
Understanding and Detecting Remote Infection
on Linux-based IoT Devices

Hongda Li∗
hongdal@g.clemson.edu
Clemson University

Clemson, USA

Qiqing Huang∗
qiqinghu@buffalo.edu
University at Buffalo

Buffalo, USA

Fei Ding
feid@clemson.edu
Clemson University

Clemson, USA

Hongxin Hu
hongxinh@buffalo.edu
University at Buffalo

Buffalo, USA

Long Cheng
lcheng2@clemson.edu
Clemson University

Clemson, USA

Guofei Gu
guofei@cse.tamu.edu
Texas A&M University
College Station, USA

Ziming Zhao
zimingzh@buffalo.edu
University at Buffalo

Buffalo, USA

ABSTRACT
The rocketed population, poor security, and 24/7 online properties
make Linux-based Internet of Things (IoT) devices ideal targets for
attackers. However, due to the budget constraints and an enormous
number of vulnerabilities on such devices, protecting them against
attacks is very challenging. Therefore, understanding and detecting
IoT malware remote infection, which is before the compromised IoT
devices are monetized by adversaries, is crucial to mitigate damages
and financial loss caused by IoT malware. In this paper, we conduct
an empirical study on a large-scale dataset covering 403,464 samples
collected from VirusShare and a large group of IoT honeypots to
gain a deep insight into the characteristics of IoT malware remote
infection. We share detailed statistics of shell commands found in
our dataset, highlight malicious behaviors performed through those
commands, investigate current states of fingerprinting methods
of those commands, and offer a taxonomy of shell commands by
introducing the notion of infection capability. To demonstrate the
usefulness of the knowledge gained from our study, we develop
an approach to detect on-going remote infection activities based
on infection capabilities. Our evaluation shows that our detection
approach can achieve a 99.22% detection rate for remote infections
in the wild and introduce small performance overhead.

CCS CONCEPTS
• Security and privacy→Malware and itsmitigation; Intrusion
detection systems.

∗Both authors contributed equally to the paper.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ASIA CCS ’22, May 30-June 3, 2022, Nagasaki, Japan
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9140-5/22/05. . . $15.00
https://doi.org/10.1145/3488932.3517423

KEYWORDS
Linux-based IoT; Remote Infection; Malware Detection; Shell Com-
mand

ACM Reference Format:
Hongda Li, Qiqing Huang, Fei Ding, Hongxin Hu, Long Cheng, Guofei Gu,
and Ziming Zhao. 2022. Understanding and Detecting Remote Infection on
Linux-based IoT Devices. In Proceedings of the 2022 ACM Asia Conference
on Computer and Communications Security (ASIA CCS ’22), May 30-June 3,
2022, Nagasaki, Japan. ACM, New York, NY, USA, 15 pages. https://doi.org/
10.1145/3488932.3517423

1 INTRODUCTION
Over the past few years, the Internet of Things (IoT) has become
ubiquitous in our daily lives being applied in many fields, such as
smart home, healthcare, transportation, and industry control [31].
More than 71% of the tremendous number of IoT devices are pow-
ered by Linux, such as OpenWrt [44] and Raspbian [47], and such
a trend has been growing constantly [9]. At the same time, due to
poor security – such as weak passwords, unpatched software, and
lack of antivirus – and the 24/7 online properties, Linux-based IoT
devices become attractive targets for attackers. These compromised
Linux-based IoT devices are monetized by attackers and could cause
a range of security problems, such as launching large-scale DDoS
attacks and stealing sensitive information. For example, in 2016,
catastrophic damages to the Internet services, including GitHub,
Twitter, and Spotify, were caused by several high-profile DDoS at-
tacks [3, 18] originated from Mirai, which infected over 1.2 million
Linux-based IoT devices [40]. To make matters worse, the design
preferences of many IoT devices are put on low price and short
time-to-market rather than costly and comprehensive security so-
lutions. As a result, it presents a pressing challenge to protect IoT
devices from being compromised by remote attackers.

Recent research [43, 45, 55] has recognized three main stages of
IoT device compromise – intrusion, infection, and monetization. In
the intrusion stage, the malware attempts to login to the target sys-
tem by exploiting weak/default passwords or unpatched software
vulnerabilities. Studies [37] show that more than 93% IoT malware

https://doi.org/10.1145/3488932.3517423
https://doi.org/10.1145/3488932.3517423
https://doi.org/10.1145/3488932.3517423

gains the shell access of the target system through cracked SSH or
Telnet passwords. In the infection stage, which begins after mal-
ware successfully logins to the system, malware invokes a series
of shell commands remotely to prepare the environments for the
monetization that may happen later on. Finally, in the monetization
stage, malware monetizes in various ways, such as launching DDoS
attacks, stealing data, and cryptocurrency mining [37], which may
cause real-world damages or financial loss. To mitigate damages
caused by infected Linux-based IoT devices, it is crucial to fully
understand the remote infections on those IoT devices to enable
early detection before adversaries can exploit those devices for
monetization.

There have been several efforts to investigate IoT malware. Ef-
forts made in [6, 26] offer measurements only based on specific
IoT malware families. Other efforts either devote to general Linux
malware analysis [14] or understanding the status of IoT malware
from a general perspective [5, 13, 45]. Beyond solely measuring and
understanding IoT malware, there are also several efforts that de-
velop detection approaches for IoT malware [2, 27, 52, 53]. However,
they are all based on measurements of malicious payloads, which
are used for various monetization purposes. Activities during the
infection process that prepare the environment, deliver malicious
payloads, and execute those payloads are overlooked.

In this work, we seek an in-depth understanding of the character-
istics of IoT malware remote infection, by conducting an empirical
study on shell commands found in a large-scale dataset covering
samples retrieved from VirusShare [57] and logs of IoT honeypots
deployed around the world. We first identify five common remote
infection phases, namely Settlement, Environment Preparation, Pay-
load Delivery, Payload Execution, and Persistence & Covert. We then
analyze, 3,439 infection shell scripts, 48,099 malicious ELF files, and
honeypot logs of 352,016 different infection incidents to extract the
shell commands. After that, we share the statistics of the commands
we found, highlight the malicious behaviors performed through
those commands, and investigate current status of fingerprinting
methods of those commands. Based on our observations, we finally
propose a taxonomy of shell commands to abstract shell commands
that achieve the same goal in a remote infection into groups.

To demonstrate the usefulness of the knowledge we obtain, we
develop an infection detector based on the infection capabilities.
We evaluate our infection detector on software IoT devices that we
deployed as honeypots in the wide, where the detector achieves a
99.22% true positive rate. To evaluate the performance and func-
tional impact introduced by our infection detector, we install and
test our infection detector on three types of real IoT devices, rep-
resenting low-, middle-, and high-end IoT platforms, respectively.
Our testing results indicate that our infection detector introduces
no more than 4% CPU load and consumes 2.7MB memory space
without causing any false alerts or functional disruptions during a
one-week operation in those real IoT devices.

The key contributions of this paper are as follows:

• We conduct the first empirical study on shell commands extracted
from a large-scale dataset to understand the characteristics of
remote infection on Linux-based IoT devices.

• We share our findings and propose a taxonomy of shell com-
mands serving as a reference for future research on the early
detection of IoT malware.

• We demonstrate the usefulness of the knowledge gained from
our study by developing an infection detector that can detect
ongoing infection activities with a high detection rate.

• Wemake the compiled dataset publicly available and open-source
our detector implementation to the research community at https:
//github.com/soter-project/soter to benefit future research on
defending IoT malware.

2 THREAT MODEL
We assume adversaries may exploit different vulnerabilities, such
as weak passwords, device firmware flaws, and vulnerable appli-
cations, to compromise IoT devices. During the intrusion process,
the intruder can get shell access to the target IoT device via any
potential vulnerabilities. In the infection stage, a loader running
on a remote (usually compromised) device or server interacts with
the target device through the shell. Once the loader logins to the
shell of the target device, it executes a series of shell commands to
infect the device. Loaders running remotely can either be binary
executables or shell scripts, which contain shell commands to be
sent to (over the SSH or Telnet session) and executed in the target
device. Our Study concentrates on the infection stage of IoT device
compromise. This is because the infection stage happens before
the monetization stage so that we can take any actions if necessary
when infection activities are observed to mitigate any potential
damages or financial loss in an early stage. We will not cover the
intrusion stage in this work since 93% IoT device compromises
are through exploiting vulnerable passwords [37], which is mainly
caused by operational security issues [6, 26, 33].

3 UNDERSTANDING REMOTE INFECTION
3.1 Identifying Infection Process
Recent research on IoT malware provides a deep understanding
on Mirai [6]. It is revealed that Mirai comes with a separate loader
program, which asynchronously infects vulnerable IoT devices by
logging in through brute-force attempts, determining system envi-
ronment, downloading and executing architecture-specific binaries,
and finally deleting downloaded binaries. We further investigate
the source code of Mirai and recognize that actually a number of
shell commands are invoked by the loader running on a remote
server to perform the aforementioned operations. Another research
devoted to a different IoT malware, Hajime [26], also reveals similar
infection behaviors, which include logging in, downloading, and
executing malicious binaries in the target system via shell com-
mands. Besides, a prior study based on an online honeypot system,
IoTPot [45], discovers that during the infection stage, IoT malware
logins to the target system via Telnet and executes a series of shell
commands to detect system architecture, download and execute
malicious binaries, and remove the downloaded binaries.

Based on those observations, the IoT remote infection process
can be generally divided into 5 phases – Settlement, Environment
Preparation, Payload Delivery, Payload Execution, and Persistence &
Covert as shown in Figure 1. In the Settlement phase, the loader (run-
ning remotely) tries to find a writable place as the working directory.

https://github.com/soter-project/soter
https://github.com/soter-project/soter

IoT Remote
Infection Phases

Persistence &
Cover t

Environment
Preparation

Payload
Delivery

Settlement

Payload
Execution

change to a directory and
test writablility

read CPU architecture
from /proc/cpuinfo

download malicious
payload to target

change permission and
execute

remove malicious
payloads;

cd; cp;

wget ; t f t p;

cat ;

chmod; . / ;

r m;

Commands Executed
during Mirai Infection

Figure 1: Five phases of IoT remote infection process that we
identified (left), and shell commands found in Mirai source
code for infection (right).

During the Environment Preparation phase, the loader collects nec-
essary information from the system. During the Payload Delivery
phase, the loader delivers the malicious payload to the target system.
In the Payload Execution phase, the loader executes the delivered
payload on the target system. Finally, the loader often seeks ways
to persist and covert footprint in the Persistence & Covert phase. It
is worth noting that not all loader requires all phases to accomplish
a successful remote infection, nor the 5 phases must appear in exact
order. For example, it is possible the Settlement phase is after the
Environment Preparation phase and sometimes the Persistence &
Covert phase is missing. Furthermore, leaked source code [40, 58],
existing literature [16, 45], and reverse engineering reports [23, 29]
imply that an IoT remote infection can be accomplished by execut-
ing a series of shell commands. For instance, one of the widely seen
IoT malware, Mirai, achieves its infection via some common Linux
shell commands as shown in Figure 1.

To fully understand how IoT remote infection proceeds, it is
crucial to know what commands and in what sequence they are
executed during each infection phase. This motivates us to seek
a comprehensive study over large-scale data that could contain a
rich number of shell commands used for remote infection.

3.2 Data Collection
3.2.1 VirusShare Dataset. We collect a dataset fromVirusShare [57],
which is a repository of malware samples to provide security re-
searchers, incident responders, and forensic analysts with access
to samples of live malicious code. The repository contains a large
number of diverse malware samples, whose active time ranges from
2012 to 2020. In VirusShare, we find two types of files that include
shell commands. One type is the bash scripts. The other is the
malicious ELF (binary) files that include shell commands.

Figure 2: Geo-distribution of our deployed software IoT De-
vices.

We collect all the files on VirusShare with timestamp span-
ning from 2012-06-15 to 2020-04-05. To extract shell scripts, we
parse all downloaded files using base64, file, and bashlex [7], an
open-sourced bash shell parser. We obtain 3,620 Linux shell scripts
through this step. We then query VirusTotal [56], a hub of more
than 70 antivirus scanners and URL/domain blacklisting services,
for each shell script to make sure that they are reported as mali-
cious. We consider the report as malicious if at least one scanner
or service indicating it as malicious. As a result, we retrieve 3,439
infection shell scripts. Besides, we download all the malicious ELF
files available on VirusShare, which yields 48,099 malicious ELF
files.

3.2.2 IoT Honeypots. We deploy software IoT devices with vulner-
able passwords across the globe following the guidance introduced
in HoneyCloud [15]. Worth noting, all the software IoT devices
are provisioned with ARM CPU architecture – one of the most
popular architectures for real IoT devices – emulated by QEMU
emulator. In total, we deployed 182 software IoT devices on 4 pub-
lic clouds – Google Cloud Platform (GCP), Amazon Web Services
(AWS), Microsoft Azure, and Vultr – distributing at 32 different
sites (shown in Fig. 2) from 2020-06-25 to 2020-10-13. As a result, all
the software IoT devices attract 352,016 remote infection incidents.
For each remote infection incident, the honeypot records the shell
command that has been executed in sequence. We distinguish differ-
ent infection incidents by login sessions originating from different
hosts.

To prevent our software IoT devices from being used by adver-
saries to launch attacks or infect more IoT devices, we employ
iptables in the host machine (outside of software IoT devices) to
block any SSH and Telnet sessions originated from our software IoT
devices. Moreover, we reboot and replace the firmware of all the
devices within 3 minutes after an SSH or Telnet login is detected to
avoid our devices being exploited for malicious purposes.

3.3 Data Analysis
To analyze the shell scripts, we develop a tool based on bashlex to
extract the commands from all shell scripts. We then get the statis-
tics of the shell commands invoked by the script and understand
the functionality of each shell command based on online manual
pages [11, 34]. As such, we confirm that all the shell scripts in our
dataset can align with a part or all of the phases of IoT remote
infection we have identified. Fig. 3 shows an example of the in-
fection script in our dataset. According to the functionalities of

Figure 3: A sample infection script in our dataset. SHA-256:
2a151e1148fb95c7696b05db4c58d1fd8e138f0f9c8c638228c203
ad273523f8

those commands, we can align them with five phases of the remote
infection. A full list of the mapping relations of each command is
shown in Table 6.

In addition to the infection scripts, we also extract shell com-
mands from the ELF files in our dataset. Fig. 4 showcases an example
of such ELF files that send shell commands to a remote target. By
disassembling the ELF file, we can see the send system call is in-
voked with shell command strings as arguments, based on which
we derive that this ELF is executed on a remote server and invokes
those shell commands through the network.

For the IoT honeypot logs, we simply extract the command se-
quences executed by each remote infection and store them in ded-
icated text files. We consider the command sequence of a single
infection incident as a data sample in our dataset.

3.4 Analysis Results
In this section, we provide detailed statistics of shell commands
executed in a remote infection, discuss the malicious behaviors per-
formed through those shell commands, and investigate the current
state of fingerprints for those shell commands. We finally provide a
taxonomy of shell commands based on each command’s capabilities
in a remote infection.

3.4.1 Statistics. The commands found in infection scripts, mali-
cious ELF files, and the honeypot logs are quite concentrated. Ta-
ble 1 lists the top-20 commands from those sources in our dataset.
The percentages drop to 0.17%, 0.81%, and less than 0.01% for the
20th command in infection shell scripts, malicious ELF files, and
honeypot logs, respectively. We totally find 169 different shell com-
mands from the infection shell scripts and malicious ELF files while
from the honeypot logs, we only find 52 different shell commands.
Furthermore, we verified that the 169 shell commands cover all the

Figure 4: A sample ELF file in our dataset. SHA-256:
cc0e1ff4ef6ae076c55c7435457dbd647789989fbfecdc04262f26
bd02deac73

Scripts Percentage ELF File Percentage Honeypot Logs Percentage
cd 52.28% cd 13.39% cd 37.55%
./𝑒𝑥𝑒𝑐𝑢𝑡𝑎𝑏𝑙𝑒 10.75% rm 10.08% sh 13.18%
wget 8.67% sh 8.97% ./𝑒𝑥𝑒𝑐𝑢𝑡𝑎𝑏𝑙𝑒 9.72%
rm 7.98% chmod 7.05% cat 9.12%
chmod 7.72% wget 5.07% echo 8.82%
tftp 3.26% kill 5.05% wget 4.86%
echo 1.61% free 4.82% id 4.49%
curl 1.46% read 4.74% su 4.15%
sshd 0.63% tftp 4.65% head 4.01%
ftp 0.59% open 4.64% rm 2.63%
sh 0.57% sleep 4.26% chmod 0.64%
bash 0.57% busybox 2.81% cp 0.54%
cp 0.43% pkill 2.49% tftp 0.18%
chattr 0.38% history 2.38% ps 0.08%
busybox 0.31% printf 1.69% uname 0.01%
mv 0.24% service 1.68% ls 0.01%
ssh 0.24% ftpget 1.63% grep <0.01%
ulimit 0.22% iptables 1.16% killall <0.01%
touch 0.18% readlink 1.06% ifconfig <0.01%
ftpget 0.17% sshd 0.81% mkdir <0.01%

Table 1: Top 20 commands found in infection scripts, mali-
cious ELF files, and honeypot logs.

52 shell commands found in honeypot logs. This statistic implies
that shell commands executed by remote infections are limited to
a small command set in a real-world setup. A full list of all the
commands discovered in our dataset is provided in Table 6 in the
appendix.
Takeaway: shell commands executed during remote infections are
concentrated and in practice, this number is much smaller than what
we found in a static dataset.

One reason remote infections via shell commands are widely
employed to target the Linux-based IoT devices is that infecting via
shell command is compatible with diverse IoT devices. The shell
commands can be categorized into three categories, external, built-
in, and hybrid. The external commands refer to utility programs that
are installed in the system, such as under /usr/bin, /usr/sbin,
/bin, /sbin, ect. Those commands are independent of the CPU

architecture and the shells. As long as those utility programs are
installed in the system, they are ready to be executed and can be
invoked by different shells (e.g., sh, zsh, csh, tcsh, etc.). built-in
commands refer to the internal commands that are implemented
by specific shells. For example, kill, history, and cd are imple-
mented by shells, thus may differ from shell to shell. Nevertheless,
all the Unix-like shell families share a large comment set of built-in
commands. hybrid commands refer to those commands that are
implemented by shells while there are also utility programs out
there. For example, echo, printf, and pwd are implemented as shell
built-in commands while there may be utility programs with the
same name installed in the system. Our study reveals that the ma-
jority of the shell commands are external commands. The detailed
statistics are listed in Table 5 in Appendix B.
Takeaway: external commands are the majority of shell commands,
which make remote infections via shell commands highly compatible
with various IoT device architectures and shells.

3.4.2 Trail and Error. Trail and error is a cost-effective way to fig-
ure out the right parameters required by certain commands given
that limited information is exposed to the adversaries. Generally,
we observe two scenarios where trail and error is used. In the first
scenario, a remote loader logins to the target shell and sends com-
mands like cd || cd || cd to test which path is accessible. We
find 87.44% of the samples in our dataset includes this behavior
pattern. In the second scenario, a remote loader tries to download
malicious payload with different tools, where the command pat-
terns are isomorphic to wget || curl || tftp. We find 94.6%
of the samples in our dataset includes this behavior pattern. The
reason that trail and error pattern is widely employed by remote
infections is that it can significantly increase the infection success
chance while remaining logically simple. It is worth noting that the
trail and error behaviors are highly suspicious since a legitimate
administrator should have the idea of where the best working place
is and which tools are available in the system.
Takeaway: trail and error is widely used by remote infection scripts
and is highly suspicious.

3.4.3 Embedded Malicious Payload. Malicious payload delivery is
critical to the remote infection, even for the whole compromise life-
cycle.We find that most of the samples in our dataset (97.44%) utilize
one or more download commands to deliver the malicious payload.
A small portion of samples (0.47%) in our dataset embeds malicious
payload as part of the command arguments. The technique used
to embed malicious payloads is the so-called here document [25].
One advantage of embedding malicious payloads over downloading
is that it can bypass firewalls in some cases. For example, some
networks disallow download originated from inside to an unknown
external server. This will result in regular download tools failing to
download. Another advantage of embedding malicious payloads
is that it does not rely on any download tools on the target sys-
tem. This makes the infection more robust to resource-constrained
systems where download tools usually are not available. However,
embedded malicious payloads usually rely on base64, a shell com-
mand that converts binary data into ASCII string format and vice
versa. Thus, base64 becomes the dependency of infections with
malicious payload embedded.

Takeaway: remote infection scripts embed malicious payloads in
rare cases where shell commands like base64 are required to convert
between binary data and ASCII string format.

3.4.4 Fingerprints. There are two common fingerprinting methods
of the 3,439 infection scripts. One is based on the IP addresses
involved in the shell scripts. The other is based on the MD5 of the
shell script. We investigate those two fingerprinting methods of the
3,439 infection scripts in our dataset. First, we obtain the statistics
of unique IP addresses in all the infection scripts. We totally find
1963 unique IP addresses appearing in 2296 infection scripts. We
query those IP addresses against IPsum [50], a threat intelligence
feed based on 30+ different publicly available lists [51] of suspicious
and/or malicious IP addresses. The databases are daily updated, and
our results are cut off as of 2021-07-20. As a result, we find that only
28 out of 1963 unique IP addresses are included by those publicly
available lists. We further test the availability of all the IP addresses
found in our dataset, and it turns out none of them is still accessible.
Takeaway: the IP addresses involved in shell scripts tend to be tem-
porary and are unlikely to be covered by publicly available malicious
IP address databases.

Second, we study the reports of VirusTotal regarding the in-
fection scripts in our dataset. Figure 5(a) shows the cumulative
distribution function (CDF) graph of the number of VirusTotal en-
gines that report each script in our dataset as malicious. The results
imply that for 83.42% of all the infection scripts, there are 20 to
30 VirusTotal detection engines reporting them as malicious. Fig-
ure 5(b) shows the percentages of VirusTotal detection engines that
reported them as malicious. The number of engine reports varies
from 26 to 61. For most of the infection scripts (91.08%), the ratio
that VirusTotal engines reporting it as malicious is between 17%
and 31%. As a summary, VirusTotal detection engines have limited
signature coverage of the infection scripts in our dataset. With the
above limitation in mind, we recommend choosing the threshold
of the report ratio at around 17% or the report engine number at
approximately 20 to achieve low false positives as well as low false
negatives. This recommendation is consistent with the results in
[60].
Takeaway: choosing a report ratio around 17% or report number
around 20 of VirusTotal achieves a good trade-off between false posi-
tives and false negatives of infection scripts.

(a) (b)

Figure 5: A CDF graph showing the number of VirusTotal en-
gines that classify each script in our dataset as malicious (a),
and the distribution of the ratio that VirusTotal engines re-
porting an infection script as malicious (b).

Infection Capabilities Abbr Explanation Commands
Change Permission CH Change the permission of files chmod usermod chattr umask chown chgrp
Remove History RM Remove activity history to evade forensic rm history
Disable Security DS Disable security mechanisms accton ufw
Download DW Download files from the Internet wget tftp curl ftp apt-get lynx git ftpget mail
Find Place FP Try to find a working place cd
Copy File CP Copy files cp tail head mv cat read scp strings tee
Create and Write CW Create and write to new files echo printf mkfifo open
Decompress DCP Decompress files tar gunzip gzip unzip
Decode DCD Decode from encoded files base64
Compile Code CC Compile source code make gcc cc ldconfig
Process Text PT Search, cut, sort texts grep awk sed cut tr sort egrep uniq wc
Kill Process KILL Kill processes pkill killall kill
Exclude Others EXO Avoid others to infect or login chpasswd iptables-restore passwd
Network Probe NP Probe internal or external networks nmap zmap di
Implant Backdoor IBD Launch a deamon to enable access later httpd squid sshd

Execute EXE Execute files nohup xargs crontab perl sh service nc sshpass bash exec nice
php python screen ssh busybox ./executable env

Collect Information CI Collect information from the system
uname which ls ifconfig lsof arp stat id whoami netstat lsb release
ping hostname chkconfig df file free fuser getconf iptables-save
nproc pidof socklist uptime who lspci ps du lastlog

Manage System MSYS Change users and environment variables sysctl iptables userdel su mkisofs useradd defaults sudo reboot
Manage Software MSOFT Update or install software mktemp mkdir export ln apt-key dpkg yum
Manage Resource MRES Set/reset resource hard and soft limit ulimit
Get Time GT Get timestamp of files date
Change Time CT Change timestamp of files touch

Programming PR programming commands, e.g., break; continue expr test set unset declare local continue break unalias exit
enable return let true trap readonly getopts

Agnostic AGN Any commands do not align to the above sleep yes lp find pwd md5sum clear fold kdialog logout wall
Unrecognized UN Any commands not including in our base

Table 2: A list of infection capabilities we abstracted and corresponding explanations.

3.4.5 Shell Command Taxonomy. We provide a taxonomy of shell
commands based on the notion of infection capability: an abstrac-
tion of a sort of shell commands that can achieve certain goals
during the remote infection. Abstracting infection capabilities from
commands rather than studying each specific command directly
makes our understanding more general. This generality allows fu-
ture work to add new commands or remove outdated commands
to keep the knowledge base up-to-date and offers a general way
to understand and organize how shell commands are executed in
a remote infection. We label all the 169 shell commands in our
dataset with 25 infection capabilities according to the goals that a
command can achieve in remote infections.

For example, lots of remote infections download files from a
server on the Internet in the Payload Delivery phase. There are a
set of shell commands, such as wget, tftp, curl, and git, that can
achieve this goal. Then we label these commands, which have the
capability to download files from a remote server with Download
infection capability. Table 2 shows our taxonomy of shell commands
based on infection capabilities. Among the infection capabilities,
there are three special ones, which are not abstracted according to
the goals the shell commands:

• Unrecognized. Any new commands that are not included in our
current dataset will be labeled with unrecognized infection capa-
bility in our taxonomy.

• Programming. Commands that are used for general programming
purpose is labeled with Programming infection capability. Among
the examples are break, continue, local, set, etc.

• Agnostic. Commands that cannot be labeled like any other infec-
tion capabilities will be labeled as agnostic. Among the examples
are sleep (wait for a certain time), pwd (print working directory),
clear (clear screen contents), etc.
Based on our taxonomy, we further study what infection ca-

pabilities are exploited in different infection phases. The agnostic
and programming infection capabilities are exploited in all infec-
tion phases since they do not attach to any specific infection goals.
Some infection capabilities, including process text, copy file, man-
age software, manage resource, disable security mechanisms, and
manage system are exploited by more than one infection phases,
while the remaining infection capabilities are specific to a single
infection phase. In addition, we investigate how many infection
phases are involved in each sample of our dataset. We find that 0%
samples involve only 1 infection phase; 0.11% samples involve only
2 infection phases; 0.17% samples involve only 3 infection phases;
37.19% samples involve only 4 infection phases; and 62.05% samples
involve all 5 infection phases. The statistic implies that not all 5
infection phases are necessarily presented for a remote infection.
But most remote infections involve 4 or 5 infection phases. Refer
to Figure 13 in Appendix C for a visualized summary of the exploit
relations between each phase and infection capabilities.

4 DETECTING REMOTE INFECTION
To demonstrate the usefulness of our knowledge, we develop a
preliminary infection detector utilizing the taxonomy proposed in
Section 3 and evaluate our infection detector.

Building
ISM

Infection
Capabilities

Generating CFGs

2 3 Correlation
Analysis

1

Infection
Scripts

Benign
Scripts

Command Flow GraphCommand Flow Graph

.61

.38

.46
.83

.75

.17

.2 .1

Weighted Infection State
Machine

Infection State Machine

Figure 6: Modeling approach overview. Firstly, we generate
the CFGs of infection and benign scripts in our dataset. Then
we build an ISM that represents the behavior patterns of
malware infection. After that, we assign weights to the ISM
through a correlation analysis. The generated WISM works
as a general model of malware infection.

4.1 Model Development
In this section, we model the remote infection process as a finite
statemachine, which is constructed using the infection scripts in our
dataset. Since this model will be used for remote infection detection,
a baseline is required to distinguish infection activities from benign
activities. To determine the baseline between infection and benign
activities, we collect benign shell scripts via FIRMADYNE [12], a
tool that can download firmware images and associate metadata
from supported IoT device vendor websites. After collecting the
firmware images, we use the firmware walker [20] and Firmware
Mod Kit [21] to search the firmware image for shell scripts. We
finally acquired 9,337 unique benign shell scripts after de-duplicate
the extracted shell scripts with MD5 values.

An overview of ourmodeling approach is illustrated in Fig. 6. The
output of ourmodeling is aweighted infection statemachine (WISM)
that models the remote infection. Our modeling approach consists
of 3 major steps. First, we generate the command flow graph (CFG)
for all the infection scripts and benign scripts in our dataset. Sec-
ond, we build an infection state machine (ISM) based upon the
CFGs of all the infection scripts. Finally, we conducted a correlation
analysis based on the CFGs of infection scripts and benign scripts.
The correlation analysis tracks the capabilities in all CFGs and as-
signs a weight to each state transition in the ISM. The weights are
maximized for infection scripts while minimized for benign scripts.

4.1.1 Generating Command Flow Graphs. The command flow graph
(CFG) is a representation, using graph notation, of all paths con-
taining shell commands in the sequence that might be traversed
through a shell script during its execution. In our generated CFGs,
each node represents a shell command, and each directed edge rep-
resents a transfer from one command to another one. We develop

our own tool to generate the CFGs based on Bashlex [7], which is
an open-sourced parser for bash scripts. We generate a CFG for each
infection or benign script. Fig. 7 illustrates two infection scripts
(script-a and script-b) and their corresponding CFGs. Each CFG is
stored as a file using the networkx [54] Python library. Those CFGs
will be used when we build the ISM and WISM.

4.1.2 Building Infection State Machine. We use an ISM to repre-
sent the relations between infection capabilities that are exploited
by the remote infection. We formally define our ISM as a 5-tuple
(Σ, 𝑆, 𝑠0,Δ, 𝐹) where:
• Σ is the set of all the infection capabilities that we have abstracted;
• 𝑆 is the set of states, each of which is mapped to an infection
capability in Table 2;

• 𝑠0 is the initial state, which also belongs to 𝑆 but is not mapped
to any infection capability;

• Δ is the state-transition function: Δ : 𝑆 × Σ → 𝑆 ; and
• 𝐹 is the set of final states.
We only build a single ISM from all the infection scripts. As an
example, Fig. 7 depicts the CFGs of two infection scripts and the
ISM built from those two scripts.

In the ISM, we consider each node as a state where a specific
infection capability has been exploited during the infection. Each
state in our ISM is mapped to an infection capability except for the
initial state, 𝑠0. For example, a state that maps to RM means that if
the infection goes into this state, the RM infection capability has
been exploited. Therefore, some shell commands, such as rm and
history, must be invoked. We associate a directed edge with an in-
fection capability, covering different shell commands. For example,
a directed edge coming into the RM state is associated with the RM
infection capability, which abstracts the rm command in Fig. 7. It is
worth noting that this abstraction captures the transitions at the
infection capabilities level rather than the command level. To auto-
matically build the ISM from all the infection scripts, we develop a
tool that takes the CFGs as inputs and yields an ISM. Each state in
the ISM is mapped to an infection capability. A state transition in
the ISM means one more infection capability is exploited.

4.1.3 Correlation Analysis. Our correlation analysis tracks a se-
quence of state transitions in the ISM to determine a remote infec-
tion. The key idea is to assign each state transition in the ISM with
weight and maintain a counter for the weights over a temporal
window. Once the counter exceeds a threshold, a remote infection
is detected. To determine the weight for each state transition, we
employ the late acceptance hill-climbing (LAHC) algorithm [10].
The LAHC algorithm can be used to find a local optimum for an
optimization problem in a bounded time frame.

Let’s denote a WISM as 𝜃 , a series of state transitions that
are triggered by a sequence of 𝑁 infection capabilities as 𝑇 =

(𝑡1, 𝑡2, ..., 𝑡𝑁−1), and 0 ≤ 𝜃𝑡𝑖 ≤ 1 as the weight that will be assigned
to the state transition 𝑡𝑖 (𝑖 ∈ [1, ..., 𝑁 − 1]) in WISM. Then, the risk
score of a sequence of 𝑁 infection capabilities is defined as

𝑅(𝑇, 𝜃) = 1
𝑁

𝑁∑︁
𝑖=1

𝜃𝑡𝑖 (1)

With the above definition, we can calculate a risk score given a
WISM and a sequence of infection capabilities.

rm

killall

rm rm

rm exit

start

killall

CFG-b

rm

echo exit

cat echocat

start CFG-a RM KILL

CW

CP

AGN

RM

KILL

AGN

CW

AGN

CP

CW CP

RM KILL

CP

CW ISM

Infection
Capabilities

Scr ipt-b

r m - f . / out put . t xt ; r m - f . / svcnam. t xt ;
r m - f . / out put 2. t xt ; r m - f . / dat apool . bk ;
k i l l al l - 9 - w dat apool . sh 1>/ dev/ nul l 2>&1;
f or KI LLER i n . / bi n/ * ; do
 k i l l al l - 9 - w $KI LLER 1>/ dev/ nul l 2>&1 ;
done;
exi t $@

user s=$1;
pass=$2;
i f [! - f " $user s" - o ! - f " $pass"] ; t hen
 echo " Fi l e not f ound" ;
 exi t ;
f i
r m - f pass_f i l e
f or m_user i n $(cat $user s) ; do
 f or m_pass i n $(cat $pass) ; do
 echo " $m_user $m_pass" >> pass_f i l e
 done
done

Scr ipt-a

Figure 7: Building the ISM from two infection scripts. Refer to Table 2 for abbreviations of the capabilities and Table 6 in
Appendix for command to infection capability mapping.
Script-a SHA-256: 9dd5a5ca05290aabb87e4472c78e316bcee6a37eb30bf7bbf8c3b4c3a3646941
Script-b SHA-256: 0bc440c8382a9fcf161d7c8496b270d59f4893ad0aa15ed1474ef5a99a2455f3

To obtain a WISM that best models the remote infection process,
weminimize the risk score for all the sequences of infection capabil-
ities found in benign scripts and maximize the risk score for all the
sequences of infection capabilities found in infection scripts. There-
fore, we can formulate the weight assignment as an optimization
problem that maximizes the following objective function:

𝑓 (M,B, 𝜃) =
𝑁M∑︁
𝑖=1

𝑅(𝑇M
𝑖 , 𝜃) −

𝑁B∑︁
𝑗=1

𝑅(𝑇B
𝑗 , 𝜃) (2)

Where M is a set of sequences of infection capabilities found in
infection scripts, 𝑁M is the size of M, 𝑇M

𝑖
is a series of state transi-

tions triggered by the 𝑖𝑡ℎ sequence of infection capabilities found
in infection scripts, B is a set of sequences of infection capabilities
found in benign scripts, 𝑁B is the size of B, 𝑇B

𝑗
is a series of state

transitions triggered by the 𝑗𝑡ℎ sequence of infection capabilities
found in benign scripts.

We then employ the LAHC algorithm to solve the optimization
problem. The LAHC algorithm relies on a feedback loop to gradually
improve the quality of weights in the WISM. For each iteration, the
algorithm adjusts all the weights of the WISM with a small amount
(0.01 in our case). The initial weights of each state transition are set
to the frequency of the infection capabilities found in the infection
scripts. Over a sufficiently large number of iterations (100,000 in
our case), we observe the convergence and obtain the weights for a
WISM.

4.2 Detector Implementation
Our infection detector is implemented to run in the kernel space and
detects malware infection in real-time. Fig. 8 provides an overview
of our infection detector . The hook is implemented as C function
pointers that point to the entry point of the classifier. The classifier
consists of the WISM, PID-keyed temporal windows, a threshold
tester, and an alert function. Every time a command execution
triggers the hook through execve system call, the infection detector
retrieves the temporal window according to the PID value. Once the
login session terminates, the exit system call is called, which is also

hooked to trigger the removal of the relevant temporal window. Our
infection detector recalculates the risk score based on the infection
capabilities that have been exploited within each temporal window
separately. If the risk score does not exceed a threshold, the classifier
returns to execve to continue the normal routine. Otherwise, an
alert function is called, which writes a detection log to the rsyslog
system [48] and returns to execve with an error code to stop the
following actions of this command. Our infection detector skips
the shell build-in commands, such as echo, set, continue, etc.,
since those build-in commands do not trigger execve. However,
the infection detector traces cd command by hooking the chdir
system call because this build-in command has been widely used
by remote infections (refer to Table 1 for statistics).

Rsyslog System

 execve() {

 . . .

}

YesScore >
Threshold?

No

al er t ()

Hook

Weighted Infection
State Machine

Classifier (LKM)

Kernel Space

User Space

cd; wget ;
chmod; . / ; r m

...
Infection Detected!

Commands Invoked

PID-keyed temporal windows

cd/ rmcd/ rmFP EXE RM

Figure 8: Overview of the infection detector implementation.

Two parameters need to be defined for the infection detector:
i) the risk score threshold to distinguish remote infection from
legitimate use; and ii) the temporal window size. When we choose
the optimal threshold, we make use of infection scripts and benign
scripts in our dataset. For each script, we compute the risk scores of
all the infection capability sequences in that script. Then, we choose
the highest risk score as the risk score of that script. After that, we
compute the Cumulative Distribution Function (CDF) of risk scores
for both infection scripts and benign scripts. The CDF is shown in

Fig. 12 in Appendix. By observing the CDFs, we estimate a threshold
that satisfies a certain level of true alert rate while maintaining a
relatively low false alert rate. For our implementation, we choose
0.50 as the threshold to achieve a reasonably high true alert rate
while remaining relatively low false alert rate. To determine the
temporal window size, we count the length of all the command
sequences we extracted from our infection samples. We observe
that all the command sequences are shorter than 34. As a result, we
decide to choose 34 as the maximal length of the command temporal
windows. When our infection detector is running, a number of 34-
length temporal windows will slide over the infection capability
sequences exploited by different login sessions respectively. This
parameter is adjustable by reloading the infection detector.

4.3 Evaluation
4.3.1 Effectiveness Evaluation of Our Detector. We deployed our
infection detector on the software IoT honeypots from 2021-03-29
to 2021-05-01 to evaluate its effectiveness in detecting ongoing
remote infections. Since the software IoT devices are deployed as
honeypots, all logins to those devices are considered remote infec-
tions. Table 3 lists the detecting results of the infection detector
overall 147,860 remote infections, among which our infection de-
tector raises 146,702 alerts. As a result, the FNR is 0.78%, and TPR
is 99.22%.

Total Alert FN FNR TPR
Remote Infections 147,860 146,702 1,158 0.78% 99.22%

Table 3: Real-time detection results of the infection detector.
FN: False Negative; FNR: False Negative Rate; TPR: True Pos-
itive Rate.

We further investigated the false negative samples and found
new infection patterns that are not in our dataset. For example, we
observed some remote loaders download malicious payloads and
execute the same payloads for multiple times. Between two consec-
utive executions, they invoke wget to download more files. Finally,
they removed all downloaded files. It is likely that the consecutively
downloaded files may convey fragmented information that will be
used by the malicious payloads. Among those false negative sam-
ples, we also found incomplete infections. For example, we found
some remote loaders login to invoke ls, cat, or uname, and then
logout without invoking other shell commands. This likely happens
because those remote loaders check the system information and
may find that the system is not their target.

In addition, we explored how many login sessions can happen
simultaneously. Every time a new SSH or Telnet login session hap-
pens, a PID-keyed temporal window is created to track the com-
mands invoked through that SSH or Telnet session. On average,
we observed 3 login sessions throughout our 33-day online deploy-
ment, and the maximum number of live login sessions is 57. These
observations convince us that isolating commands invoked from
different login sessions does not require much memory space.

4.3.2 Generalization Evaluation of Our Modeling Approach. In this
section, we evaluated how general our modeling approach is by
testing the trained model against unseen samples. In particular,

Sample Sets Volume Description
training_b 7,483 benign scripts for weight and threshold assignment.
training_m 2,802 infection scripts for weight and threshold assignment.
testing_b 1,854 unseen benign scripts to test our model
testing_m 637 unseen infection scripts to test our model
Total_b 9,337 all benign scripts use for the evaluation
Total_m 3,439 all infection scripts used for the evaluation

Table 4: Details of each sample set used in our evaluation.

we split the shell scripts in our dataset randomly into a training
set (80%) and a testing set (20%) and made sure samples in the
testing set do not appear in the training set. During the correlation
analysis and threshold determination (a.k.a. training process), only
the training set is used, and the testing set always remains unseen
to the detection model. During the testing process, the testing set
is used to test the prediction performance of the trained model.
Table 4 lists the details of all the sets we used in this evaluation.
The total_b and total_m are sets of benign and infection scripts,
respectively. The training_b and training_m are sets of benign and
infection scripts used for training. The testing_b and testing_m are
sets of benign and infection scripts used for testing.

The testing results are presented in Fig. 9(a). Most of the infec-
tion scripts yield a high risk score close to 1, while the majority of
benign scripts gain a low risk score close to 0. Using the threshold
0.50, which is determined during the training process, our model
achieves 0.17% false positive rate (FPR) and 96.33% true positive
rate (TPR), with an overall accuracy of 98.83% and F-score of 0.98.
We manually investigated the scripts that were falsely classified by
our model. We found that the false positive samples are caused by
extensively downloading and executing binaries, which is similar
to the behavior of remote infection scripts. The false negative sam-
ples are mainly caused by extensive usage of commands – such as
declare, continue, and break – that are abstracted with the pro-
gramming infection capability. This capability allows the script to
implement complex programming logic, which is not fundamental
to a remote infection.

Furthermore, we performed our model’s receiver operating char-
acteristic (ROC) analysis based on the testing sets. The ROC curve
shows the relationship between FPR and TPR. It provides a means
of reviewing the performance of a model in terms of the trade-
off between FPR and TPR. In our case, the ROC curve shown in
Fig. 9(b) implies that the TPR grows rapidly when the FPR still
remains low. The area under the curve (AUC) for our model is 0.973,
which indicates a good balance between false positives and false
negatives.

4.3.3 Performance and Functional Impacts on Real Devices. In this
experiment, we evaluated the performance impact and functional
impact introduced by our infection detector on three popular IoT
platforms, representing low-end, mid-end, and high-end IoT plat-
forms:
• D-Link DCS-932L IP Camera (DCS-932L), equipped with MIPS
24KEc processor, 32MB SDRAM and 4MB flash memory, repre-
senting a low-end, resource-constrained platform.

• Raspberry Pi Compute Model 3 (CM3), equipped with ARM
Cortex-A53 quad-core processor, 1GB DRAM and 8GB micro-
SD card, representing a mid-end, generic multi-purpose platform.

(a)

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0
0.2
0.4
0.6
0.8
1.0

Tr
ue

 P
os

iti
ve

 R
at

e

AUC=0.973

(b)

Figure 9: The testing results (a) and the ROC curve (b) of our
infection detection model over the infection scripts that are
unseen during the training process.

• SolidRunHummingBoard Edge (HBE), equippedwithARMCortex-
A9 quad-core processor, 2GB DRAM and 16GB micro-SD card,
representing a high-end, powerful computing platform.

We installed OpenWrt on DCS-932L, Raspbian on CM3, and De-
bian on HBE. All those Linux versions are officially supported by
the device vendors, respectively. In addition, we installed and ran
different applications on the three devices to emulate a regular
workload. We installed light sensor [32] and MJPGE streaming [41]
packages on DCS-932L that allow it to capture and send frames
continuously to a remote receiver. We installed the Motion pack-
age [42] on CM3 that allows it to work as a Digital Video Recorder
(DVR). We configured HBE to make it an edge node that forwards
network traffic. As a baseline, we first set up all the devices without
the infection detector and observed the CPU and memory usage.
As a comparison, we then installed the infection detector in the
devices and observed the CPU and memory usage again.
Performance Impact. We quantified the CPU overhead using the
CPU load average [22] within one minute. The CPU load average
metric represents the total queue length of the active processes
within a recent past time period (e.g., one minute in our experiment).
If this number is greater than 1, it means at least one active process
on average is in the queue waiting to use CPU. In contrast, if this
number is less than 1, it means less than one active process on
average is in the queue waiting to use the CPU. We employ the
“CPU load average” value reported by top as the CPU load average
for a device. Fig. 10(a) shows the results when the devices are
running without human interaction and Fig. 10(b) shows the results
when users login to the system and perform regular operations
such as copying files, removing files, opening files, etc. In the first
scenario, the infection detector introduces 3.73%, 3.61%, and 3.85%
CPU load average for DCS-932L, CM3, and HBE, respectively. In the
second scenario, the infection detector introduces 1.73%, 2.20%, and
2.54% CPU load average for DCS-932L, CM3, and HBE, respectively.
In both scenarios, the infection detector introduces no more than
3.85% CPU load average, meaning that the length of the active
process waiting queue only increases 3.85% on average due to the
infection detector.

To measure the memory overhead, we added extra code in the
kernel to trace how much memory is allocated to the process of
the infection detector. Then, we compared that with free mem-
ory information obtained from /proc/meminfo. The results from

different IoT platforms are quite similar, showing that our infec-
tion detector occupies 2.7MB of memory. This amount is only a
small portion of the available memory, even for low-end IoT plat-
forms like DCS-932L, which has around 12MB free memory in our
experiments.

DCS-
932L

CM3 HBE0
0.05
0.10
0.15
0.20
0.25
0.30
0.35

CP
U

Lo
ad

 A
ve

ra
ge

with detector original

(a)

DCS-
932L

CM3 HBE0
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

CP
U

Lo
ad

 A
ve

ra
ge

with detector original

(b)

Figure 10: CPU load average of three types of IoT platforms
w/o human interaction (a), and w/ human interaction (b).

Functional Impact. To evaluate the functional impact on real IoT
devices, we exercised the three IoT devices as comprehensively as
possible. For DCS-932L, we configured it as a surveillance cam-
era with the light-sensor, httpd, and jmpg-stream packages
installed. We operated the device through Telnet login and config-
ured the services on the devices via shell commands. We then set up
CM3 as a receiver of the stream from DCS-932L. We operated CM3
through SSH to check the logs and modify the configuration files.
Especially, we updated the software source configuration, which re-
lates to software upgrades.We also tested some other CM3 use cases
that involve various shell commands under /usr/bin, /usr/sbin,
/bin, and /sbin. Those use cases include programming, utilizing
the general-purpose input/output (GPIO) pin to control the light
on and off, and basic auditing. For HBE, we set it up as a network
gateway. We operated the device through SSH to check the logs,
modify the configuration files, and test HBE with the same shell
commands as in CM3.

After operating these real IoT devices with real-world use cases
for a week, we did not observe any false alerts raised by the infec-
tion detector. This observation implies that our infection detector
introduces minimal functional impact on real IoT devices under
real-world use cases.

4.3.4 Evasion Analysis. Evasions can happen in all aspects, from
exploiting new zero-day vulnerabilities to switching to other attack
surfaces. Specific to the infection detector, we limit the scope of our
discussion with command-level evasions (a.k.a. mimicry attacks)
where adversaries try to mimic benign operations while they ac-
tually perform infection activities such that our infection detector
cannot capture the infections. Generally, three types of strategies
may be used to alter the commands being executed to evade the
infection detector.
Injecting Extra Commands. First, adversaries may execute extra
commands other than those that are for the infection purpose.
To address this issue, we relax our infection detector by skipping
commands that trigger transitionswith lowweights in our detection
model. We exhaustively try different values between 0 and 1 with

0.01 stepping distance and choose 0.42 for the infection detector to
achieve a maximum detection accuracy on our training set. Note
that, continuously triggering transitions with weights greater than
the alert threshold is highly likely to trigger an alert.

We then conduct experiments to test the effectiveness of this
countermeasure with the following evasion attack strategies. Strat-
egy 1: randomly injecting different shell commands that trigger
transitions with low weights (less than 0.42). Strategy 2: randomly
injecting duplicated shell commands that trigger transitions with
low weights. Strategy 3: randomly injecting different shell com-
mands that trigger transitions with high weights (greater than 0.42).

The percentage of the injected commands grows from 10% to
100%, where 100% means injected, and original commands have the
same number. Our testing results are shown in Fig 11. The detection
accuracy of the infection detector decreases slightly as the number
of extra commands increases. Specifically, our infection detector
achieves 97.42%, 97.74%, and 97.58% with 10% extra commands in-
jected for three strategies, respectively, and achieves 89.66%, 89.82%,
and 87.72% with 100% extra commands injected for three strategies,
respectively.

Figure 11: Evasion by injecting random commands.

Replacing with New Commands Adversaries may also replace
existing shell commands with new shell commands that are not in
our dataset to evade the infection detector. For example, replacing
wget with uget, which is not used in any infection scripts in our
dataset. To tackle this kind of evasion attacks, we can extend our
infection detector by adding the new shell commands to our infec-
tion capabilities. Our infection detector is designed based on the
infection capabilities rather than specific shell commands. There-
fore, the infection detector can handle such replacement (without
retraining), given that the infection capability of the new command
is provided to our infection detector. To evaluate our countermea-
sures to this evasion attack, we choose at least one command for
each infection capability. We then replace the chosen commands in
all infection shell scripts with new commands that are not in our
dataset. We then label those new commands with proper infection
capabilities and run the detection test. The results show that our
infection detector can still achieve a high detection accuracy of
97.58%.
Exploiting Variant Commands Other than injecting and replac-
ing commands, adversaries may also employ elaborate variants of
shell commands in a remote infection. For example, to delete a file,

adversaries may use “cat /dev/null > file” instead of “rm file”.
The former only clears the content of a file without deleting it from
the system. For some other examples, adversaries may use “wget
-o” directly for downloading to obviate the “cd” command, and use
“echo *” rather than “ls” to list a directory. However, sophisticated
evasion attacks require extra effort to construct and may not always
achieve the same remote infection objectives. Moreover, we have
conducted experiments for the aforementioned three sophisticated
evasion attacks. We simulate all the above attacks simultaneously
overall testing scripts. As a result, our infection detector can still
achieve a detection accuracy of 97.90%. This result implies that our
infection detector is robust to certain variants of remote infections
because the infection detector detects remote infections based on
risk scores rather than command-level pattern matching.

5 DISCUSSION
Our remote infection model is trained only based on the shell com-
mand flows extracted from shell scripts in our dataset. We leave
as our future work to utilize the log command sequences for our
model training and extract the shell command flows from ELF files
via static program analysis. Apart from static analysis, we also plan
to dynamically execute ELF files as remote loaders to retrieve shell
command flows, which requires the support of an infrastructure
that involves multiple networked hosts (devices). Take the loader of
Mirai as an example. It is running on a server, retrieving vulnerable
passwords from another report server, and taking a remote IoT
device as a target.

The detector developed in this work may not capture infections
that were not seen in the past due to a static detection threshold.
We plan to enhance our detector to adopt machine learning based
algorithms and use adaptive thresholds that can be updated dynam-
ically, which will make our detector more robust. In addition, our
detector currently can only respond to remote infections by simply
prohibiting commands from being executed by offending processes.
We will also consider integrating our detector with dynamic miti-
gation approaches for remote infections, leveraging the output of
the detector.

In our current testbed, we only seek the software IoT device
as a solution to deploy IoT honeypots on a large scale due to its
cost-efficiency. Although we have enhanced the fidelity of soft-
ware IoT devices and enabled basic functions on them, they are
still not able to fully emulate all features of hardware IoT devices.
In addition, adversaries may leverage in-depth information (e.g.,
model-specific registers [19]) and advanced techniques (e.g., exe-
cution analysis [46]) to infer the identity of a virtual IoT device.
The authors in [15] have already demonstrated the possibility of
deploying hardware IoT devices as honeypots. We will also seek
large-scale deployment of IoT honeypots with hardware IoT devices
in the future.

The taxonomy of shell commands proposed in this work is one
of the possible ways to abstract the shell commands with respect
to remote infections. There may be other ways to label the shell
commands with different infection capabilities other than what we
proposed in this work. Nevertheless, as we have demonstrated with
a preliminary infection detector, with our taxonomy, the infection

capabilities for each shell command can be used to detect infection
in the wild with reasonably high accuracy.

6 RELATEDWORK
There is a body of work devoted to the study of malware utiliz-
ing data mining and machine learning techniques [17, 28, 38, 39],
which are OS-agnostic. However, those efforts limit analyzing the
behaviors of malicious payload rather than the remote infection
process. Another body of work devotes to the study of OS-specific
malware. Those work either focuses on Windows-specific mal-
ware [24, 30, 35, 49] or Android-specific malware [1, 36, 59].

In the Linux area, there have been several research efforts made
recently. Manos Antonakakis et al. [6] provide great details of the
widely spread IoT malware, Mirai, including its infection mecha-
nism. Another work [26] conducts measurement and analysis of
Hajime botnet and finds that Hajime is a variant fromMirai but with
new features that Mirai does not use. Although detailed infection
techniques and measurements are provided in those works, they
are limited to a specific IoT malware family. The research in [14]
offers the first comprehensive analysis and measurement of mal-
ware for Linux platforms. This work unveils the challenges of Linux
malware analysis, develops a toolset specific for Linux malware
analysis, and documents the results of its analysis. Another recent
research [5] studies the IoT malware life cycle. Authors in this work
divide the IoT malware life cycle into five components – infection
vector, payload, persistence, capabilities, and C&C infrastructure.
Andrei Costin et al. in [13] provides a survey of IoT malware focus-
ing on the vulnerabilities and detection approaches. Unfortunately,
those research efforts fail to provide an in-depth measurement of
the infection process of IoT malware. There is also a number of
work employing IoT honeypots to collect and analyze malicious
activities on IoT devices. Yin Minn Pa et al. [45] deploy a large-sale
software IoT honeypot in IoTPot. Their work provides an insight
into the compromise of IoT devices and divide the compromise into
intrusion, infection, and monetization stages. HoneyCloud [15]
investigates the fileless attacks on Linux-based IoT devices with
the evidence collected from IoT honeypots. The above work also
fails to dive deep into the remote infection process on Linux-based
IoT devices. In contrast, our work conducts a comprehensive study
of the remote infection process and share detailed measurement
results specific to the remote infection on Linux-based IoT devices.

In addition to the work that is dedicated to the measurement
of IoT malware, there is a body of work developing approaches to
detect IoT malware. HADES-IoT [8] develops a host-based anomaly
detection system for IoT devices by profiling the benign programs
using SHA256 digest. CloudEyes [53] employs a cloud-based ar-
chitecture for IoT malware detection, which stores signatures of
malware on the cloud and implements a scanning agent in the IoT
devices to collect signature fragments. Authors in [2] propose a
low complexity signature-based method to detect malware for IoT
devices. A classifier is developed in [52] to classify IoT malware
based on image recognition techniques. All the above work focuses
on modeling and classifying malicious payloads instead of remote
infection processes on IoT devices, and thus can hardly unveil the
malicious activities early in the infection stage. SHELLCORE [4] de-
velops a deep learning model based on the term- and character-level

features of shell commands. In our work, we model the infection
process on the command level and provide a taxonomy of shell
commands in terms of infection capability. Furthermore, we evalu-
ate our approach with large-scale deployment in the wild. Deep-
Power [16] presents a detection approach for malware infection
based on power side channels. The authors employ a deep-learning
model trained with the power consumption of shell commands to
imply malicious activities in the device. However, in DeepPower,
the detection model trained for one type of device cannot be di-
rectly applied to detect malicious activities in other types of devices.
In our work, we systematically investigate the remote infection
process on Linux-based IoT devices. The model built based on our
knowledge can be used to detect remote infections on different
types of Linux-based IoT devices.

7 CONCLUSIONS
In this work, we have conducted an empirical study on a large-scale
dataset of shell commands extracted from infection scripts, mali-
cious ELF files, and IoT honeypot logs to gain a deep insight into the
characteristics of IoT malware remote infection via shell commands.
We shared our findings and provided a taxonomy of shell commands
used in remote infections. Based on the knowledge gained from
our study, we have developed a preliminary detector for remote
infections to demonstrate the usefulness of our study. We have
evaluated our detector on a large number of software IoT devices
deployed across the world and three different real IoT platforms.
The results indicate that our infection detector can achieve a high
detection rate for remote infections in the wild and at the same time
introduce very little performance overhead and functional impact
on real IoT devices.

ACKNOWLEDGMENTS
This material is based upon work supported in part by the Na-
tional Science Foundation (NSF) under Grant No. 2128107, 2128607,
2129164, 1700544 and 2037798, and the NSF/VMware Partnership
on Software Defined Infrastructure as a Foundation for Clean-Slate
Computing Security (SDI-CSCS) program under Award Title “S2OS:
Enabling Infrastructure-Wide Programmable Security with SDI”. It
is also supported in part by ONR Grant No. N00014-20-1-2734. Any
opinions, findings, and conclusions or recommendations expressed
in this material are those of the authors and do not necessarily
reflect the views of NSF, VMware and ONR.

REFERENCES
[1] Yousra Aafer, Wenliang Du, and Heng Yin. 2013. Droidapiminer: Mining api-level

features for robust malware detection in android. In International conference on
security and privacy in communication systems. Springer, 86–103.

[2] Muhamed Fauzi Bin Abbas and Thambipillai Srikanthan. 2017. Low-complexity
signature-based Malware detection for IoT devices. In International Conference
on Applications and Techniques in Information Security. Springer, 181–189.

[3] Akamai. 2016. Akamai’s State of the Internet / Security, Q3 2016 Re-
port. https://www.akamai.com/us/en/multimedia/documents/state-of-the-
internet/q3-2016-state-of-the-internet-security-report.pdf.

[4] Hisham Alasmary, Afsah Anwar, Ahmed Abusnaina, Abdulrahman Alabduljab-
bar, Mohammed Abuhamad, An Wang, Dae Hun Nyang, Amro Awad, and David
Mohaisen. 2021. SHELLCORE: Automating Malicious IoT Software Detection
Using Shell Commands Representation. IEEE Internet of Things Journal (2021).

[5] Omar Alrawi, Charles Lever, Kevin Valakuzhy, Kevin Snow, Fabian Monrose,
Manos Antonakakis, et al. 2021. The Circle Of Life: A Large-Scale Study of
The IoT Malware Lifecycle. In 30th {USENIX} Security Symposium ({USENIX}
Security 21).

[6] Manos Antonakakis, Tim April, Michael Bailey, Matt Bernhard, Elie Bursztein,
Jaime Cochran, Zakir Durumeric, J Alex Halderman, Luca Invernizzi, Michalis
Kallitsis, et al. 2017. Understanding the mirai botnet. In 26th {USENIX} Security
Symposium ({USENIX} Security 17). 1093–1110.

[7] Bashlex 2021. Bashlex - Python parser for bash.
https://github.com/idank/bashlex.

[8] Dominik Breitenbacher, Ivan Homoliak, Yan Lin Aung, Nils Ole Tippenhauer,
and Yuval Elovici. 2019. HADES-IoT: A Practical Host-Based Anomaly Detection
System for IoTDevices. InACMAsia Conference on Computer and Communications
Security. 479–484.

[9] Eric Brown. 2018. Linux Still Rules IoT, Says Survey, with Raspbian Leading
the Way. https://circuitcellar.com/cc-blog/linux-still-rules-iot-says-survey-with-
raspbian-leading-the-way/.

[10] EdmundKBurke and Yuri Bykov. 2017. The late acceptance hill-climbing heuristic.
European Journal of Operational Research 258, 1 (2017), 70–78.

[11] Busybox man pages - user commands 2021. Busybox man pages - user commands.
https://busybox.net/downloads/BusyBox.html.

[12] DamingDChen,MaverickWoo, David Brumley, andManuel Egele. 2016. Towards
Automated Dynamic Analysis for Linux-based Embedded Firmware.. In NDSS,
Vol. 16. 1–16.

[13] Andrei Costin and Jonas Zaddach. 2018. Iot malware: Comprehensive survey,
analysis framework and case studies. BlackHat USA (2018).

[14] Emanuele Cozzi, Mariano Graziano, Yanick Fratantonio, and Davide Balzarotti.
2018. Understanding linux malware. In 2018 IEEE Symposium on Security and
Privacy (SP). IEEE, 161–175.

[15] Fan Dang, Zhenhua Li, Yunhao Liu, Ennan Zhai, Qi Alfred Chen, Tianyin Xu,
Yan Chen, and Jingyu Yang. 2019. Understanding Fileless Attacks on Linux-based
IoT Devices with HoneyCloud. In 17th Annual International Conference on Mobile
Systems, Applications, and Services. 482–493.

[16] Fei Ding, Hongda Li, Feng Luo, Hongxin Hu, Long Cheng, Hai Xiao, and Rong
Ge. 2020. DeepPower: Non-intrusive and Deep Learning-based Detection of
IoT Malware Using Power Side Channels. In Proceedings of the 15th ACM Asia
Conference on Computer and Communications Security. 33–46.

[17] Thomas Dube, Richard Raines, Gilbert Peterson, Kenneth Bauer, Michael Gri-
maila, and Steven Rogers. 2012. Malware target recognition via static heuristics.
Computers & Security 31, 1 (2012), 137–147.

[18] Dyn. 2016. Dyn analysis summary of Friday October 21 attack.
https://dyn.com/blog/dyn-analysis-summary-of-friday-october-21-attack/.

[19] Peter Ferrie. 2007. Attacks on more virtual machine emulators. Symantec Tech-
nology Exchange 55 (2007).

[20] firmwalker 2017. firmwalker. https://github.com/danieluhricek/LiSa.
[21] firmware-mod-kit 2017. firmware-mod-kit.

https://github.com/rampageX/firmware-mod-kit.
[22] Neil J. Gunther. 2010. UNIX Load Average Part 1: How It Works.

https://www.helpsystems.com/resources/guides/unix-load-average-part-
1-how-it-works.

[23] Michael Haag. 2013. Kaiten - Linux Backdoor.
http://blog.michaelhaag.org/2013/12/kaiten-linux-backdoor.html.

[24] DannyHendler, Shay Kels, and Amir Rubin. 2018. Detectingmalicious PowerShell
commands using deep neural networks. In Asia Conference on Computer and
Communications Security. 187–197.

[25] Here Document 2021. Here Document.
https://en.wikipedia.org/wiki/Here_document.

[26] Stephen Herwig, Katura Harvey, George Hughey, Richard Roberts, and Dave
Levin. 2019. Measurement and Analysis of Hajime, a Peer-to-peer IoT Botnet.. In
NDSS.

[27] Ivan Homoliak, Martin Teknos, Martín Ochoa, Dominik Breitenbacher, Saeid
Hosseini, and Petr Hanacek. 2018. Improving network intrusion detection clas-
sifiers by non-payload-based exploit-independent obfuscations: An adversarial
approach. arXiv preprint arXiv:1805.02684 (2018).

[28] Íñigo Íncer Romeo, Michael Theodorides, Sadia Afroz, and David Wagner. 2018.
Adversarially robust malware detection using monotonic classification. In ACM
International Workshop on Security and Privacy Analytics. 54–63.

[29] Rhena Inocencio. 2014. BASHLITE Affects Devices Running on Busy-
Box. http://blog.trendmicro.com/trendlabs-security-intelligence/bashlite-affects-
devices-running-on-busybox/.

[30] Bo Li, Kevin Roundy, Chris Gates, and Yevgeniy Vorobeychik. 2017. Large-scale
identification of malicious singleton files. In ACM on Conference on Data and
Application Security and Privacy. 227–238.

[31] Libelium. 2014. Top 50 Internet of Things Application.
http://www.libelium.com/resources/ top_50_iot_sensor_applications_ranking/.

[32] LightSensor-daemon 2021. LightSensor-daemon for OpenWrt.
http://www.aboehler.at/hg/lightSensor-daemon.

[33] David Lindner. 2018. OWASP Internet Of Things Top 10 2018 Re-
leased. https://nvisium.com/blog/2019/01/02/internet-of-things-owasp-top-10-
2018-released.html.

[34] Linux man pages - user commands 2021. Linux man pages - user commands.
https://linux.die.net/man/1/.

[35] Robert Lyda and James Hamrock. 2007. Using entropy analysis to find encrypted
and packed malware. IEEE Security & Privacy 5, 2 (2007), 40–45.

[36] Enrico Mariconti, Lucky Onwuzurike, Panagiotis Andriotis, Emiliano De Cristo-
faro, Gordon Ross, and Gianluca Stringhini. 2017. MAMADROID: Detecting
Android Malware by Building Markov Chains of Behavioral Models. (2017).

[37] Vladimir Kuskov Mikhail Kuzin, Yaroslav Shmelev. 2018. New IoT-malware grew
three-fold in H1 2018. https://securelist.com/new-trends-in-the-world-of-iot-
threats/87991/.

[38] Brad Miller, Alex Kantchelian, Michael Carl Tschantz, Sadia Afroz, Rekha Bach-
wani, Riyaz Faizullabhoy, Ling Huang, Vaishaal Shankar, Tony Wu, George Yiu,
et al. 2016. Reviewer integration and performance measurement for malware
detection. In International Conference on Detection of Intrusions and Malware, and
Vulnerability Assessment. Springer, 122–141.

[39] Bradley Austin Miller. 2015. Scalable platform for malicious content detection
integratingmachine learning andmanual review. Ph. D. Dissertation. UC Berkeley.

[40] Mirai Source code 2016. LeakedMirai Source Code for Research/IoCDevelopment
Purposes. https://github.com/jgamblin/Mirai-Source-Code.

[41] MJPGStreamer 2021. MJPG Streamer for OpenWrt.
https://openwrt.org/packages/pkgdata/mjpg-streamer.

[42] Motion 2021. The Motion program. https://motion-project.github.io/index.html.
[43] Thien Duc Nguyen, Samuel Marchal, Markus Miettinen, Hossein Fereidooni, N

Asokan, and Ahmad-Reza Sadeghi. 2019. DÏoT: A federated self-learning anomaly
detection system for IoT. In 2019 IEEE 39th International Conference on Distributed
Computing Systems (ICDCS). IEEE, 756–767.

[44] OpenWrt Project 2021. OpenWrt Porject. https://openwrt.org/.
[45] Yin Minn Pa Pa, Shogo Suzuki, Katsunari Yoshioka, Tsutomu Matsumoto,

Takahiro Kasama, and Christian Rossow. 2015. IoTPOT: analysing the rise of IoT
compromises. In 9th USENIX Workshop on Offensive Technologies (WOOT’15).

[46] Thomas Raffetseder, Christopher Kruegel, and Engin Kirda. 2007. Detecting
system emulators. In International Conference on Information Security. Springer,
1–18.

[47] Raspbian OS 2021. Raspberry Pi OS (previously called Raspbian).
https://www.raspberrypi.org/downloads/raspberry-pi-os/.

[48] Rsyslog: rocket-fast system for log processing 2021. Rsyslog.
https://en.wikipedia.org/wiki/Rsyslog.

[49] M Zubair Shafiq, S Momina Tabish, Fauzan Mirza, and Muddassar Farooq. 2009.
Pe-miner: Mining structural information to detect malicious executables in real-
time. In InternationalWorkshop on Recent Advances in Intrusion Detection. Springer,
121–141.

[50] Miroslav Stampar. 2021. IPsum Threat Intelligence.
https://github.com/stamparm/ipsum.

[51] Miroslav Stampar. 2021. Maltrail Malicious Traffic Detection System.
https://github.com/stamparm/maltrail.

[52] Jiawei Su, Vargas Danilo Vasconcellos, Sanjiva Prasad, Sgandurra Daniele, Yaokai
Feng, and Kouichi Sakurai. 2018. Lightweight classification of IoT malware
based on image recognition. In 2018 IEEE 42nd Annual Computer Software and
Applications Conference (COMPSAC), Vol. 2. IEEE, 664–669.

[53] Hao Sun, Xiaofeng Wang, Rajkumar Buyya, and Jinshu Su. 2017. CloudEyes:
Cloud-based malware detection with reversible sketch for resource-constrained
internet of things IoT devices. Software—Practice & Experience 47, 3 (2017), 421–
441.

[54] The networkx package 2021. NetworkX – Network Analysis Package in Python.
https://networkx.org/.

[55] Pierre-Antoine Vervier and Yun Shen. 2018. Before toasters rise up: A view into
the emerging iot threat landscape. In International Symposium on Research in
Attacks, Intrusions, and Defenses. Springer, 556–576.

[56] 2021. Virustotal-free online virus, malware and url scanner.
https://www.virustotal.com/en. (2021).

[57] VirusShare.com 2021. VirusShare.com. https://virusshare.com/.
[58] Wifatch source repository 2015. Linux.Wifatch.

https://gitlab.com/rav7teif/linux.wifatch.
[59] Mu Zhang, Yue Duan, Heng Yin, and Zhiruo Zhao. 2014. Semantics-aware android

malware classification using weighted contextual api dependency graphs. InACM
SIGSAC conference on computer and communications security. 1105–1116.

[60] Shuofei Zhu, Jianjun Shi, Limin Yang, Boqin Qin, Ziyi Zhang, Linhai Song, and
Gang Wang. 2020. Measuring and modeling the label dynamics of online anti-
malware engines. In 29th USENIX Security Symposium (USENIX Security 20).
2361–2378.

Appendix A CDFS OF INFECTION AND
BENIGN SCRIPTS

Fig. 12 shows the CDFs of risk scores of all benign scripts and all
infection scripts in our training set.

0 0.2 0.4 0.6 0.8 1
Risk Score

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Benign Scripts
Infection Scripts

Figure 12: CDFs of risk scores of all benign scripts and all
infection scripts.

Appendix B STATISTICS OF THREE SHELL
COMMAND CATEGORIES

Table 5 lists the statistics of external, built-in, and hybrid shell
commands found in our dataset.

External Built-in Hybrid
Whole Dataset All Commands

Phases

Settlement 51.11% 48.89% 6.67%
Environment Preparation 75.61% 24.39% 1.22%

Payload Delivery 66.07% 33.93% 1.79%
Payload Execution 67.14% 32.86% 1.43%
Persistence & Covert 65.00% 35.00% 1.67%

Capabilities

Create and Write 66.67% 33.33% 33.33%
Agnostic 83.33% 16.67% 8.33%
Find Place 0.00% 100.00% 0.00%
Cope File 88.89% 11.11% 0.00%

Programming 5.88% 94.12% 0.00%
Collect Information 100.00% 0.00% 0.00%

Process Text 100.00% 0.00% 0.00%
Network Probe 100.00% 0.00% 0.00%
Manage Resource 0.00% 100.00% 0.00%
Disable Security 100.00% 0.00% 0.00%

Decode 100.00% 0.00% 0.00%
Download 100.00% 0.00% 0.00%
Decompress 100.00% 0.00% 0.00%
Compile Code 100.00% 0.00% 0.00%

Change Permission 83.33% 16.67% 0.00%
Execute 88.89% 11.11% 0.00%

Manage System 100.00% 0.00% 0.00%
Manage Software 85.71% 14.29% 0.00%
Implant Backdoor 100.00% 0.00% 0.00%

Get Time 100.00% 0.00% 0.00%
Change Time 100.00% 0.00% 0.00%
Exclude Others 100.00% 0.00% 0.00%
Kill Process 66.67% 33.33% 0.00%

Remove History 50.00% 50.00% 0.00%

Table 5: Statistics of three categories of shell commands
found in our dataset

Appendix C INFECTION CAPABILITIES
EXPLOITED IN EACH INFECTION
PHASE

Figure 13 demonstrates the what infection capabilities are exploited
in each infection phase.

Persistence &
Cover t

Environment
Preparation

Settlement

Payload
Execution

IBD

CH

DW

CC

FP

DS

RM

CP

CW

DCP

DCD

PT

KILL

EXO

AGN

EXE

UN

CI

MSOFT

MSYS

MRES

GT

CT

PR

NP

Payload Delivery

Figure 13: Infection capabilities exploited in each infection
phase.

Appendix D INFECTION CAPABILITIES AND
COMMANDS

A full list of the infection phases, capabilities, percentages, and
corresponding shell commands is shown in Table 6

Phase Capabilities Percentage in each phase Commands

Settlement

Create and Write 11.14% echo* printf mkfifo open
Agnostic 7.37% sleep* yes lp find pwd md5sum clear fold kdialog logout wall
Find Place 72.32% cd*
Cope File 8.42% cp* tail head* mv* cat* read scp strings tee

Programming 0.75% expr test set unset declare local continue break unalias exit enable
return let true trap readonly getopts

Environment Preparation Collect Information 36.45%
uname* which* ls* ifconfig* lsof arp stat id* whoami* netstat* lsb_release
ping* hostname* chkconfig df* file free* fuser getconf iptables-save nproc*
pidof socklist uptime* who lspci* ps* du lastlog

Cope File 29.29% cp* tail head* mv* cat* read scp strings tee
Process Text 4.15% grep* awk* sed* cut tr* sort* egrep uniq* wc*
Agnostic 25.77% sleep* yes lp find pwd md5sum clear fold kdialog logout wall

Network Probe 0.88% nmap zmap dig

Programming 2.61% expr test set unset declare local continue break unalias exit enable
return let true trap readonly getopts

Manage Resource 0.83% ulimit
Disable Security 0.02% accton ufw

Payload Delivery

Agnostic 15.31% sleep* yes lp find pwd md5sum clear fold kdialog logout wall
Decode 0.16% base64*
Cope File 17.49% cp* tail head* mv* cat* read scp strings tee
Download 65.00% wget* tftp* curl* ftp* apt-get lynx git ftpget* mail
Decompress 0.22% tar gunzip gzip unzip
Compile Code 0.27% make gcc cc ldconfig

Programming 1.55% expr test set unset declare local continue break unalias exit enable
return let true trap readonly getopts

Payload Execution

Agnostic 11.29% sleep* yes lp find pwd md5sum clear fold kdialog logout wall
Change Permission 28.35% chmod* usermod chattr* umask chown chgrp

Execute 53.44% nohup* xargs crontab* perl sh* service nc sshpass bash* exec nice php
python screen ssh busybox ./executable* env

Manage System 3.28% sysctl iptables* userdel su* mkisofs useradd defaults sudo reboot

Programming 1.14% expr test set unset declare local continue break unalias exit enable
return let true trap readonly getopts

Manage Resource 0.36% ulimit
Manage Software 2.13% mktemp mkdir* export ln* apt-key dpkg yum

Persistence & Covert

Process Text 2.33% grep* awk* sed* cut tr* sort* egrep uniq* wc*
Agnostic 14.48% sleep* yes lp find pwd md5sum clear fold kdialog logout wall

Manage Software 2.73% mktemp mkdir* export ln* apt-key dpkg yum
Implant Backdoor 3.54% httpd squid sshd*

Get Time 0.15% date
Change Time 0.41% touch*
Exclude Others 0.70% chpasswd iptables-restore passwd*

Programming 1.47% expr test set unset declare local continue break unalias exit enable
return let true trap readonly getopts

Disable Security 0.01% accton ufw
Kill Process 23.78% pkill killall* kill*

Remove History 50.40% rm* history

Table 6: Statistics of 5 five infection phases, 25 infection capabilities, and all corresponding shell commands. (*) indicates the
command appears in honeypot logs.

	Abstract
	1 Introduction
	2 Threat Model
	3 Understanding Remote Infection
	3.1 Identifying Infection Process
	3.2 Data Collection
	3.3 Data Analysis
	3.4 Analysis Results

	4 Detecting Remote Infection
	4.1 Model Development
	4.2 Detector Implementation
	4.3 Evaluation

	5 Discussion
	6 Related Work
	7 Conclusions
	Acknowledgments
	References
	Appendix A CDFs of Infection and Benign Scripts
	Appendix B Statistics of Three Shell Command Categories
	Appendix C Infection Capabilities Exploited in Each Infection Phase
	Appendix D Infection Capabilities and Commands

