
Understanding and Detecting Remote Infection
on Linux-based IoT Devices

Hongda Li∗
hongdal@g.clemson.edu
Clemson University

Clemson, USA

Qiqing Huang∗
qiqinghu@buffalo.edu
University at Buffalo

Buffalo, USA

Fei Ding
feid@clemson.edu
Clemson University

Clemson, USA

Hongxin Hu
hongxinh@buffalo.edu
University at Buffalo

Buffalo, USA

Long Cheng
lcheng2@clemson.edu
Clemson University

Clemson, USA

Guofei Gu
guofei@cse.tamu.edu
Texas A&M University
College Station, USA

Ziming Zhao
zimingzh@buffalo.edu
University at Buffalo

Buffalo, USA

ABSTRACT
The rocketed population, poor security, and 24/7 online properties
make Linux-based Internet of Things (IoT) devices ideal targets for
attackers. However, due to the budget constraints and an enormous
number of vulnerabilities on such devices, protecting them against
attacks is very challenging. Therefore, understanding and detecting
IoT malware remote infection, which is before the compromised IoT
devices are monetized by adversaries, is crucial to mitigate damages
and financial loss caused by IoT malware. In this paper, we conduct
an empirical study on a large-scale dataset covering 403,464 samples
collected from VirusShare and a large group of IoT honeypots to
gain a deep insight into the characteristics of IoT malware remote
infection. We share detailed statistics of shell commands found in
our dataset, highlight malicious behaviors performed through those
commands, investigate current states of fingerprinting methods
of those commands, and offer a taxonomy of shell commands by
introducing the notion of infection capability. To demonstrate the
usefulness of the knowledge gained from our study, we develop
an approach to detect on-going remote infection activities based
on infection capabilities. Our evaluation shows that our detection
approach can achieve a 99.22% detection rate for remote infections
in the wild and introduce small performance overhead.

CCS CONCEPTS
• Security and privacy→Malware and itsmitigation; Intrusion
detection systems.

∗Both authors contributed equally to the paper.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ASIA CCS ’22, May 30-June 3, 2022, Nagasaki, Japan
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9140-5/22/05. . . $15.00
https://doi.org/10.1145/3488932.3517423

KEYWORDS
Linux-based IoT; Remote Infection; Malware Detection; Shell Com-
mand

ACM Reference Format:
Hongda Li, Qiqing Huang, Fei Ding, Hongxin Hu, Long Cheng, Guofei Gu,
and Ziming Zhao. 2022. Understanding and Detecting Remote Infection on
Linux-based IoT Devices. In Proceedings of the 2022 ACM Asia Conference
on Computer and Communications Security (ASIA CCS ’22), May 30-June 3,
2022, Nagasaki, Japan. ACM, New York, NY, USA, 15 pages. https://doi.org/
10.1145/3488932.3517423

1 INTRODUCTION
Over the past few years, the Internet of Things (IoT) has become
ubiquitous in our daily lives being applied in many fields, such as
smart home, healthcare, transportation, and industry control [31].
More than 71% of the tremendous number of IoT devices are pow-
ered by Linux, such as OpenWrt [44] and Raspbian [47], and such
a trend has been growing constantly [9]. At the same time, due to
poor security – such as weak passwords, unpatched software, and
lack of antivirus – and the 24/7 online properties, Linux-based IoT
devices become attractive targets for attackers. These compromised
Linux-based IoT devices are monetized by attackers and could cause
a range of security problems, such as launching large-scale DDoS
attacks and stealing sensitive information. For example, in 2016,
catastrophic damages to the Internet services, including GitHub,
Twitter, and Spotify, were caused by several high-profile DDoS at-
tacks [3, 18] originated from Mirai, which infected over 1.2 million
Linux-based IoT devices [40]. To make matters worse, the design
preferences of many IoT devices are put on low price and short
time-to-market rather than costly and comprehensive security so-
lutions. As a result, it presents a pressing challenge to protect IoT
devices from being compromised by remote attackers.

Recent research [43, 45, 55] has recognized three main stages of
IoT device compromise – intrusion, infection, and monetization. In
the intrusion stage, the malware attempts to login to the target sys-
tem by exploiting weak/default passwords or unpatched software
vulnerabilities. Studies [37] show that more than 93% IoT malware

https://doi.org/10.1145/3488932.3517423
https://doi.org/10.1145/3488932.3517423
https://doi.org/10.1145/3488932.3517423

gains the shell access of the target system through cracked SSH or
Telnet passwords. In the infection stage, which begins after mal-
ware successfully logins to the system, malware invokes a series
of shell commands remotely to prepare the environments for the
monetization that may happen later on. Finally, in the monetization
stage, malware monetizes in various ways, such as launching DDoS
attacks, stealing data, and cryptocurrency mining [37], which may
cause real-world damages or financial loss. To mitigate damages
caused by infected Linux-based IoT devices, it is crucial to fully
understand the remote infections on those IoT devices to enable
early detection before adversaries can exploit those devices for
monetization.

There have been several efforts to investigate IoT malware. Ef-
forts made in [6, 26] offer measurements only based on specific
IoT malware families. Other efforts either devote to general Linux
malware analysis [14] or understanding the status of IoT malware
from a general perspective [5, 13, 45]. Beyond solely measuring and
understanding IoT malware, there are also several efforts that de-
velop detection approaches for IoT malware [2, 27, 52, 53]. However,
they are all based on measurements of malicious payloads, which
are used for various monetization purposes. Activities during the
infection process that prepare the environment, deliver malicious
payloads, and execute those payloads are overlooked.

In this work, we seek an in-depth understanding of the character-
istics of IoT malware remote infection, by conducting an empirical
study on shell commands found in a large-scale dataset covering
samples retrieved from VirusShare [57] and logs of IoT honeypots
deployed around the world. We first identify five common remote
infection phases, namely Settlement, Environment Preparation, Pay-
load Delivery, Payload Execution, and Persistence & Covert. We then
analyze, 3,439 infection shell scripts, 48,099 malicious ELF files, and
honeypot logs of 352,016 different infection incidents to extract the
shell commands. After that, we share the statistics of the commands
we found, highlight the malicious behaviors performed through
those commands, and investigate current status of fingerprinting
methods of those commands. Based on our observations, we finally
propose a taxonomy of shell commands to abstract shell commands
that achieve the same goal in a remote infection into groups.

To demonstrate the usefulness of the knowledge we obtain, we
develop an infection detector based on the infection capabilities.
We evaluate our infection detector on software IoT devices that we
deployed as honeypots in the wide, where the detector achieves a
99.22% true positive rate. To evaluate the performance and func-
tional impact introduced by our infection detector, we install and
test our infection detector on three types of real IoT devices, rep-
resenting low-, middle-, and high-end IoT platforms, respectively.
Our testing results indicate that our infection detector introduces
no more than 4% CPU load and consumes 2.7MB memory space
without causing any false alerts or functional disruptions during a
one-week operation in those real IoT devices.

The key contributions of this paper are as follows:

• We conduct the first empirical study on shell commands extracted
from a large-scale dataset to understand the characteristics of
remote infection on Linux-based IoT devices.

• We share our findings and propose a taxonomy of shell com-
mands serving as a reference for future research on the early
detection of IoT malware.

• We demonstrate the usefulness of the knowledge gained from
our study by developing an infection detector that can detect
ongoing infection activities with a high detection rate.

• Wemake the compiled dataset publicly available and open-source
our detector implementation to the research community at https:
//github.com/soter-project/soter to benefit future research on
defending IoT malware.

2 THREAT MODEL
We assume adversaries may exploit different vulnerabilities, such
as weak passwords, device firmware flaws, and vulnerable appli-
cations, to compromise IoT devices. During the intrusion process,
the intruder can get shell access to the target IoT device via any
potential vulnerabilities. In the infection stage, a loader running
on a remote (usually compromised) device or server interacts with
the target device through the shell. Once the loader logins to the
shell of the target device, it executes a series of shell commands to
infect the device. Loaders running remotely can either be binary
executables or shell scripts, which contain shell commands to be
sent to (over the SSH or Telnet session) and executed in the target
device. Our Study concentrates on the infection stage of IoT device
compromise. This is because the infection stage happens before
the monetization stage so that we can take any actions if necessary
when infection activities are observed to mitigate any potential
damages or financial loss in an early stage. We will not cover the
intrusion stage in this work since 93% IoT device compromises
are through exploiting vulnerable passwords [37], which is mainly
caused by operational security issues [6, 26, 33].

3 UNDERSTANDING REMOTE INFECTION
3.1 Identifying Infection Process
Recent research on IoT malware provides a deep understanding
on Mirai [6]. It is revealed that Mirai comes with a separate loader
program, which asynchronously infects vulnerable IoT devices by
logging in through brute-force attempts, determining system envi-
ronment, downloading and executing architecture-specific binaries,
and finally deleting downloaded binaries. We further investigate
the source code of Mirai and recognize that actually a number of
shell commands are invoked by the loader running on a remote
server to perform the aforementioned operations. Another research
devoted to a different IoT malware, Hajime [26], also reveals similar
infection behaviors, which include logging in, downloading, and
executing malicious binaries in the target system via shell com-
mands. Besides, a prior study based on an online honeypot system,
IoTPot [45], discovers that during the infection stage, IoT malware
logins to the target system via Telnet and executes a series of shell
commands to detect system architecture, download and execute
malicious binaries, and remove the downloaded binaries.

Based on those observations, the IoT remote infection process
can be generally divided into 5 phases – Settlement, Environment
Preparation, Payload Delivery, Payload Execution, and Persistence &
Covert as shown in Figure 1. In the Settlement phase, the loader (run-
ning remotely) tries to find a writable place as the working directory.

https://github.com/soter-project/soter
https://github.com/soter-project/soter

Figure 1: Five phases of IoT remote infection process that we
identi�ed (left), and shell commands found in Mirai source
code for infection (right).

During theEnvironment Preparationphase, the loader collects nec-
essary information from the system. During thePayload Delivery
phase, the loader delivers the malicious payload to the target system.
In the Payload Executionphase, the loader executes the delivered
payload on the target system. Finally, the loader often seeks ways
to persist and covert footprint in thePersistence & Covertphase. It
is worth noting that not all loader requires all phases to accomplish
a successful remote infection, nor the 5 phases must appear in exact
order. For example, it is possible theSettlementphase is after the
Environment Preparationphase and sometimes thePersistence &
Covertphase is missing. Furthermore, leaked source code [40, 58],
existing literature [16, 45], and reverse engineering reports [23, 29]
imply that an IoT remote infection can be accomplished by execut-
ing a series of shell commands. For instance, one of the widely seen
IoT malware, Mirai, achieves its infection via some common Linux
shell commands as shown in Figure 1.

To fully understand how IoT remote infection proceeds, it is
crucial to know what commands and in what sequence they are
executed during each infection phase. This motivates us to seek
a comprehensive study over large-scale data that could contain a
rich number of shell commands used for remote infection.

3.2 Data Collection
3.2.1 VirusShare Dataset.We collect a dataset from VirusShare [57],
which is a repository of malware samples to provide security re-
searchers, incident responders, and forensic analysts with access
to samples of live malicious code. The repository contains a large
number of diverse malware samples, whose active time ranges from
2012 to 2020. In VirusShare, we �nd two types of �les that include
shell commands. One type is the bash scripts. The other is the
malicious ELF (binary) �les that include shell commands.

Figure 2: Geo-distribution of our deployed software IoT De-
vices.

We collectall the �les on VirusShare with timestamp span-
ning from 2012-06-15 to 2020-04-05. To extract shell scripts, we
parse all downloaded �les usingbase64, file , andbashlex [7], an
open-sourced bash shell parser. We obtain 3,620 Linux shell scripts
through this step. We then query VirusTotal [56], a hub of more
than 70antivirus scanners and URL/domain blacklisting services,
for each shell script to make sure that they are reported as mali-
cious. We consider the report as malicious if at least one scanner
or service indicating it as malicious. As a result, we retrieve 3,439
infection shell scripts. Besides, we download all the malicious ELF
�les available on VirusShare, which yields 48,099 malicious ELF
�les.

3.2.2 IoT Honeypots.We deploy software IoT devices with vulner-
able passwords across the globe following the guidance introduced
in HoneyCloud [15]. Worth noting, all the software IoT devices
are provisioned with ARM CPU architecture � one of the most
popular architectures for real IoT devices � emulated by QEMU
emulator. In total, we deployed 182 software IoT devices on 4 pub-
lic clouds � Google Cloud Platform (GCP), Amazon Web Services
(AWS), Microsoft Azure, and Vultr � distributing at 32 di�erent
sites (shown in Fig. 2) from 2020-06-25 to 2020-10-13. As a result, all
the software IoT devices attract 352,016 remote infection incidents.
For each remote infection incident, the honeypot records the shell
command that has been executed in sequence. We distinguish di�er-
ent infection incidents by login sessions originating from di�erent
hosts.

To prevent our software IoT devices from being used by adver-
saries to launch attacks or infect more IoT devices, we employ
iptables in the host machine (outside of software IoT devices) to
block any SSH and Telnet sessions originated from our software IoT
devices. Moreover, we reboot and replace the �rmware of all the
devices within 3 minutes after an SSH or Telnet login is detected to
avoid our devices being exploited for malicious purposes.

3.3 Data Analysis
To analyze the shell scripts, we develop a tool based onbashlex to
extract the commands from all shell scripts. We then get the statis-
tics of the shell commands invoked by the script and understand
the functionality of each shell command based on online manual
pages [11, 34]. As such, we con�rm that all the shell scripts in our
dataset can align with a part or all of the phases of IoT remote
infection we have identi�ed. Fig. 3 shows an example of the in-
fection script in our dataset. According to the functionalities of

Figure 3: A sample infection script in our dataset. SHA-256:
2a151e1148fb95c7696b05db4c58d1fd8e138f0f9c8c638228c203
ad273523f8

those commands, we can align them with �ve phases of the remote
infection. A full list of the mapping relations of each command is
shown in Table 6.

In addition to the infection scripts, we also extract shell com-
mands from the ELF �les in our dataset. Fig. 4 showcases an example
of such ELF �les that send shell commands to a remote target. By
disassembling the ELF �le, we can see thesendsystem call is in-
voked with shell command strings as arguments, based on which
we derive that this ELF is executed on a remote server and invokes
those shell commands through the network.

For the IoT honeypot logs, we simply extract the command se-
quences executed by each remote infection and store them in ded-
icated text �les. We consider the command sequence of a single
infection incident as a data sample in our dataset.

3.4 Analysis Results
In this section, we provide detailed statistics of shell commands
executed in a remote infection, discuss the malicious behaviors per-
formed through those shell commands, and investigate the current
state of �ngerprints for those shell commands. We �nally provide a
taxonomy of shell commands based on each command's capabilities
in a remote infection.

3.4.1 Statistics.The commands found in infection scripts, mali-
cious ELF �les, and the honeypot logs are quite concentrated. Ta-
ble 1 lists the top-20 commands from those sources in our dataset.
The percentages drop to 0.17%, 0.81%, and less than 0.01% for the
20th command in infection shell scripts, malicious ELF �les, and
honeypot logs, respectively. We totally �nd169di�erent shell com-
mands from the infection shell scripts and malicious ELF �les while
from the honeypot logs, we only �nd52 di�erent shell commands.
Furthermore, we veri�ed that the 169 shell commands cover all the

Figure 4: A sample ELF �le in our dataset. SHA-256:
cc0e1�4ef6ae076c55c7435457dbd647789989fbfecdc04262f26
bd02deac73

Scripts Percentage ELF File Percentage Honeypot Logs Percentage
cd 52.28% cd 13.39% cd 37.55%
”•4G42DC01;4 10.75% rm 10.08% sh 13.18%
wget 8.67% sh 8.97% ”•4G42DC01;4 9.72%
rm 7.98% chmod 7.05% cat 9.12%
chmod 7.72% wget 5.07% echo 8.82%
tftp 3.26% kill 5.05% wget 4.86%
echo 1.61% free 4.82% id 4.49%
curl 1.46% read 4.74% su 4.15%
sshd 0.63% tftp 4.65% head 4.01%
ftp 0.59% open 4.64% rm 2.63%
sh 0.57% sleep 4.26% chmod 0.64%
bash 0.57% busybox 2.81% cp 0.54%
cp 0.43% pkill 2.49% tftp 0.18%
chattr 0.38% history 2.38% ps 0.08%
busybox 0.31% printf 1.69% uname 0.01%
mv 0.24% service 1.68% ls 0.01%
ssh 0.24% ftpget 1.63% grep <0.01%
ulimit 0.22% iptables 1.16% killall <0.01%
touch 0.18% readlink 1.06% ifcon�g <0.01%
ftpget 0.17% sshd 0.81% mkdir <0.01%

Table 1: Top 20 commands found in infection scripts, mali-
cious ELF �les, and honeypot logs.

52 shell commands found in honeypot logs. This statistic implies
that shell commands executed by remote infections are limited to
a small command set in a real-world setup. A full list of all the
commands discovered in our dataset is provided in Table 6 in the
appendix.
Takeaway: shell commands executed during remote infections are
concentrated and in practice, this number is much smaller than what
we found in a static dataset.

One reason remote infections via shell commands are widely
employed to target the Linux-based IoT devices is that infecting via
shell command is compatible with diverse IoT devices. The shell
commands can be categorized into three categories,external, built-
in, andhybrid. Theexternalcommands refer to utility programs that
are installed in the system, such as under/usr/bin , /usr/sbin ,
/bin , /sbin , ect. Those commands are independent of the CPU

architecture and the shells. As long as those utility programs are
installed in the system, they are ready to be executed and can be
invoked by di�erent shells (e.g., sh, zsh, csh, tcsh, etc.).built-in
commands refer to the internal commands that are implemented
by speci�c shells. For example,kill , history , andcd are imple-
mented by shells, thus may di�er from shell to shell. Nevertheless,
all the Unix-like shell families share a large comment set ofbuilt-in
commands.hybrid commands refer to those commands that are
implemented by shells while there are also utility programs out
there. For example,echo, printf , andpwdare implemented as shell
built-in commands while there may be utility programs with the
same name installed in the system. Our study reveals that the ma-
jority of the shell commands are external commands. The detailed
statistics are listed in Table 5 in Appendix B.
Takeaway: external commands are the majority of shell commands,
which make remote infections via shell commands highly compatible
with various IoT device architectures and shells.

3.4.2 Trail and Error.Trail and erroris a cost-e�ective way to �g-
ure out the right parameters required by certain commands given
that limited information is exposed to the adversaries. Generally,
we observe two scenarios wheretrail and erroris used. In the �rst
scenario, a remote loader logins to the target shell and sends com-
mands likecd || cd || cd to test which path is accessible. We
�nd 87.44%of the samples in our dataset includes this behavior
pattern. In the second scenario, a remote loader tries to download
malicious payload with di�erent tools, where the command pat-
terns are isomorphic towget || curl || tftp . We �nd 94.6%
of the samples in our dataset includes this behavior pattern. The
reason thattrail and errorpattern is widely employed by remote
infections is that it can signi�cantly increase the infection success
chance while remaining logically simple. It is worth noting that the
trail and errorbehaviors are highly suspicious since a legitimate
administrator should have the idea of where the best working place
is and which tools are available in the system.
Takeaway: trail and error is widely used by remote infection scripts
and is highly suspicious.

3.4.3 Embedded Malicious Payload.Malicious payload delivery is
critical to the remote infection, even for the whole compromise life-
cycle. We �nd that most of the samples in our dataset (97.44%) utilize
one or more download commands to deliver the malicious payload.
A small portion of samples (0.47%) in our dataset embeds malicious
payload as part of the command arguments. The technique used
to embed malicious payloads is the so-calledhere document[25].
One advantage of embedding malicious payloads over downloading
is that it can bypass �rewalls in some cases. For example, some
networks disallow download originated from inside to an unknown
external server. This will result in regular download tools failing to
download. Another advantage of embedding malicious payloads
is that it does not rely on any download tools on the target sys-
tem. This makes the infection more robust to resource-constrained
systems where download tools usually are not available. However,
embedded malicious payloads usually rely onbase64, a shell com-
mand that converts binary data into ASCII string format and vice
versa. Thus,base64becomes the dependency of infections with
malicious payload embedded.

Takeaway: remote infection scripts embed malicious payloads in
rare cases where shell commands like base64 are required to convert
between binary data and ASCII string format.

3.4.4 Fingerprints.There are two common �ngerprinting methods
of the 3,439 infection scripts. One is based on the IP addresses
involved in the shell scripts. The other is based on the MD5 of the
shell script. We investigate those two �ngerprinting methods of the
3,439 infection scripts in our dataset. First, we obtain the statistics
of unique IP addresses in all the infection scripts. We totally �nd
1963unique IP addresses appearing in2296infection scripts. We
query those IP addresses against IPsum [50], a threat intelligence
feed based on 30+ di�erent publicly available lists [51] of suspicious
and/or malicious IP addresses. The databases are daily updated, and
our results are cut o� as of 2021-07-20. As a result, we �nd that only
28 out of 1963 unique IP addresses are included by those publicly
available lists. We further test the availability of all the IP addresses
found in our dataset, and it turns out none of them is still accessible.
Takeaway: the IP addresses involved in shell scripts tend to be tem-
porary and are unlikely to be covered by publicly available malicious
IP address databases.

Second, we study the reports of VirusTotal regarding the in-
fection scripts in our dataset. Figure 5(a) shows the cumulative
distribution function (CDF) graph of the number of VirusTotal en-
gines that report each script in our dataset as malicious. The results
imply that for 83.42% of all the infection scripts, there are 20 to
30 VirusTotal detection engines reporting them as malicious. Fig-
ure 5(b) shows the percentages of VirusTotal detection engines that
reported them as malicious. The number of engine reports varies
from 26 to 61. For most of the infection scripts (91.08%), the ratio
that VirusTotal engines reporting it as malicious is between 17%
and 31%. As a summary, VirusTotal detection engines have limited
signature coverage of the infection scripts in our dataset. With the
above limitation in mind, we recommend choosing the threshold
of the report ratio at around 17% or the report engine number at
approximately 20 to achieve low false positives as well as low false
negatives. This recommendation is consistent with the results in
[60].
Takeaway: choosing a report ratio around 17% or report number
around 20 of VirusTotal achieves a good trade-o� between false posi-
tives and false negatives of infection scripts.

(a) (b)

Figure 5: A CDF graph showing the number of VirusTotal en-
gines that classify each script in our dataset as malicious (a),
and the distribution of the ratio that VirusTotal engines re-
porting an infection script as malicious (b).

Infection Capabilities Abbr Explanation Commands
Change Permission CH Change the permission of �les chmod usermod chattr umask chown chgrp
Remove History RM Remove activity history to evade forensic rm history
Disable Security DS Disable security mechanisms accton ufw
Download DW Download �les from the Internet wget tftp curl ftp apt-get lynx git ftpget mail
Find Place FP Try to �nd a working place cd
Copy File CP Copy �les cp tail head mv cat read scp strings tee
Create and Write CW Create and write to new �les echo printf mk�fo open
Decompress DCP Decompress �les tar gunzip gzip unzip
Decode DCD Decode from encoded �les base64
Compile Code CC Compile source code make gcc cc ldcon�g
Process Text PT Search, cut, sort texts grep awk sed cut tr sort egrep uniq wc
Kill Process KILL Kill processes pkill killall kill
Exclude Others EXO Avoid others to infect or login chpasswd iptables-restore passwd
Network Probe NP Probe internal or external networks nmap zmap di
Implant Backdoor IBD Launch a deamon to enable access later httpd squid sshd

Execute EXE Execute �les
nohup xargs crontab perl sh service nc sshpass bash exec nice
php python screen ssh busybox ./executable env

Collect Information CI Collect information from the system
uname which ls ifcon�g lsof arp stat id whoami netstat lsb release
ping hostname chkcon�g df �le free fuser getconf iptables-save
nproc pidof socklist uptime who lspci ps du lastlog

Manage System MSYS Change users and environment variables sysctl iptables userdel su mkisofs useradd defaults sudo reboot
Manage Software MSOFT Update or install software mktemp mkdir export ln apt-key dpkg yum
Manage Resource MRES Set/reset resource hard and soft limit ulimit
Get Time GT Get timestamp of �les date
Change Time CT Change timestamp of �les touch

Programming PR programming commands, e.g., break; continue
expr test set unset declare local continue break unalias exit
enable return let true trap readonly getopts

Agnostic AGN Any commands do not align to the above sleep yes lp �nd pwd md5sum clear fold kdialog logout wall
Unrecognized UN Any commands not including in our base

Table 2: A list of infection capabilities we abstracted and corresponding explanations.

3.4.5 Shell Command Taxonomy.We provide a taxonomy of shell
commands based on the notion ofinfection capability: an abstrac-
tion of a sort of shell commands that can achieve certain goals
during the remote infection. Abstracting infection capabilities from
commands rather than studying each speci�c command directly
makes our understanding more general. This generality allows fu-
ture work to add new commands or remove outdated commands
to keep the knowledge base up-to-date and o�ers a general way
to understand and organize how shell commands are executed in
a remote infection. We label all the 169 shell commands in our
dataset with 25 infection capabilities according to the goals that a
command can achieve in remote infections.

For example, lots of remote infections download �les from a
server on the Internet in thePayload Deliveryphase. There are a
set of shell commands, such aswget, tftp , curl , andgit , that can
achieve this goal. Then we label these commands, which have the
capability to download �les from a remote server withDownload
infection capability. Table 2 shows our taxonomy of shell commands
based on infection capabilities. Among the infection capabilities,
there are three special ones, which are not abstracted according to
the goals the shell commands:

� Unrecognized. Any new commands that are not included in our
current dataset will be labeled withunrecognizedinfection capa-
bility in our taxonomy.

� Programming. Commands that are used for general programming
purpose is labeled withProgramminginfection capability. Among
the examples arebreak, continue , local , set , etc.

� Agnostic. Commands that cannot be labeled like any other infec-
tion capabilities will be labeled asagnostic. Among the examples
aresleep (wait for a certain time),pwd(print working directory),
clear (clear screen contents), etc.

Based on our taxonomy, we further study what infection ca-
pabilities are exploited in di�erent infection phases. Theagnostic
andprogramminginfection capabilities are exploited in all infec-
tion phases since they do not attach to any speci�c infection goals.
Some infection capabilities, includingprocess text, copy �le, man-
age software, manage resource, disable security mechanisms, and
manage systemare exploited by more than one infection phases,
while the remaining infection capabilities are speci�c to a single
infection phase. In addition, we investigate how many infection
phases are involved in each sample of our dataset. We �nd that 0%
samples involve only 1 infection phase; 0.11% samples involve only
2 infection phases; 0.17% samples involve only 3 infection phases;
37.19% samples involve only 4 infection phases; and 62.05% samples
involve all 5 infection phases. The statistic implies that not all 5
infection phases are necessarily presented for a remote infection.
But most remote infections involve 4 or 5 infection phases. Refer
to Figure 13 in Appendix C for a visualized summary of the exploit
relations between each phase and infection capabilities.

4 DETECTING REMOTE INFECTION
To demonstrate the usefulness of our knowledge, we develop a
preliminary infection detector utilizing the taxonomy proposed in
Section 3 and evaluate our infection detector.

Figure 6: Modeling approach overview. Firstly, we generate
the CFGs of infection and benign scripts in our dataset. Then
we build an ISM that represents the behavior patterns of
malware infection. After that, we assign weights to the ISM
through a correlation analysis. The generated WISM works
as a general model of malware infection.

4.1 Model Development
In this section, we model the remote infection process as a �nite
state machine, which is constructed using the infection scripts in our
dataset. Since this model will be used for remote infection detection,
a baseline is required to distinguish infection activities from benign
activities. To determine the baseline between infection and benign
activities, we collect benign shell scripts via FIRMADYNE [12], a
tool that can download �rmware images and associate metadata
from supported IoT device vendor websites. After collecting the
�rmware images, we use the �rmware walker [20] and Firmware
Mod Kit [21] to search the �rmware image for shell scripts. We
�nally acquired 9,337 unique benign shell scripts after de-duplicate
the extracted shell scripts with MD5 values.

An overview of our modeling approach is illustrated in Fig. 6. The
output of our modeling is a weighted infection state machine (WISM)
that models the remote infection. Our modeling approach consists
of 3 major steps. First, we generate thecommand �ow graph(CFG)
for all the infection scripts and benign scripts in our dataset. Sec-
ond, we build an infection state machine (ISM) based upon the
CFGs of all the infection scripts. Finally, we conducted a correlation
analysis based on the CFGs of infection scripts and benign scripts.
The correlation analysis tracks the capabilities in all CFGs and as-
signs a weight to each state transition in the ISM. The weights are
maximized for infection scripts while minimized for benign scripts.

4.1.1 Generating Command Flow Graphs.Thecommand �ow graph
(CFG) is a representation, using graph notation, of all paths con-
taining shell commands in the sequence that might be traversed
through a shell script during its execution. In our generated CFGs,
each node represents a shell command, and each directed edge rep-
resents a transfer from one command to another one. We develop

our own tool to generate the CFGs based onBashlex [7], which is
an open-sourced parser for bash scripts. We generate a CFG for each
infection or benign script. Fig. 7 illustrates two infection scripts
(script-a and script-b) and their corresponding CFGs. Each CFG is
stored as a �le using thenetworkx [54] Python library. Those CFGs
will be used when we build the ISM and WISM.

4.1.2 Building Infection State Machine.We use an ISM to repre-
sent the relations between infection capabilities that are exploited
by the remote infection. We formally de�ne our ISM as a 5-tuple
¹� • (•B0•� • � º where:

� � is the set of all the infection capabilities that we have abstracted;
� (is the set of states, each of which is mapped to an infection

capability in Table 2;
� B0 is the initial state, which also belongs to(but is not mapped

to any infection capability;
� � is the state-transition function:� : (� � ! (; and
� � is the set of �nal states.

We only build a single ISM from all the infection scripts. As an
example, Fig. 7 depicts the CFGs of two infection scripts and the
ISM built from those two scripts.

In the ISM, we consider each node as a state where a speci�c
infection capability has been exploited during the infection. Each
state in our ISM is mapped to an infection capability except for the
initial state,B0. For example, a state that maps toRMmeans that if
the infection goes into this state, theRMinfection capability has
been exploited. Therefore, some shell commands, such asrmand
history , must be invoked. We associate a directed edge with an in-
fection capability, covering di�erent shell commands. For example,
a directed edge coming into theRMstate is associated with theRM
infection capability, which abstracts thermcommand in Fig. 7. It is
worth noting that this abstraction captures the transitions at the
infection capabilities level rather than the command level. To auto-
matically build the ISM from all the infection scripts, we develop a
tool that takes the CFGs as inputs and yields an ISM. Each state in
the ISM is mapped to an infection capability. A state transition in
the ISM means one more infection capability is exploited.

4.1.3 Correlation Analysis.Our correlation analysis tracks a se-
quence of state transitions in the ISM to determine a remote infec-
tion. The key idea is to assign each state transition in the ISM with
weight and maintain a counter for the weights over a temporal
window. Once the counter exceeds a threshold, a remote infection
is detected. To determine the weight for each state transition, we
employ the late acceptance hill-climbing (LAHC) algorithm [10].
The LAHC algorithm can be used to �nd a local optimum for an
optimization problem in a bounded time frame.

Let's denote a WISM as\ , a series of state transitions that
are triggered by a sequence of# infection capabilities as) =
¹C1• C2• ”””• C# � 1º, and0 � \ C8 � 1 as the weight that will be assigned
to the state transitionC8 (82 »1• ”””• #� 1¼) in WISM. Then, the risk
score of a sequence of# infection capabilities is de�ned as

' ¹) • \ º =
1
#

#Õ

8=1

\ C8 (1)

With the above de�nition, we can calculate a risk score given a
WISM and a sequence of infection capabilities.

	Abstract
	1 Introduction
	2 Threat Model
	3 Understanding Remote Infection
	3.1 Identifying Infection Process
	3.2 Data Collection
	3.3 Data Analysis
	3.4 Analysis Results

	4 Detecting Remote Infection
	4.1 Model Development
	4.2 Detector Implementation
	4.3 Evaluation

	5 Discussion
	6 Related Work
	7 Conclusions
	Acknowledgments
	References
	Appendix A CDFs of Infection and Benign Scripts
	Appendix B Statistics of Three Shell Command Categories
	Appendix C Infection Capabilities Exploited in Each Infection Phase
	Appendix D Infection Capabilities and Commands

