potential of GPU to offer great elasticity
for NFV.

In this paper, we propose GEN, a GPU-accelerated Elastic
framework for NFV. As shown in Figure 1, GEN consists of
two major components. The orchestrator is responsible for
SFC construction and modification. The infrastructure sup-
ports SFCs with GPU. Each server runs an SFC Manager to
communicate with the orchestrator and manages local SFCs.
Each SFC is equipped with an in-CPU SFC Controller that
steers packets among NFs and forwards packets after process-
ing. The SFC Controller can scale up/down NFs to adapt to
network traffic dynamics.

• We present the background and related research efforts of
running NFs inside GPU, and identify design challenges to
support SFCs in GPU for NFV. (§ 2)

Orchestrator

Server
CPU

SFC
Manager

Server
CPU

SFC
Manager

GPU

GPU

GPU

GPU
SFC

Controller
SFC

Controller
SFC

Controller
SFC

Controller
SFC

Controller
SFC

Controller

Infrastructure

SFC Configurations

Figure 1: GEN framework overview

• We propose GEN, a GPU-based high performance and elas-
tic framework for NFV. We articulate how GEN achieves
both high performance by supporting run-to-completion
(RTC) model in GPU and high elasticity by NF scaling
up/down. We further enable GEN to support some advanced
NFV features, such as runtime SFC modification. (§ 3)

• We have implemented a prototype of GEN. Preliminary
evaluation results (§ 4) demonstrate the high performance
of RTC-based SFC and high elasticity offered by GEN.

2 BACKGROUND AND CHALLENGES
We first introduce background on the GPU architecture and
workflow, and recent research efforts on exploring GPU for
packet processing. We then identify the design challenges of
using GPU to support a chain of NFs in NFV.

2.1 Background and Related Work
A modern programmable GPU acts as a co-processor that re-
ceives the code (called “kernels”) and data from the host CPU.
GPU has on-board device memory, so data must be copied
in from the server’s main memory (“host memory”) over the
PCIe. Then GPU processes the data and informs CPU to copy
processed data back to host memory. The PCIe is also used
for CPU-GPU communication such as launching GPU ker-
nels. Each time a CPU launches a GPU kernel, CPU assigns
a different number of threads to this kernel, which can be re-
garded as dynamic scaling up/down of the kernel. GPU uses a
SIMT (Single Instruction, Multiple Thread) execution model,
in which a group of cores share a single program counter
and process a batch of data. More details about GPU and the
Compute Unified Device Architecture (CUDA) environment
we adopted can be found in [19].

Some research efforts [6, 11, 17, 29, 30] have proposed to
accelerate packet processing tasks with GPU. PacketShader [11]
proposed a high-performance software router framework for
tasks such as IPv4/IPv6 packet forwarding with GPU. Snap [29]
integrated and extended the Click Modular Router to flexi-
bly construct one static packet processing pipeline in GPU.

58

GEN: A GPU-Accelerated Elastic Framework for NFV APNet ’18, August 2–3, 2018, Beijing, China

GASPP [30] proposed a processing framework that supported
stateful network functions such as flow tracking and TCP
reassembly in GPU. NBA [17] performed optimized load bal-
ancing between heterogeneous processors including CPU and
GPU for tasks such as forwarding and IDS. Above research
efforts mainly focused on the performance and programmabil-
ity of supporting one NF or a static NF pipeline using GPU.
GPUNFV [32] also proposed to support stateful SFC using
GPU. However, its per-flow in one thread processing model
can suffer from heavy performance overhead. G-NET[33]
uses an SFC-based scheduling schema to improve system
utilization. However, we are targeting at a different goal of
exploiting the benefits of GPU to build a high performance
and elastic framework for NFV. We next present the design
challenges of the GEN framework.

2.2 Challenges
GEN could employ advanced orchestrators such as Stratos [4],
E2 [20], etc. In this paper, we focus on the design of the
infrastructure to support NFV with GPU. We encounter three
major challenges in the design of the GEN infrastructure.
SFC modeling in GPU: We need to select an appropriate
model (pipelining or RTC) for SFCs in GPU. Although GPU
can support both, we reveal the intrinsic limitations of the
pipelining model with respect to unique features of GPU.
Thus, we select RTC to support SFCs in GPU for both high
performance and high elasticity. We introduce this in § 3.2.
Elastic NF scaling: NF scaling up / down in GPU is chal-
lenged to decide when to scale, calculate to what extent the
NF should be scaled, and quickly realize scaling. For an NF
in a CPU, we could easily decide if it is overloaded based
on its utilization. However, GPU allocates multiple cores to
an NF, which makes it difficult to monitor the load. Further-
more, precisely allocating resources to NFs to process varying
traffic volumes is also a critical challenge. Finally, NF scal-
ing should be quickly carried out to timely handle network
dynamics. In response, GEN supports adaptive, precise, and
quick scaling of NFs through dynamic adjustment of the batch
size according to the SFC buffer occupancy. We introduce
this in § 3.3.
Runtime SFC Modification: Operators of NFV networks
may need to dynamically add/modify an SFC, or add a new
NF to the SFC during runtime [5, 23]. However, NFs are
written as kernels and compiled into binary codes to run in
GPU, which makes it difficult to modify SFCs on the fly. We
address this challenge in § 3.4.

3 GEN DESIGN
We present the GEN infrastructure design in Figure 2. We first
provide an overview of each module in the GEN infrastructure.

SFCManager

10
/40

/100
GbE

Ports

Rx

Tx

CPU (User Space)NIC

SFC Controller #1

SFC Controller #n

R

GPU (2k~3k physical cores)

Chain #n
NF #1 …… Chain #n

NF #mn

Global Memory

SFC
Starter

Adaptive
Batcher

Packet	
Dropper

Packet	
Forwarder Chain #1

NF #1
Chain #1
NF #2

Chain #1
NF #3

R

SFC
Agent
#1

SFC
Agent
#n

Output
Queuing

……Chain
Classifier

Classification
Table (CT)

Agent
Table (AT)

Forwarding
Table (FT)

Figure 2: GEN infrastructure design

Then, we focus on the design choices of GEN to achieve both
high performance and high elasticity for NFV.

3.1 Overview
GEN deploys multiple NFs that can form multiple SFCs in-
side one GPU to fully exploit the abundant resource of GPU,
which typically comprises 2k to 3k physical cores. For SFC
management, GEN designs two major modules in CPU. We
introduce an SFC Manager for each server to communicate
with the Orchestrator and manage SFCs in local GPU. Fur-
thermore, we prepare an individual SFC Controller to control
each SFC inside the GPU.

Specifically, once packets enter a server, they need to be
grouped based on the SFC they belong to in order to match
the SIMT execution model of GPU. Therefore, we design a
Chain Classifier in the SFC Manager to classify packets by
consulting a Classification Table (CT) (Figure 3(a)). Then,
each SFC Controller receives classified packets and stores
them in its own Ring Buffer [12]. Inside the controller, the
Adaptive Batcher prepares packet batches for the SFC. The
SFC Starter launches the SFC according to the Agent Table
(AT) (Figure 3(b)) and copies the batch into GPU. The Packet
Dropper would filter processed packets from GPU, and the
Packet Forwarder will send them out according to the For-
warding Table (FT) (Figure 3(c)). The SFC Manager could
receive SFC configuration messages from the Orchestrator
and maintain local tables accordingly.

Furthermore, GPU communicates with the host server
through PCIe buses. Since one physical server is equipped
with multiple PCIe buses, we could install more than one GPU
to maximize the processing capacity of a single server with
incremental costs. The SFC Manager should then be able to
classify and deliver packets to SFCs on different GPU inside
one server. In response, we enable each SFC Controller to
start its SFC according to the GPU ID in AT, while exposing
the same Ring Buffer to the SFC Manager.

In the rest of this section, we first introduce the selection of
the SFC model inside a GPU in § 3.2. Then we present how
GEN could offer elasticity of NF scaling in § 3.3. Finally, we

59

APNet ’18, August 2–3, 2018, Beijing, China Zhilong Zheng et al.

Match SFC_ID

Src_IP = 192.168.* 1

SFC ID Target

1 output (port #1)

2 output (port #2)

3 output (port #1)

(c) Forwarding Table (FT)(a) Classification Table (CT)

SFC ID GPU ID Agent NFs

1 #1 Pointer 1 [1, 2, 3]

2 #1 Pointer 2 [3, 4]

3 #2 Pointer 3 [5, 6, 7]

(b) Agent Table (AT)

Figure 3: GEN table structures

elaborate how GEN supports advanced NFV features such as
runtime SFC modification in § 3.4.

3.2 SFC Modeling in GPU
The pipelining model in CPU allocates isolated CPU cores
for different NFs in an SFC. All NFs in the SFC have to run
simultaneously to form a packet processing pipeline. In the
context of GPU, NFs are programmed as GPU kernels. Recent
researches have proposed two ways to support pipeline-based
SFC in GPUs. However, we observe that the two approaches
suffer from either low performance or costly elasticity.
Low SFC performance: Figure 4(a) shows the first way to
support pipeline-based SFC in GPU [8, 33]. It copies packet
batches from CPU to GPU and sequentially invokes the NF
kernel functions in an SFC to process the packets. However,
as introduced in § 2.1, there is performance overhead every
time CPU launches a GPU kernel (∼ 5µs according to our
testing). This could be even worse for NFV since an SFC
could be composed of seven or more NFs, which might largely
compromise the performance acceleration brought by GPU.
Costly SFC elasticity: Figure 4(b) shows the second way [8]
to support pipeline-based SFC in GPU. It benefits from the
latest techniques of GPU including Multi-Process Service
(MPS) and persistent threads, which support running multi-
ple concurrent kernels simultaneously and constantly in an
endless loop. In this way, the need for frequently invoking
GPU kernels is eliminated and therefore could protect the
high performance brought by GPU. Unfortunately, this ap-
proach cannot exploit the capability of GPU to dynamically
scale up/down a kernel function by allocating more or fewer
threads to the kernel each time the CPU launches the NF ker-
nel. As threads inside the NFs are persistent in this approach,
in order to provision more resources for a specific NF, CPU
has to launch another kernel of this NF and balance the load
between the two instances, which falls back to the scaling
out solution and suffers from costly state migration and NF
management issues. Therefore, this approach may suffer from
costly elasticity.

3.2.1 Supporting RTC Model in GPU. For the RTC
model in CPU, all NFs in an SFC share the same amount
of resource, i.e. the CPU core. At any time, only one NF
exclusively occupies the entire core to process the packets.
Similarly, in GPU, we support the RTC model by allocating
the same number of threads to every NF in an SFC. Suppose

>9-

�����

ESUOJU+
>9-

�����$!����!("��&�"!

����*!��$"!�+�&�"!

�����)&���

>9.
ESUOJU+
>9.

�����$!����!("��&�"!

���*!��$"!�+�&�"!

�����&���&�� ?FHOJW&
6XKKJU

	�������!�

��������!�

�'&

>9-&
(TJUVNVWJRW)

�����

ESUOJU+
A97

�����&���&�� ?FHOJW&
6XKKJU ��������!�

>9.&
(TJUVNVWJRW)

�����)&���

��������!�

�'&

(a) Sequenced invocations [8, 33]

>9-

�����

ESUOJU+
>9-

�����$!����!("��&�"!

����*!��$"!�+�&�"!

�����)&���

>9.
ESUOJU+
>9.

�����$!����!("��&�"!

���*!��$"!�+�&�"!

�����&���&�� ?FHOJW&
6XKKJU

	�������!�

��������!�

�'&

>9-&
(TJUVNVWJRW)

�����

ESUOJU+
A97

�����&���&�� ?FHOJW&
6XKKJU ��������!�

>9.&
(TJUVNVWJRW)

�����)&���

��������!�

�'&

(b) Persistent kernels [8]

Figure 4: Two ways to support pipelining SFC in GPU

�����

ESUOJU+
A97

�����&���&�� ?FHOJW&
6XKKJU ��������!�

�'&

>9-

>9.

@B7&=SIJP

�����$!����!("��&�"!

����*!��$"!�+�&�"!

Figure 5: RTC-based SFC in GEN

the size of the packet batch is 32, in which case 32 threads
are allocated to the SFC. NFs in the SFC in turn fully occupy
the 32 GPU threads to process the packet batch, which leads
to almost 100% utilization efficiency of the GPU threads
allocated to the RTC-based SFCs. In this way, RTC model
can fully utilize GPU resources

Regarding elasticity, we could dynamically adjust the batch
size according to traffic volumes and allocate a different num-
ber of threads to the SFC to achieve the elasticity of scaling
up/down, which achieves a cheaper elasticity comparing to
Figure 4(b). Meanwhile, as Figure 5 shows, we only need
to invoke the kernel once for an SFC no matter how long
it is, which could improve the performance comparing to
the pipelining model shown in Figure 4(a). Therefore, we
select the RTC model to support SFCs in GPU for both high
performance and elasticity.

The core idea of RTC model is consolidating several opera-
tions in multiple threads into one thread (i.e., all-in-one [13]).
Researches including NetBricks [21] and Metron [16] consol-
idated all NFs into one core to boost the performance of SFC
in CPU-based NFV. Kargus [13] adopted the RTC model to
consolidate in-CPU functional modules including networking
I/O operation (i.e., packet acquisition) and preprocessing (e.g.,
copying packets to GPU) to implement a high-performance
NIDS in GPU. In brief, above efforts all proved that the RTC
model could achieve higher performance than the pipelining
model. In comparison, besides the performance benefits, GEN
also reveals the potential of the in-GPU RTC model to achieve
elasticity by dynamically scaling up/down, which is also a
significant feature of NFV.

3.2.2 Efficient NF Chaining for RTC-based SFCs.
We learn that a GPU kernel with a __global__ declaration can

60

GEN: A GPU-Accelerated Elastic Framework for NFV APNet ’18, August 2–3, 2018, Beijing, China

launch another function with a __device__ declaration with
negligible overhead [31]. Therefore, as shown in Figure 1,
GEN introduces a __global__ SFC Agent for each SFC that
runs inside GPU as an agent of the CPU. Every time a new
packet batch is ready for processing, the SFC Starter in CPU
looks up the Agent Table in Figure 3(b), launches the corre-
sponding SFC Agent, and passes all the NFs in the SFC as a
List < NF > parameter to the agent. The SFC Agent would
then start __device__ NFs in turn on behalf of the CPU. In
this way, GEN requires the CPU to start only one GPU kernel
(the SFC Agent) for an SFC of any length to process a batch.

It should be noted that there is no requirement for packet
delivery across NFs when adopting an RTC-based model for
SFCs. As shown in Figure 5, when compiling into an SFC
Agent, NFs are treated as sequenced parts (similar to the term
element in NetBricks [21]) of this program and share the
same packet buffer. As a result, when an NF completes code
execution, subsequent NFs use the same program context and
pointers to packet buffer to execute their code. Hence, we
can see that passing packets explicitly across an SFC is not
required.

3.3 Elastic NF Scaling
Similar to NF scaling out/in inside CPU, a strawman solution
for scaling up/down an NF in GPU is to keep monitoring the
load of the NF, and adjust the batch size and GPU threads
allocated to the NF once the NF is detected to be overloaded.
However, as mentioned in § 2, scaling an NF in GPU is
challenged to figure out when to scale, to what extent the NF
should be scaled, and how to quickly carry out NF scaling.
As GPU allocates multiple (possibly 1,000 or more) GPU
threads to an NF, it becomes difficult to inspect the NF load
by monitoring the utilization efficiency of GPU cores. Even
if we could obtain the NF load, we cannot easily decide how
many GPU threads should be provisioned to precisely handle
the current traffic volume. Finally, NF load measurement and
resource provisioning calculation may prevent the scaling
process from being carried out quickly.

To address the above challenges, we consider the goal of
NF scaling from another perspective. Due to the adoption of
the RTC model, scaling an NF in GEN is equal to scaling the
entire SFC. If the processing capability of an SFC is below
the packet rate, incoming packets will pile up in the buffer
of the SFC, which could incur large performance overhead
or even packet dropping. Therefore, the key point of SFC
scaling is keeping the buffer occupancy at a low level.

Therefore, we design an Adaptive Batcher module to adjust
the packet batch size to adapt to network traffic dynamics. Af-
ter sending a packet batch into the SFC Starter, the Adaptive
Batcher will keep waiting until the batch has been processed.
Then the Adaptive Batcher fetches the maximal number of

packets from the Ring Buffer into the new batch, and divide
the batch into multiple mini-batches (a static size of 256 pack-
ets in our current implementation) and assign them to multiple
SMs (Streaming Multiprocessors) to reduce the latency in-
duced by a large batch. With the adaptive batcher, GEN no
longer needs to monitor the NF load. Instead, GEN simply
keeps the Ring Buffer of the SFC at a low occupancy by
consuming the buffer as many packets as possible to handle
more loads. Now, every thread allocated to the new packet
batch could be utilized to process a packet, resulting in zero
resource waste. Furthermore, the batch size could be adjusted
every time a new batch is prepared, indicating that NF scaling
could be carried out very quickly.

3.4 Runtime SFC Modification
To achieve flexible service provisioning, NFV operators might
need to dynamically add an SFC, reorder NFs in an SFC, or
inject new NFs into an SFC. We next introduce how GEN
could support above runtime SFC modifications.
SFC addition: To add an SFC for a new group of packets,
the SFC Manager would insert an entry in the Classification
Table to record the SFC ID and matching patterns of pack-
ets. Furthermore, it records the GPU ID where the SFC is
deployed and NFs in the SFC in the Agent Table. Finally, the
SFC Manager adds an entry in the Forwarding Table to record
where to send packets after processing.
SFC modification: To modify an SFC, such as changing NF
sequence, removing NFs, or including NFs that are already
deployed in GPU, the SFC Manager could simply modify
the NFs field of the Agent Table to record the updated NF
sequence. The SFC Starter will inform the SFC Agent of the
new set of NFs when processing a new packet batch, which
could realize runtime fast SFC modification.
New NF addition: NFs are written as kernels, compiled to bi-
nary codes, and deployed in GPU. A straightforward approach
to adding new NFs in an SFC is to pause GPU, recompile
the kernels with the new NFs, and redeploy them in GPU.
However, this approach could incur significant performance
overhead since all SFCs in GPU have to be interrupted. In
response, GEN explores the ptx feature of CUDA [19], which
supports compiling new kernels and injecting binary codes
into GPU during runtime.

However, ptx only supports dynamic compilation and in-
jection of kernels declared with __global__, NFs in GEN are
declared as __device__ functions. Therefore, we directly write
a new SFC Agent that includes the code of the new NF, com-
pile this new Agent kernel, and install it into GPU. We then
modify the NFs field in the Agent Table to record the new NF
sequence. Upon start, this new SFC Agent will then launch
and execute NFs including the newly added NF.

61

APNet ’18, August 2–3, 2018, Beijing, China Zhilong Zheng et al.

0 64 128 256 512 1024 1600
10

15

20

25

30

35

40

Th
ro

ug
hp

ut
 (G

bp
s)

Packet Size (Byte)

 Pipeline RTC

(a) Throughput

100 200 300 400 500
0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Latency (µs)

 Pipeline RTC

(b) Latency CDF

Figure 6: Performance of RTC vs. pipeline in GPU
4 PRELIMINARY EVALUATION
We have implemented a prototype of GEN on a testbed com-
posed of two servers. One server carries the GEN infrastruc-
ture and is equipped with components shown in Table 1. The
other server runs a DPDK [12] based packet generator that
sends packets to (up to 40Gbps) and receives packets from
the directly connected infrastructure server. GEN infrastruc-
ture also uses DPDK to fetch packets from the NIC to the
userspace. Both servers run Ubuntu 14.04 with Linux kernel
3.16.0-30-generic and DPDK 17.11. We use three NFs for
evaluation including an IPv4 Router (1k entries in the for-
warding table), a NIDS (about 3k rules from the Snort [27]
community [27]), and an IPSec (based on HMAC-SHA1 and
AES-128-CBC algorithms).
Performance improvement from RTC: We first evaluate
the performance improvement from RTC-based SFC as op-
posed to pipeline-based SFC (using the way shown in Figure
4(a)) in GPU-accelerated NFV. As Figure 6(a) shows, RTC-
based SFC improves throughput by 29.2% and 28.1% when
the packet size is 64B and 128B, respectively. Figure 6(b)
shows that the latency can be reduced by 33.7% at the 95th
percentile at a traffic rate of 20 Gbps with the packet size
distribution derived from [1], when comparing to the pipeline-
based SFC. This demonstrates that with proper selection of
SFC models, GPU could achieve high performance in both
latency and throughput.
Fast Elasticity: We next evaluate whether GEN could adap-
tively, precisely, and quickly adjust the batch size to handle
varying traffic volumes. Starting from 10Gbps, we increase
the input traffic rate to the SFC by 10Gbps every 5 seconds
until the packet rate reaches 40Gbps. Then we decrease the
traffic rate to 10Gbps with the same speed. As shown in Fig-
ure 7, GEN can dynamically adjust the batch size with the
variation of input traffic rate, to adaptively scale out and in for
different traffic volume requirements. Furthermore, each time
the input packet rate increases, it quickly converges to a stable
value that requires just enough GPU threads to handle the
traffic. This could demonstrate GEN’s capability to precisely
and quickly adapt to traffic volume changes.

5 CONCLUSION AND DISCUSSION
This paper presents GEN, a GPU-accelerated elastic frame-
work for NFV. GEN exploits GPU to push one step towards

0 5 10 15 20 25 30 35
0

10

20

30

40

Th
ro

ug
hp

ut
 (G

bp
s)

Timeline (second)

Figure 7: Elasticity of GEN to adapt to traffic dynamics

building an NFV framework with both performance and elas-
ticity for SFC in mind. We next present our insights on some
future research directions towards this target.
SFC performance enhancement in GPU: There exist some
potential approaches to further enhance performance when
supporting NFV with GPU. First, instead of copying the
whole packets, a possible enhancement would be only extract-
ing packet fields visited by NFs and sending them between
CPU and GPU, in order to reduce latency. Second, packets
fetched by DPDK are first stored in huge pages, then copied
to the host memory [19], and finally copied to GPU. As a po-
tential acceleration, we could benefit from CUDA Direct [19]
or driver modification [6] to reduce memory copying. Finally,
NFP [28] and ParaBox [34] proposed to run independent NFs
in parallel in CPU-based SFCs. GEN runs SFCs with GPU,
which could naturally integrate and benefit from techniques
such as NF parallelism.
Coordination between CPU and GPU: GEN could benefit
from this coordination in two aspects. First, we could deploy
an NF on both CPU and GPU and perform load balancing
as proposed in NBA [17]. This approach can fully utilizing
the processing power of a commodity server. However, we
are challenged to design a common programming abstraction
for NFs on both CPU and GPU as well as the load balancing
mechanisms. Second, we could only offload partial NFs that
are suitable to be supported by GPU for high performance [6,
15]. We will study the both as our future work.
Impacts of dynamic traffic load: In the current version
of GEN, we haven’t fully tested whether there exist packet
drops under bursty traffic. Also, the performance of GEN
under heterogeneous traffic workloads has not been evaluated.
As our future work, we will perform thorough analysis and
evaluations about the impacts of dynamic traffic loads.

ACKNOWLEDGMENTS
We would like to thank our shepherd KyoungSoo Park and
anonymous reviewers for their thoughtful feedback. This
work is supported by the National Key R&D Program of
China (2017YFB0801701), and the National Science Founda-
tion of China (No.61472213).

62

GEN: A GPU-Accelerated Elastic Framework for NFV APNet ’18, August 2–3, 2018, Beijing, China

REFERENCES
[1] Theophilus Benson, Aditya Akella, and David A Maltz.

2010. Network traffic characteristics of data centers in
the wild. In Proceedings of the 10th ACM SIGCOMM
conference on Internet measurement. ACM, 267–280.

[2] Anat Bremler-Barr, Yotam Harchol, and David Hay.
2016. OpenBox: a software-defined framework for de-
veloping, deploying, and managing network functions.
In Proceedings of the 2016 conference on ACM SIG-
COMM 2016 Conference. ACM, 511–524.

[3] Rohan Gandhi, Hongqiang Harry Liu, Y Charlie Hu,
Guohan Lu, Jitendra Padhye, Lihua Yuan, and Ming
Zhang. 2015. Duet: Cloud scale load balancing with
hardware and software. ACM SIGCOMM Computer
Communication Review 44, 4 (2015), 27–38.

[4] Aaron Gember, Anand Krishnamurthy, Saul St
John, Robert Grandl, Xiaoyang Gao, Ashok Anand,
Theophilus Benson, Vyas Sekar, and Aditya Akella.
2013. Stratos: A Network-Aware Orchestration Layer
for Virtual Middleboxes in Clouds. arXiv preprint
arXiv:1305.0209 (2013).

[5] Aaron Gember-Jacobson, Raajay Viswanathan,
Chaithan Prakash, Robert Grandl, Junaid Khalid,
Sourav Das, and Aditya Akella. 2014. OpenNF:
Enabling innovation in network function control. In
ACM SIGCOMM Computer Communication Review,
Vol. 44. 163–174.

[6] Younghwan Go, Muhammad Asim Jamshed, Young-
Gyoun Moon, Changho Hwang, and KyoungSoo Park.
2017. APUNet: Revitalizing GPU as Packet Process-
ing Accelerator. In USENIX Symposium on Networked
Systems Design and Implementation. 83–96.

[7] R Guerzoni et al. 2012. Network functions virtualisa-
tion: an introduction, benefits, enablers, challenges and
call for action, introductory white paper. In SDN and
OpenFlow World Congress.

[8] Kshitij Gupta, Jeff A Stuart, and John D Owens. 2012. A
study of persistent threads style GPU programming for
GPGPU workloads. In Innovative Parallel Computing
(InPar), 2012. IEEE, 1–14.

[9] W Haeffner, J Napper, M Stiemerling, D Lopez, and
J Uttaro. 2014. Service function chaining use cases
in mobile networks. draft-ietf-sfc-use-case-mobility-01
(2014).

[10] J Halpern and C Pignataro. 2015. Service Function
Chaining (SFC) Architecture. draft-ietf-sfc-architecture-
07 (work in progress) (2015).

[11] Sangjin Han, Keon Jang, KyoungSoo Park, and Sue
Moon. 2010. PacketShader: a GPU-accelerated software
router. In ACM SIGCOMM Computer Communication
Review, Vol. 40. ACM, 195–206.

[12] Intel. 2018. Data Plane Development Kit (DPDK). http:
//dpdk.org

[13] Muhammad Asim Jamshed, Jihyung Lee, Sangwoo
Moon, Insu Yun, Deokjin Kim, Sungryoul Lee, Yung Yi,
and KyoungSoo Park. 2012. Kargus: a highly-scalable
software-based intrusion detection system. In Proceed-
ings of the 2012 ACM conference on Computer and
communications security. ACM, 317–328.

[14] Dilip A Joseph, Arsalan Tavakoli, and Ion Stoica. 2008.
A policy-aware switching layer for data centers. In ACM
SIGCOMM Computer Communication Review, Vol. 38.
ACM, 51–62.

[15] Anuj Kalia, Dong Zhou, Michael Kaminsky, and
David G Andersen. 2015. Raising the Bar for Using
GPUs in Software Packet Processing.. In USENIX Sym-
posium on Networked Systems Design and Implementa-
tion. 409–423.

[16] Georgios P Katsikas, Tom Barbette, Dejan Kostic, Re-
becca Steinert, and Gerald Q Maguire Jr. 2018. Metron:
NFV Service Chains at the True Speed of the Under-
lying Hardware. In USENIX Symposium on Networked
Systems Design and Implementation. USENIX Associa-
tion.

[17] Joongi Kim, Keon Jang, Keunhong Lee, Sangwook Ma,
Junhyun Shim, and Sue Moon. 2015. NBA (network
balancing act): A high-performance packet processing
framework for heterogeneous processors. In Proceed-
ings of the Tenth European Conference on Computer
Systems. ACM, 22.

[18] S Kumar, M Tufail, S Majee, C Captari, and S Homma.
2015. Service Function Chaining Use Cases in Data
Centers. IETF SFC WG (2015).

[19] CUDA Nvidia. 2010. Programming guide.
[20] Shoumik Palkar, Chang Lan, Sangjin Han, Keon Jang,

Aurojit Panda, Sylvia Ratnasamy, Luigi Rizzo, and Scott
Shenker. 2015. E2: a framework for NFV applications.
In Proceedings of the 25th Symposium on Operating
Systems Principles. ACM, 121–136.

[21] Aurojit Panda, Sangjin Han, Keon Jang, Melvin Walls,
Sylvia Ratnasamy, and Scott Shenker. [n. d.]. NetBricks:
Taking the V out of NFV. In 12th USENIX Symposium on
Operating Systems Design and Implementation (OSDI
16), USENIX OSDI, Vol. 16.

[22] Zafar Ayyub Qazi, Cheng-Chun Tu, Luis Chiang, Rui
Miao, Vyas Sekar, and Minlan Yu. 2013. SIMPLE-fying
middlebox policy enforcement using SDN. In ACM SIG-
COMM computer communication review, Vol. 43. ACM,
27–38.

[23] P Quinn and T Nadeau. 2014. Service function chaining
problem statement. draft-ietf-sfc-problem-statement-10
(work in progress) (2014).

63

http://dpdk.org
http://dpdk.org

APNet ’18, August 2–3, 2018, Beijing, China Zhilong Zheng et al.

[24] Shriram Rajagopalan, Dan Williams, Hani Jamjoom, and
Andrew Warfield. 2013. Split/merge: System support for
elastic execution in virtual middleboxes. In Presented
as part of the 10th USENIX Symposium on Networked
Systems Design and Implementation. 227–240.

[25] Vyas Sekar, Norbert Egi, Sylvia Ratnasamy, Michael K
Reiter, and Guangyu Shi. 2012. Design and implemen-
tation of a consolidated middlebox architecture. In Pro-
ceedings of the 9th USENIX conference on Networked
Systems Design and Implementation. USENIX Associa-
tion, 24–24.

[26] Justine Sherry, Shaddi Hasan, Colin Scott, Arvind Kr-
ishnamurthy, Sylvia Ratnasamy, and Vyas Sekar. 2012.
Making middleboxes someone else’s problem: network
processing as a cloud service. ACM SIGCOMM Com-
puter Communication Review 42, 4 (2012), 13–24.

[27] Snort. 2018. Snort community rules. https://www.snort.
org/

[28] Chen Sun, Jun Bi, Zhilong Zheng, Heng Yu, and
Hongxin Hu. 2017. NFP: Enabling Network Function
Parallelism in NFV. In Proceedings of the Conference of
the ACM Special Interest Group on Data Communica-
tion. ACM, 43–56.

[29] Weibin Sun and Robert Ricci. 2013. Fast and flexible:
parallel packet processing with GPUs and click. In Archi-
tectures for Networking and Communications Systems,
ACM/IEEE Symposium on. IEEE, 25–35.

[30] Giorgos Vasiliadis, Lazaros Koromilas, Michalis Poly-
chronakis, and Sotiris Ioannidis. 2014. GASPP: A GPU-
Accelerated Stateful Packet Processing Framework.. In
USENIX Annual Technical Conference. 321–332.

[31] Tsung Tai Yeh, Amit Sabne, Putt Sakdhnagool, Rudolf
Eigenmann, and Timothy G Rogers. 2017. Pagoda: Fine-
Grained GPU Resource Virtualization for Narrow Tasks.
In Proceedings of the 22nd ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming.
ACM, 221–234.

[32] Xiaodong Yi, Jingpu Duan, and Chuan Wu. 2017.
GPUNFV: a GPU-Accelerated NFV System. In Proceed-
ings of the First Asia-Pacific Workshop on Networking.
ACM, 85–91.

[33] Kai Zhang, Bingsheng He, Jiayu Hu, Zeke Wang, Bei
Hua, Jiayi Meng, and Lishan Yang. 2018. G-NET: Effec-
tive GPU Sharing in NFV Systems. In USENIX Sympo-
sium on Networked Systems Design and Implementation.
USENIX, 187–200.

[34] Yang Zhang, Bilal Anwer, Vijay Gopalakrishnan, Bo
Han, Joshua Reich, Aman Shaikh, and Zhi-Li Zhang.
2017. ParaBox: Exploiting Parallelism for Virtual Net-
work Functions in Service Chaining. In Proceedings of
the Symposium on SDN Research. ACM, 143–149.

64

https://www.snort.org/
https://www.snort.org/

	Abstract
	1 Introduction
	2 Background and Challenges
	2.1 Background and Related Work
	2.2 Challenges

	3 GEN Design
	3.1 Overview
	3.2 SFC Modeling in GPU
	3.3 Elastic NF Scaling
	3.4 Runtime SFC Modification

	4 Preliminary Evaluation
	5 Conclusion and Discussion
	Acknowledgments
	References

