Session 5A: Cyberphysical

CCS’18, October 15-19, 2018, Toronto, ON, Canada

On the Safety of lIoT Device Physical Interaction Control

Wenbo Ding
Clemson University
wding@clemson.edu

ABSTRACT

Emerging Internet of Things (IoT) platforms provide increased func-
tionality to enable human interaction with the physical world in
an autonomous manner. The physical interaction features of IoT
platforms allow IoT devices to make an impact on the physical
environment. However, such features also bring new safety chal-
lenges, where attackers can leverage stealthy physical interactions
to launch attacks against IoT systems. In this paper, we propose
a framework called IoTMon that discovers any possible physical
interactions and generates all potential interaction chains across
applications in the IoT environment. [oTMoN also includes an as-
sessment of the safety risk of each discovered inter-app interaction
chain based on its physical influence. To demonstrate the feasibility
of our approach, we provide a proof-of-concept implementation
of IoTMonN and present a comprehensive system evaluation on
the Samsung SmartThings platform. We study 185 official Smart-
Things applications and find they can form 162 hidden inter-app
interaction chains through physical surroundings. In particular, our
experiment reveals that 37 interaction chains are highly risky and
could be potentially exploited to impact the safety of the IoT envi-
ronment.

KEYWORDS
Safety; Internet of Things; Physical Interaction Control

ACM Reference Format:

Wenbo Ding and Hongxin Hu. 2018. On the Safety of IoT Device Physical
Interaction Control. In 2018 ACM SIGSAC Conference on Computer and
Communications Security (CCS ’18), October 15-19, 2018, Toronto, ON, Canada.
ACM, New York, NY, USA, 15 pages. https://doi.org/10.1145/3243734.3243865

1 INTRODUCTION

The rapid development of Internet of Things (IoT) technologies
brings true smart homes closer to reality. Nowadays, home automa-
tion has made a significant impact on the world economy, which is
expected to reach $79 billion in 2022 according to the Marketsand-
Markets [3]. Many commercial IoT platforms, such as Samsung’s
SmartThings [37], Apple’s HomeKit [12], Wink [43], and Google
Home [23], are readily available on the market. Other open source
IoT platforms, such as openHAB [32] and IoTivity [26], have also
emerged. Typically, these platforms have a hub controller to man-
age remote IoT devices, such as bulbs, cameras, and locks, and use

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

CCS ’18, October 15-19, 2018, Toronto, ON, Canada

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5693-0/18/10...$15.00
https://doi.org/10.1145/3243734.3243865

832

Hongxin Hu
Clemson University
hongxih@clemson.edu

applications (a.k.a. appified IoT platforms) to manage devices in
an unattended manner, for example, turning on lights when users
return home, monitoring users’ kids from afar, or locking home
doors while users drive away [38].

With the increased deployment of IoT devices, their security and
safety problems have recently attracted significant attention [25, 35].
For example, by exploiting over 600,000 vulnerable IoT devices (us-
ing common factory default usernames and passwords), a large-
scale Distributed Denial of Service (DDoS) attack was launched by
the Mirai malware, which caused a massive Internet outage [5, 42].
By exploiting a firmware flaw and using a malicious mobile applica-
tion, an attacker could conduct a multi-step attack to compromise a
local home network from the Internet [36]. It was also reported that,
by exploiting vulnerabilities in communication protocols, a worm
could exploit flaws in ZigBee [2] to spread among smart bulbs [34].
In addition, researchers have recently found design flaws in Sam-
sung’s SmartThings platform, which allow malicious third-party
applications to compromise the SmartThings platform [18]. Other
researchers have also explored the possibility of utilizing IoT de-
vices’ physical capabilities to conduct attacks and demonstrated
that a compromised smart bulb could sniff sensitive intranet infor-
mation and send it out by flashing the light stealthily [1].

Despite considerable recent research on improving IoT secu-
rity, existing research efforts have mainly focused on addressing
traditional security issues in the IoT environment, such as de-
vice firmware bugs [21, 36], communication protocol vulnerabili-
ties [22, 29, 34], malicious applications [18, 36], and system design
flaws [18, 20, 27, 44]. Distinctive from existing work, our study
reveals a new type of security problem that could happen due to
the specific features of IoT platforms. One such feature is the ability
for IoT devices to interact with their surroundings through physi-
cal interaction capabilities. Although such physical interactions of
IoT devices could bring significant convenience to end users, they
could also be potentially exploited by attackers to jeopardize IoT
environments. The physical interaction capabilities enable devices
to interact with each other through shared physical environments,
such as air, temperature, and humidity. Since IoT applications man-
age 10T devices on most existing platforms, an application that
controls devices to change physical environments may trigger cer-
tain executions of other applications. As a result, if the application is
not aware of all of its possible interactions with other applications,
some unexpected interactions could be exploited and triggered
by attackers. For example, suppose that an attacker has obtained
the access to a heater in an IoT network, which has installed a
temperature-related application [39] that can open windows when
the home temperature is higher than a given threshold. After turn-
ing on the heater for a period, the attacker can trigger the window
opening action and cause a potential problem of break-in.

In this paper, we propose a framework called IoTMoN that can
capture all potential physical interactions across applications and

https://doi.org/10.1145/3243734.3243865
https://doi.org/10.1145/3243734.3243865

Session 5A: Cyberphysical

enable safe interaction controls on IoT platforms. To address the
problems caused by unexpected physical interactions, [oOTMon first
performs an intra-app interaction analysis using static program
analysis to extract necessary application information, including
triggers, devices, and actions, for building intra-app interactions. In
addition to the static analysis of applications, [IoTMon also uses Nat-
ural Language Processing (NLP) techniques to analyze application
descriptions to identify physical channels on the IoT platform, and
then connect intra-app interactions through physical and system
channels to generate inter-app interaction chains. After identifying
all interaction chains, IoTMoN uses a risk analysis mechanism to
evaluate the risk of identified inter-app interaction chains. Our
evaluation based on 185 official SmartThings applications shows
that 162 hidden interaction chains exist among these applications,
and 37 of them are highly risky and could be potentially exploited.
To the best of our knowledge, IoTMon provides the first solution to
identify and analyze hidden interaction chains among IoT applica-
tions, enabling the safe control of IoT device interactions.

The rest of the paper is organized as follows. Section 2 presents
threat model and problem scope. Section 3 gives a system overview
of IoTMon. Section 4 introduces the details about loTMoN design
and implementation. We describe the evaluation of IoTMoN in
Section 5. Related work is discussed in Section 6 and Section 7
concludes our work.

2 THREAT MODEL & PROBLEM SCOPE

Heater Control App

Temperature Control App

Figure 1: an Example of Inter-app Physical Interaction

One significant difference between IoT environments and con-
ventional networks is that IoT devices have functions to interact
with the surrounding physical environment, which makes it possi-
ble that IoT devices can interact with each other through physical
channels even without network communications. However, those
physical interactions cannot be seen directly from individual ap-
plications. As a result, an application, which has an impact on the
physical environment, may unintendedly trigger another applica-
tion to make unexpected reactions. Figure 1 shows an example of
inter-app physical interaction, where a heater control application
turns on a heater at a specific time, and a temperature control appli-
cation [7, 39] opens windows when the temperature is higher than
a pre-defined threshold. In this example, the temperature physical
channel can connect the heater and the temperature sensor to cre-
ate an inter-app interaction chain and lead to an unexpected action
of opening windows.

Threat Model: In this paper, we focus on application-level IoT
attacks on appified IoT platforms. Attackers attempt to misuse phys-
ical channels to trigger unexpected actions that may cause dam-
ages to the physical space. For example, a window opening action
demonstrated in Figure 1 may cause a break-in. Since unexpected

833

CCS’18, October 15-19, 2018, Toronto, ON, Canada

physical interactions exist among IoT applications, an attacker can
launch an attack through either (1) vulnerable applications, which
have design/implementation flaws that can be exploited by remote
attackers or co-located malicious applications to escalate their priv-
ileges and cause security or safety issues, such as an unauthorized
device control; or (2) malicious applications, which contain mali-
cious program logic that can perform hidden behaviors [18]. We
assume IoT devices are trustworthy. Hence, attacks targeting at
manipulating device firmware vulnerabilities are not considered in
this paper. We also assume that IoT platforms are trustworthy and
uncompromised. Thus, we trust the APIs, communications, and
management functions provided by IoT platforms.

Problem Scope: Since our design goal is to discover and ana-
lyze unexpected inter-app interactions on IoT platforms, attacks
without exploiting inter-app interactions are not in our scope. For
example, we do not investigate problems caused by devices or plat-
form vulnerabilities [18]. Attacks targeting protocols flaws [34] and
Denial-of-Service (DoS) behaviors [5] are also out of our scope. In
addition, the problem of sensitive information leakage [1, 18] is
also beyond the scope of this paper.

3 SYSTEM OVERVIEW

Our IoTMoN system consists of three major components: i) Appli-
cation Analysis; ii) Interaction Chain Discovery; and iii) Risk Analy-
sis & Mitigation, as shown in Figure 2.

Application Analysis: This module includes two subcompo-
nents, Intra-app Analysis (§4.1) and Physical Channel Identification
(§4.2). The purpose of this module is to capture trigger-action con-
trol dependency of applications and discover physical channels that
can link multiple intra-app interactions to form inter-app interac-
tion chains. The intra-app interactions can be obtained through
static program analysis. The physical channel identification aims
at extracting channel related information from application descrip-
tions, which are typically provided by application developers. These
descriptions contain information about physical channels, such as
temperature, humidity, motion, and illumination, which can be mon-
itored or modified by the applications. In our design, we use NLP
techniques to extract these channel information from application de-
scriptions.

Interaction Chain Discovery (§4.3): This module takes all
inter-app trigger-action interactions and physical channel infor-
mation as input. The outputs are all possible inter-app interaction
chains, which are generated by connecting intra-app interactions
through proper physical channels.

Risk Analysis & Mitigation (§4.4): This module aims at pro-
viding a risk evaluation mechanism for inter-app interaction chains.
First, our system models all interaction behaviors by mapping them
into a high-dimensional space. In this space, we use intra-app in-
teractions derived from official applications or verified third-party
applications as the baseline of benign interactions to estimate risk
levels of discovered inter-app interaction chains. Our risk evalu-
ation mechanism calculates the distances between the inter-app
interaction chains and the baseline to measure risks, where a large
distance represents a high risk level. Based on risk levels of inter-
app interaction chains, our system can then provide guidance to
developers or users on risk mitigation.

Session 5A: Cyberphysical

CCS’18, October 15-19, 2018, Toronto, ON, Canada

Interaction Chain Discovery

Risk Analysis & Mitigation

Application Analysis
Code Intra-app
Analysis
Applications
Physical
Description > Chfc\hne_l
L__Identification]

> Intra-app
Interactions

Chains

Behavior Modeling

Interaction Chain

Clustering
Inter-app

Generation

Risk Evaluation

> Physical
Channels

Risk Mitigation

il

Figure 2: IoTMoN System Overview

4 DESIGN AND IMPLEMENTATION

In this section, we present the detailed design and implementation
of IoTMoN. We first introduce our approaches for the intra-app
analysis and the physical channel identification, respectively. Then,
we discuss the procedure of inter-app interaction chain discovery.
Finally, we describe our methods for risk analysis and mitigation.

4.1 Intra-app Analysis

4.1.1 General Policy Model. An IoT application’s policies usually
follow the “If-This-Then-That” (IFTTT) programing paradigm [30,
44]. Based on this observation, we propose a general policy model
for our intra-app analysis. In IFTTT, “This” corresponds to the
trigger capability and condition threshold. “That” represents the
triggered action, such as changing a device’s status. In IoT ap-
plications, we identify three important elements to describe the
trigger-action relationship, and present a general policy model as
shown in Listing 1.

Listing 1: A General Model for IoT Application Policies

<Name><Description>
<Trigger><Device:X><Condition>
<Action><Device:Y><Command>

We extract the following information from applications and map
them into our general policy model.

(1) Application description: This part is typically located at the
beginning of each application, which is provided by applica-
tion developers.

(2) Trigger condition and associated device: Trigger conditions of
an application are defined in the source code. For example, a
trigger condition can be defined as “whether the temperature
value is larger than a threshold”.

(3) Action and associated device: Triggered actions are also de-
fined in the source code. For example, a triggered action can
be defined to turn a specific device on/off.

4.1.2 Intra-app Interaction Analysis. Our tool analyzes an applica-
tion in three steps. First, an Abstract Syntax Tree (AST) is built for
the application. Second, our tool analyzes the preference section
in the code, where it claims all the capabilities and inputs of the

834

application. The preference section is designed to let users setup
proper devices and thresholds. Our tool traverses this section on
AST and builds a list of capabilities and inputs. Third, our tool
extracts triggers and actions of the application. Our tool identi-
fies trigger conditions by parsing “subscribe” functions, which are
defined for registering events on the platform to trigger actions.
The actions can be identified by analyzing “installed” and “updated”
functions. By tracing the control flows from subscribe functions
to action functions, our tool extracts intra-app interactions in an
application. We illustrate the detailed process of our static analysis
through several examples in Appendix A.

4.2 Physical Channel Identification

Physical channels in an IoT environment are closely related to
the physical interaction capabilities of IoT devices, e.g., changing
illuminance or increasing temperature. Several recent research
efforts [31, 40] have demonstrated the possibility of extracting
policy flows from application descriptions using NLP techniques.
We observe that it is also possible to discover potential physical
interactions of IoT devices through analyzing descriptions of an
application. In our design, we leverage NLP techniques to identify
physical channels from application descriptions.

We identify physical channels through three steps. First, we use
NLP techniques to extract channel entity keywords from applica-
tion descriptions. Then, we calculate similarities of extracted key-
words by using Word2Vec [11] with a widely used language model
(i.e., Google News Vectors) [40]. Finally, based on the similarities
of entity keywords, we cluster those entity keywords and iden-
tify physical channels based on entity keyword clusters. We next
demonstrate the detailed process of our physical channel identifi-
cation approach using an example application description: “Notify
me when the humidity rises above or falls below the given thresh-
old”, which is from the HumidityAlert application in the Samsung
SmartThings platform.

We first use the Stanford NLP tool [4] to parse this example
description as shown in Figure 3. An application description usually
contains information about its physical functions, e.g., this example
description in Figure 3 indicates that the application is related
to humidity. After identifying entity keywords in an application

Session 5A: Cyberphysical

VB: Notify
/\
PRP: me WRB: when
DT: the NN: humidity

A

VBZ: rises CC: or VBZ: falls
' '

RB: above IN: below

— T
DT: the VBN: given ~ NN: threshold

Figure 3: NLP for an application description: “Notify me
when the humidity rises above or falls below the given
threshold”

description, we next calculate similarities of these entity keywords.
Then, we cluster similar entity keywords based on their similarities.
For example, if there is an entity keyword “lights” mentioned in
an application description, based on the keyword similarity, our
system is able to cluster it with another similar keyword “bulbs”.
The channel identification is based on the aggregation (i.e., the sum
of similarity scores) of an entity keyword’s similarity values within
a cluster. The entity keyword with the highest aggregated value
is considered as a representative keyword for the cluster. In the
end, we check each cluster’s representative keyword and remove
non-physical-channel related keywords.

We apply our approach to analyze applications descriptions of
official SmartThings applications and identify 217 entity keywords,
which are then clustered into 16 different clusters. We finally iden-
tify 7 reasonable physical channels. The results are summarized
in Table 1. For each identified physical channel, we give an exam-
ple application, its description, and the number of keywords in its
associated cluster.

4.3 Interaction Chain Discovery

Based on the intra-app interactions and physical channels identi-
fied in above steps, our system further discovers inter-app interac-
tion chains.

4.3.1 System Channel Identification. In addition to physical chan-
nels, we observe that there are several system channels (in the
Samsung SmartThings platform) that can be used to stitch differ-
ent intra-app interactions. These system channels can be shared
by multiple applications on the same platform. For the purpose
of completeness, we also consider these shared system channels
in our inter-app interaction chain discovery. During the intra-app
interaction analysis, if a non-physical-channel capability is used
as a trigger in one intra-app interaction and as an action in an-
other one, we consider it as a shared system variable. We identify 4
such system channels and their related capabilities in the Samsung
SmartThings platform, including time, locationMode, switch, and
lock. Same as physical channels, we treat these system channels as
connections between intra-app interactions in our analysis.

4.3.2 Inter-app Interaction Chain Discovery. We use a 2-element
tuple (trigger, action) to represent the trigger-action behavior of an

835

CCS’18, October 15-19, 2018, Toronto, ON, Canada

Table 1: Physical Channels Identified from Official Smart-
Things Applications

Physical Example Descriptions Number of
Channel Applications Keywords
Temperature Keep Me Cozy “Changes your thermo- 13
-stat settings automa-
-tically in response
to a mode change.”
Humidity Smart Humidity “When the humidity 10
Vent reaches a specified

level, activate one
or more vent fans”
“Turn your lights on 7

Illumination | Brighten Dark

Places when a open/close
sensor opens and
the space is dark.”
Location Lock It When “Locks a deadbolt or 6
I Leave lever lock when a
SmartSense Presence
tag or smartphone
leaves a location”
Motion Light My Path “Turn your lights 4
on when motion
is detected.”
Smoke Smart Home “Monitor your home 4
Monitor for intrusion, fire,
carbon monoxide, leaks,
and more.”
Leakage Flood Alert “Get a push notifi- 8

-cation or text message
when water is detected
where it doesn’t belong”

individual intra-app interaction. Algorithm 1 describes the proce-
dure of discovering inter-app interaction chains. Let AP, 4¢ denote
all trigger-action behavior tuples in applications. Let C.4 ., store
relationships between capabilities and channels, which can be ob-
tained during the process of physical channel identification. Let
Ss store all system channels. Algorithm 1 first reads all intra-app
interactions from APy 4 as inputs. Then, it compares the channels
used in each interaction to identify whether two intra-app interac-
tions can be connected through the same channel. The outcome of
the algorithm is a 5-element tuple, which contains a chain of inter-
app interactions, i.e., (trigger1, action1, channel, trigger2, action2).
Finally, our algorithm generates all potential inter-app interaction
chains among applications.

4.4 Risk Analysis & Mitigation

In Section 2, we show that attackers can exploit inter-app inter-
action chains to achieve malicious purposes. In order to measure
potential risks of different inter-app interaction chains, we pro-
pose a risk evaluation method for quantifying inter-app interaction
chains according to their influences on the physical space.

There are two challenges to determine whether an inter-app
interaction chain is risky or not. First, we need a model to quantify
physical influences incurred by different intra/inter-app interac-
tions. Second, we need a baseline (i.e., benign interactions) for the
comparison with potentially risky interactions. To address these
challenges, we introduce a behavior modeling method that assigns
different physical channels with proper values, in order to calcu-
late the distance between them. Official applications or third-party
applications that have been verified/approved by platforms (e.g.,
Samsung SmartThings) provide a good reference for benign interac-
tions [13, 28]. Therefore, in our design, we use intra-app interactions

Session 5A: Cyberphysical

Algorithm 1: Algorithm for Interaction Chain Discovery

Input: AP;, 4, sets of intra-app interactions
Cca,ch- sets of capabilities and their related
physical channels.
Scas sets of capabilities and their related
system channels.
Output: INTAC, sets of discovered interactions
1 foreach i € AP 4. do

2 foreach j € AP;y 4c do
3 if i ==j then
/* Two intra-interactions are same */
4 B continue
5 foreach k € C do
6 foreach m € C do
/* First identify capabilities of the
action and trigger */
/* Then check whether their related
channels are same */
7 if i.ac ==k.ca & j.tr ==m.ca & k.ch ==
m.ch € j then
/* Add a physical
interaction chain */
8 | INTAC « {i,k.ch,j}
9 foreach n € S do
/* Same process for
system channels */
10 if i.ac ==n & j.tr ==n then
1 | INTAC < {i,n, j}

of trustworthy applications as the baseline to measure potential
risks imposed by inter-app interaction chains. Our basic idea is
that if an interaction is not in the baseline, it is likely a risky one.
More specifically, trustworthy intra-app interactions are consid-
ered as safe interaction behaviors in our method. Then, we use
the K-means [8] clustering to cluster all intra-app interactions to
obtain the baseline. Finally, we are able to calculate risk scores of
suspicious inter-app interaction chains based on the baseline. We
further propose a method for risk mitigation, which can effectively
reduce the number of risky inter-app interaction chains.

4.4.1 Behavior Modeling. For an intra-app interaction, we use the
channel tuple to represent its trigger and action related channel
information. Since an inter-app interaction chain involves multi-
ple intra-app interactions and related channels, we use vectors to
represent both inter-app and intra-app interaction behaviors. Each
vector consists of all available physical/system channels, where
each dimension/element in the vector corresponds to one chan-
nel, and the element’s value represents the channel’s status (i.e.,
whether the channel is used, and whether it is used as a trigger or
action). For instance, in our prototype implementation based on
the Samsung SmartThings platform, we identify totally 7 physical

836

CCS’18, October 15-19, 2018, Toronto, ON, Canada

channels, including temperature, humidity, water, smoke, illumina-
tion, motion, and presence, and 4 system channels, including switch,
lock, time, and locationMode. In this case, we use an 11-dimensional
vector to represent an interaction behavior instance.

The modeling process is summarized as follows and the first
three steps are illustrated in Figure 4.

(a) Channel Tuple Frequency Analysis: We first extract intra-app
trigger-action interactions and channel information from
applications. To analyze the risk of interactions, we first
map intra-app interactions to channel tuples based on the
physical influences of their triggers and actions, respectively.
We count the occurrence of a specific channel tuple out of
all channel tuples as its frequency.

Channel Value Assignment: Given the channel tuple frequency
information, we assign values to different physical channels
in a recursive manner, starting from the most frequently used
channel. The difference in values reflects the correlations
between physical channels. Note that the value assignment
methods are different for physical and system channels.
Vector Value Assignment: Based on the related channels and
channels’ values, all interactions can be mapped into a high-
dimensional vector. Each dimension represents one channel,
and the corresponding value represents its behavior (i.e.,
either a trigger or an action on this channel).

Similarity Calculation: The similarity between interactions
is calculated based on the distance between corresponding
vectors. We measure the risk levels of inter-app interactions
by measuring the distances from them to the closest base-
line cluster.

o

=

—
(=N
Nar

Our model captures the difference between channels in terms
of the frequency of their co-occurrence in trustworthy intra-app in-
teractions. For example, in our experiment, we observe that the
temperature channel and the humidity channel more frequently
appear together in the baseline interactions than the temperature
channel and the motion channel. Therefore, according to our model,
the difference between the temperature channel and the humidity
channel should be smaller than the difference between the temper-
ature channel and the motion channel.

Value Assignment to Physical Channels: We use the chan-
nel tuple (Cr, C4) to represent each intra-app interaction, where Ct
is the channel related to the trigger capability, and C4 denotes the
channel related to the action capability. For example, considering a
motionSensor capability as a trigger and a bulb switch capability as
an action, the corresponding channel tuple is (motion, illuminance).
To assign an initial value to each channel in an interaction behav-
ior vector, we count the frequencies of all channel tuples in the
baseline (i.e., all trustworthy intra-app interactions) as illustrated in
Figure 4 (a). The procedure of the value assignment starts from the
channel with the highest frequency in all tuples, where we assign
an initial value K (K can be an arbitrary value) to the first channel.
Then, we assign a value to the next channel, which has the highest
co-occurrence with the first assigned channel in all channel tuples.
We define a step length, denoted by A. The next value to be assigned
is always increased by A for each value assignment. For example,
the second assigned value will be K + A. This process is repeated
until all channels have been assigned with values.

Session 5A: Cyberphysical

CCS’18, October 15-19, 2018, Toronto, ON, Canada

Pysical Channel

AL

System
Channel

(Temp, Humi) 9, (Temp, Pres) 6,
(Pres, Humi) 5, (Pres, lllum) 5,

(TemperatureSensor -> Humidifier)
(HumiditySensor -> Thermostat)
(MotionSensor -> Light)
(LocationMode -> Thermostat)
(MotionSensor -> LocationMode)

-

(LocationMode, Temperature) 2

(Temp, Motion) 2, (Motion, lllum) 5 :> Temperature Humidity Presence llluminance Motion LocationMode

(-15,30,0,0, 0,0)
(15, -30,0,0,0, 0)
(0, 0,0, 60, -75, 0)
(15, 0,0, 0, 0,-90)

—Hh—

T -

Channel

(LocationMode, Motion) 2

(a) Channel Tuple Frequecy Analysis

15

Valle (0, 0,0,0,-75,90)

30 45 60 75 90

(b) Channel Value Assignment (¢) Interaction Behavior

Vector Value Assignment

Figure 4: An Example of Behavior Modeling

Figure 4 (b) shows an example of channel value assignment with
respect to 5 physical channels and 1 system channel. The number
besides to each channel tuple in Figure 4 (a) indicates its overall fre-
quency in intra-app interactions. In this example, the temperature
channel has the highest frequency 17 (i.e., it appears totally 17 times
in all channel tuples). Thus, we choose it as the beginning channel
and assign an initial value K (e.g., K=15) to this channel. We assign
the next value (K+A = 30) to the humidity channel, since it has the
highest co-occurrence with the temperature channel (i.e., appears
with the temperature channel most frequently in all channel tuples).
Similarly, the third iteration assigns the presence channel value
to (K+2A = 45). By repeating this process, we assign values to all
channels as shown in Figure 4 (b).

Value Assignment to System Channels: The physical impact
of a system channel is hard to measure based on its co-occurrence
frequency with a physical channel. A system channel may influ-
ence multiple devices, e.g., the locationMode system channel can
change the status of thermostats, lights, or heaters. Then, the sta-
tus changes of these devices further influence their corresponding
physical channels. As a result, a system channel may be indirectly
related to multiple physical channels. In our design, for value as-
signment to a system channel, we consider all its related physical
channels where its value is assigned to be the sum of all associated
physical channels’ values. For example, assume the locationMode
influences temperature and motion channels. The temperature chan-
nel’s value is 15, and the motion channel’s value is 75. In this case,
locationMode’s value is assigned to 90.

Value Assignment to Interaction Behavior Vector: Given
assigned values of individual channels, we are able to quantify
interaction behavior vectors. Note that a channel can be either a
trigger capability or action capability in a channel tuple (Ct, Cyn).
To distinguish them in a behavior vector, as long as a channel is
associated with any trigger capability, we multiply a co-efficient
“~1” with its channel value.

We illustrate our vector-based modeling approach using a 6-
dimensional vector, including temperature, humidity, presence, illu-
minance, motion, and locationMode, as shown in Figure 4 (b). For
the channel value assignment, assume the temperature channel is
first assigned to 15, the humidity channel is assigned to 30, the illu-
minance channel is assigned to 60, and the motion is assigned to 75
(the step length is 15). The structure of the vector is shown as (tem-
perature, humidity, presence, illuminance, motion, locationMode).
Suppose there are three different interaction tuples (and each tuple
corresponds to one vector) in the baseline benign interactions: A1

837

(temperatureSensor -> humidifier), A2 (humiditySensor, thermo-
stat), A3 (motionSensor -> bulb). P1 represents an interaction that a
temperature sensor detects temperature changes and then turns on
a humidifier, which leads to changes in humidity. In this example,
since the temperature channel is also used as trigger capability, the
value of the temperature dimension is set to -10 in the vector value
assignment. In Figure 4 (c), the vector value of A1 is (-15, 30, 0, 0,
0, 0), where “0” indicates that the channel is not involved in Al.
Because the humidity in A2 is trigger condition, the vector of A2
is assigned as (15, -30, 0, 0, 0, 0). A3 indicates an interaction that a
motion sensor detects a user’ movement and then turns on a light.
In this example, the value of motion dimension is assigned as -75,
because it is a trigger condition. The vector value of A3 is assigned
to (0, 0, 0, 60, -75, 0).

For inter-app interaction chains, we combine the values of intra-
app interaction vectors. For the bridging channels between intra-
app interactions, we treat them as a combination of trigger condi-
tions, all of which multiply a negative coefficient in vector value
assignment. We keep all the trigger conditions rather than only the
first trigger and last action in the vector because bridging channels
represent different paths of inter-app interaction chains. For exam-
ple, assume we have two interaction chains C1 (motionSensor ->
thermostat -> window.open) and C2 (motionSensor -> smokeSensor
-> window.open). C1 and C2 have the same trigger and action, but
medium channels are different, which results in different risk level
for these chains. If we only keep the beginning trigger and final
action for the inter-app interaction chain vectors, we could not
distinguish those two different inter-app interactions’ trigger paths.

Similarity Calculation: There are many existing approaches,
such as Manhattan Distance [10], Minkowski Distance [9], and
Euclidean Distance [6], using distance for similarity calculation. In
our system, we also use distance to measure the similarity between
vectors. The shorter the distance is between two vectors, the higher
similarity is between the corresponding interactions. For simplicity,
we use Manhattan Distance in our similarity calculation. Other
distance metrics can be also applied to measure the similarity.

4.4.2 Risk Evaluation. We leverage the intra-app interactions of
trustworthy applications as the baseline to evaluate the risk of an
inter-app interaction chain. First, we cluster all baseline intra-app
interactions by using the K-means algorithm [8]. The largest dis-
tance between each cluster’s center and its boundary is considered
as the cluster radius. If a testing interaction behavior vector does
not belong to any known (trusted) cluster, we mark it as a risky

Session 5A: Cyberphysical

L R, ST
/Cc1 T3 AL A2\ TL 12 /A3 c2
O o0oe @0 o0'e O/
4 1 1 v 1 1 Teao_--#%"
'\‘-L_ I__—"' 1 1 1 = 1
1] - 1 !] .
: : ! o ! | Rc2 . Distance
— —
! Rc1 |
N\ J -
~ Prt2- Pc2
P11-Pc1

Figure 5: An Example of Risk Evaluation

interaction. In addition, the risk score is calculated based on the
distance between the testing inter-app interaction and the closest
trusted cluster’s boundary.

Let D; (i=1,2,...,n) denote the i} cluster that contains a set of
trustworthy intra-app interaction vectors in our baseline. We have n
clusters in total. Let C; (i=1,2,...,n) denote the center point of cluster
D;. T; (i=1,2,...) is a vector of inter-app interaction chain to be tested
(i.e., testing vector). Our risk evaluation process is described as
follows:

Baseline Generation: First, we use K-means to cluster all trust-
worthy applications’ interactions. We set the number K empirically,
which equals the sum of all channels. As shown in Figure 5, A1 and
A2 are two trustworthy interactions in cluster D;. The radius of
cluster C; is denoted by R¢;. For example, the distance between
C1 and A2 is the radius of D; in Figure 5. Given a testing vector Tj,
let PositionT; denote T;’s position in the high-dimensional feature
space of our K-means clustering. Positionc; denotes the position
of cluster D;’s center point in the high-dimensional space. If the
distance between Positiont; and Positionc; is larger than R¢;, we
say T; do not belong to D;.

Risk Score: For a testing vector Tj, the risk score is calculated
as follows:

min{|Positiont; — Positionci| — Rci}, (i=1,...,n)
RiskScore = if T; does not belong to any cluster

0, otherwise

(1)
If T; belongs to any cluster D; (i=1,...,n), the risk score is set to 0
(i.e., normal case). Otherwise, it is considered as a risky case, and
its risk score is set to min{|Position; — Positionc; — Rci|}, which
denotes the closest distance between PositionT; and any cluster
boundary in the baseline. We use the cluster boundary rather than
the cluster center for calculating risk score. For example, in Figure 5,
suppose T1, T2, and T3 are three testing vectors. The closest cluster
center to T1 is C1, and the closest cluster center to T2 is C2. The
risk score of T3 is zero, since it locates within cluster D1. The risk
score of T1 is equal to the distance between T1 and A2, which is
(P11 — Pc1 — Rc1)- Because T2 is closer to the boundary of cluster

D2, the risk score of T2 is (Pr2 — Pc2 — Re2).

4.4.3 Risk Mitigation. We present a general risk mitigation method
in IoTMoN, which is flexible with respect to different scenarios. The
key idea is to reduce the risks of unexpected inter-app interaction
chains by adding new trigger conditions, e.g., checking an additional

[N

g W

838

CCS’18, October 15-19, 2018, Toronto, ON, Canada

related status. This can potentially prevent vulnerable applications
from being maliciously triggered by unexpected applications. For
application developers who can modify an application, loTMonN
provides recommendations to guide them in reducing the risks of
unexpected inter-app interactions. For normal users, IoTMoN is
able to give them risk warnings.

Revisiting the example in Figure 1, an enhanced application
model is shown in Listing 2. The second trigger condition (high-
lighted with the gray background in Listing 2) can be added into
the application. The condition means that a presence sensor must
detect a person being at home before the temperature control appli-
cation can open the window. Hence, the heater control application
cannot directly open the windows without satisfying the added
condition.

Listing 2: Window.Open Trigger Enhancement

<name: "Window Control">
<triggerl1><device:temperature sensor 1><reportStatus:
temperature.report > threshold >

<trigger2><device:location sensor 1><reportStatus:
sensor.detected>

If (triggerl) && (trigger2) == true Then

<action><device:Window><command:Open>

5 EVALUATION

In this section, we evaluate the effectiveness and efficiency of our
IoTMoN design from multiple aspects. We implement a proof-of-
concept IoTMoN system based on the Samsung SmartThings plat-
form. We study totally 185 official SmartThings applications [17].
Our evaluation aims to answer the following questions:

e Whether all the 185 SmartThings applications follow the
IFTTT programing paradigm? Can we always extract trigger-
action relationships from them? Whether our application
analysis tool can successfully extract trigger-action con-
trol dependency information and discover physical chan-
nels? (§5.1)

e How many inter-app interaction chains are found in our
analysis? What is the most commonly used physical chan-
nel? (§5.2)

e Can IoTMon effectively detect high-risk interaction chains?
In our interaction behavior modeling, we assign values to
individual channels and interaction vectors. What are the im-
pacts of different value assignment schemes on the risk eval-
uation? (§5.3)

e What is the performance overhead of IoTMoN system? (§5.4)

5.1 Application Analysis

Intra-app Analysis: Among the total 185 SmartThings applica-
tions, we successfully extract trigger-action relationship informa-
tion from 135 applications. For the rest 50 applications, 15 of them
follow the IFTTT programing paradigm, but claim too many capabil-
ities. Over-claimed capabilities would generate excessive intra-app
interactions and make our risk analysis inaccurate. Therefore, we
exclude these applications. Other 35 applications are either device
drivers (e.g., “Bose soundtouch connect”, “Life360 (Connect)”, and

Session 5A: Cyberphysical

Table 2: Examples of Intra-app Interactions

Applications Triggers Actions
Close the valve waterSensor valve.close
Its too cold tempMeasure switch.on
Keep me tempMeasure | thermostat.setCooling
cozy ii point
Whole house fan | tempMeasure switch.on
Smart security | motionSensor alarm.both

Table 3: Physical Channels and Associated Capabilities

Channel Capability
Temperature | temperatureMeasurement, thermostat, switch(AC)
Luminance | illuminanceMeasurement, switch(bulb), switchlevel
Motion motionsensor, contactSensor, threeAxis
Humidity relativeHumidityMeasurement, switch(vent)
Leakage watersensor, valve
Location location, presenceSensor
Smoke carbonDioxide, smokeDetector

“Withings Manage”) or service applications (e.g., “Smart Energy
Service” and “Severe Weather Alert”) that do not contain physical
interaction information. Table 2 illustrates 5 examples of intra-app
interactions identified by our intra-app analysis, which can be de-
scribed by the general policy model presented in Section 4.1. In this
step, we finally identify 176 intra-app interactions in total.

Physical Channel Analysis: In Table 3, we list all identified
physical channels and their associated capabilities. We observe
that some capabilities, such as switch, can be related to multiple
physical channels. We classify these capabilities based on their
usage descriptions. For example, if a switch’s capability usage is
described as “Turn on a light”, we derive that this switch is related
to the illuminance channel. Figure 6 shows the amount of extracted
intra-app interactions with respect to different physical channels.
We report the trigger-related channels (in Figure 6(a)) and action-
related channels (in Figure 6(b)), respectively.

From Figure 6, the motion channel is the most popular trigger
conditions. However, since no device has the direct movement
capability, it is also one of the least-used action capabilities. The
temperature channel is used frequently in both triggers and actions.
The luminance channel has more usage in actions, because a lot of
motion conditions trigger the action of bulbs’ switches.

Our physical channel analysis successfully connects 91.8% ap-
plications (124 out of 135 applications) to the correct channel cate-
gories. The failures mainly come from two cases. The first case is
that an application description contains no physical channel related
words. For example, the description of the application “IFTTT” says:
“Put the Internet to work for you”, which is incorrectly connected
into the location channel in our analysis because of the "Internet”.
Another case is that an application description contains mislead-
ing words. For instance, in the application “coffee after shower”,
our method classifies this application into the humidity category
because of the high similarity between “shower” and “humidity”.

839

CCS’18, October 15-19, 2018, Toronto, ON, Canada

E=2 Temperature
2 llluminance
v 50 Motion H
=
o Presence
= =3 Humidity
g 40 | Water -
E Smoke
P}
£ 30+ 1
Y
Q
€ 20+t .
=]
E
) °l % j N |
0
Channel Type
(a) Trigger-related Channel Analysis
50
A Temperature
E = luminance
o 40 + Motion M
E Presence
o E=J Humidity
“2 30+ Water I
- Smoke
=
S 20t 1
=
3
2 10f N]
<<
0

Channel Type

(b) Action-related Channel Analysis

Figure 6: Physical Channels used in Intra-app Interaction
Flows

5.2 Interaction Chain Discovery

Among 135 SmartThings applications, we observe that most of
them have the capability to interact with the physical world. We
generate all inter-app interaction chains following the Algorithm 1.
According to Figure 6, the temperature is the most commonly used
inter-mediate physical channel, which is involved in 570 inter-app
interaction chains. However, most of these inter-app interaction
chains are duplicated and the number of unique temperature-related
chains is 25. After removing all duplicates, we generate 162 inter-
app interaction chains in total.

Channel Thermostat Control App

.
|

.—LI o (e
|
| ===
|
| | Temperature Control App I
| | |

Temperature | {=(TempMeasurement }—»- |

| | |

Figure 7: An Example of Inter-app Interaction Chain

Figure 7 shows an example of such interaction chains. The timer
in thermostat control application triggers the action of a thermostat,

Session 5A: Cyberphysical

CCS’18, October 15-19, 2018, Toronto, ON, Canada

Table 4: Top 10 High-Risk Interaction Chains

which triggers a switch in temperature control application since
they share the same temperature channel. We present the complete
results of our interaction chain discovery in Appendix B.

5.3 Risk Analysis

5.3.1 Channel Value Setting. We use the intra-app interactions
extracted from official applications in the SmartThings platform
as the baseline for risk evaluation. We use vectors to represent
interaction behaviors where each vector consists of all available
physical and system channels, as described in Section 4.4.1. To
quantify interaction behaviors, we first assign values to different
channels and subsequently initialize vector values. Table 5 shows
the assigned values to different channels in our evaluation. We set
the temperature as the beginning channel and set its value to 10, be-
cause overall it is the most frequently used channel in applications.
For the shared system variables, we also list their values in this
table. The value of a system variable is set as the sum of values of
all associated channels. For example, the time channel is associated
with the temperature, humidity, and illuminance channels, and is
assigned 105.

5.3.2 High-risk Interaction Chain. We measure the risk score of a
discovered inter-app interaction chain by comparing the distance

840

No. Trigger1 Action1 Potential Channel Trigger2 Action2 Potential Risk
Capability Capability Device Capability Capability Device Score
1 locationMode switch heater smoke carbonMonoxide | locationMode | alarm(window, lock) | 70.75
2 time switch feeder, curtain, fan motion motionSensor locationMode bulb, window 64.81
3 time locationMode | multiple devices system locationMode lock lock 62.92
4 locationMode thermostat thermostat temperature tempMeasure switch window, vent 62.75
5 time switch heater temperature tempMeasure | locationMode multiple devices 60.01
6 switch thermostat thermostat temperature tempMeasure locationMode | alarm(window, lock) | 48.74
7 presenceSensor switch toaster smoke carbonMonoxide | locationMode | alarm(window, lock) | 45.21
8 time locationMode | multiple devices system locationMode switch heater 40.83
9 time locationMode | multiple devices system locationMode switch bulb 40.50
10 watersensor switch bulb illuminance | illuminMeasure switch bulb, heater 35.06
Table 5: Channel Similarity and Initialization Table 6: Risk Evaluation Result Assessment
Channel Target Level Assigned Initialization Total Total Risky True Positive
Type Channel Distance Value Method Interaction Interaction Positive Rate (%)
Our Method 162 48 37 77
Temperature 0 15 Random Inil Method 162 79 27 34
Humidity 1 30
Presence 2 45
. - between it and the baseline. Our risk calculation method identifies
Physical Mluminance 3 60
- 48 risky interaction chains, and we examine our results manually
Motion 4 75 . .
and find 37 of them (77%) are truly risky, which create new and po-
Leakage 5 90 L.
tential interactions that are not observed in the baseline (all 37 risky
Smoke 6 105
interaction chains are listed in Appendix C). To demonstrate the
Time NA 105 effectiveness of our value assignment, we also run an experiment
Switch NA 120 qu t.m?es Wlth randomly 1.r11tlahzed c.hamllel Valu.es. The. random
System Tock NA 150 initialization method identifies more risky interaction chains. How-
ever, the amount of true positive risky interactions drops to 27 with
locationMode NA 330 a low positive rate of 34%.

The false positive results of our method mainly come from in-
sufficient descriptions to the usage “switch” capability in applica-
tions. Since many devices can be connected to the switch capability,
lacking such description can lead to over-connection, which cre-
ates non-existing and unpractical inter-app interactions. On the
contrary, if the switch capability has an explicit explanation, our
method could effectively evaluate its physical effect and connect
them to the proper channel.

We list the top 10 high-risk interaction chains in Table 4. All the
chains access indirect control of other devices through physical
or system channels. Seven of them are new inter-app interactions,
which create potential interaction chains through physical channels,
i.e.,, the 1st, 2nd, 4th - 7th, and 10th interaction chains. The remain-
ing three create new interaction chains through system channels.
Intuitively, if the first action and the second action are different in
an interaction chain, it tends to have a higher risk score.

The 1st risky interaction chain links the location and lock through
the smoke channel. There is no such direct interaction in the cur-
rent official applications. We assume the switch is connected with
a heater, which is able to generate smoke in a certain situation. If
a heater is exploited to trigger the smoke alarm, it subsequently
results in the action of windows opening and door unlocking. The
2nd risky interaction chain creates the new interaction from time
to locationMode through the motion channel. The motionSensor
can change the locationMode through the security monitor func-
tion. The time-scheduled motion should not trigger the change of
locationMode. The 3rd chain is only based on the system variables,

Session 5A: Cyberphysical

Temperature Alarm

Heater Control

<EenTime>

Temp Sensor

i

Figure 8: Two benign applications trigger an unexpected ac-
tion through a physical channel.

5:25:08:
5:25:08:
5:25:07:
5:25:07:
5:25:07:

LN sending push message
[T Temperature raised above 72:|sending SMS and activating Window Swilchl
L LRl Found 1 events in the last 10 minutes Action 2
L.l Checking how long the temperature sensor has been reporting >= 72
2T temperature: 74.4,Johysicalgraph.app.EventWrapper@5dd1f5a

Trigger 2

4:49:16: [EIREPfTurning on switches | Action 1

Figure 9: Logs on the SmartThings Platform in Scenario I

time and locationMode. Since the locationMode is a common com-
ponent shared by all applications, the change of its status would
trigger actions from multiple devices. The status of these devices
may influence the status of locationMode in return. Hence, the time
may trigger the unexpected changes to the home mode. The 4th
chain unexpectedly triggers the switch’s action via the temperature
channel. The 5th chain is similar to the 2nd chain, where time can
change the locationMode through the temperature channel. The
6th chain represents the situation that a switch is able to trigger a
temperature alarm by utilizing a thermostat to influence the tem-
perature channel. The 7th chain is triggered by a presence sensor
that connects the toaster to the locationMode through the smoke
channel, which can be used to trigger an alarm and subsequent
actions of related devices, such as windows and locks. The 8th and
9th risky interaction chains are triggered by time channel. They are
also able to trigger unexpected changes to the home mode. The 10th
chain creates interactions between a water leakage and a switch
through the illuminance channel. Since the switch can be connected
to the bulb to send a leakage warning, and subsequently trigger
actions of illuminance-related devices.

5.3.3 User Scenario. To demonstrate the real effect of potential
inter-app interactions, we create two real-world scenarios based
on our identified risky interaction chains.

Scenario I: Figure 8 shows a scenario where two benign ap-
plications (a heater control application and a temperature alarm
application) share a temperature channel. Assume we use the tem-
perature alarm application to monitor the temperature of an infant
room. Once the heater control application turns on the heater, it
leads to temperature raising. The increased temperature triggers
the temperature alarm application to open the window, which may
cause infant safety issues in this scenario.

Figure 9 shows the real logs on the SmartThings platform after
the window control application has been triggered to open the
window by a temperature raising event, which is caused by turning
on a heater’s switch for around 35 minutes.

Scenario II: As shown in Figure 10, the whole interaction struc-
ture in this scenario includes a malicious application (a device

841

CCS’18, October 15-19, 2018, Toronto, ON, Canada

1 Home Mode Control
'

Event: Mode

Location
Mode

Figure 10: A malicious application triggers an inter-app in-
teraction of two benign applications.

Action 2

2.0 moke: detected). kriggerReset 3470200389
Trigger 2

1:51:15: [FET) 001 for device: d544a3c5-1311-4¢52-91

1:51:15: Rl £ JAction 1

Figure 11: Logs on the SmartThings Platform in Scenario II

monitor application) and two benign applications (a home mode
control application and a fire alarm application). The home mode
control application changes the status of thermostats and toasters
based on its mode status. The fire alarm application can unlock
the door when any smoke is detected. The attacker uses the device
monitor application, which is a third-party malicious application,
and can pretend as a benign device status monitor to communicate
with other applications stealthily.

The red arrows in Figure 10 illustrate the inter-app interactions,
which could be utilized by the attacker. Assume the malicious ap-
plication has been installed on the platform. It aims at modifying
the status of locationMode to “Home” at a specific time stealthily by
utilizing a system flaw [18]. Then, the locationMode triggers actions
of other devices, which are defined in the home mode control appli-
cation. We assume the home mode control application gets access
to the thermostat and toaster. If a toaster is overheated, it may lead
to the reaction of the fire alarm application, e.g., unlocking the door,
which makes intrusion possible. In this scenario, even a malicious
application does not get access to a lock, it still can affect the lock’s
status indirectly.

In this scenario, we use a First Alert smoke detector, a Z-Wave
Schlage Lock, and a toaster controlled by a wemo outlet to im-
plement a smart toaster. Figure 11 shows logs generated by the
SmartThings platform after the fire alarm application has been
triggered by a smoke event, which is caused by turning on a toaster
switch for 16 minutes. Since the window control flow is similar to
the benign case, we do not show the logs of that flow.

5.4 System Performance

In this section, we measure the performance of our system via pro-
cessing all 185 official SmartThings applications. We test 20 times to
calculate the average performance overhead on a desktop computer
with an Intel 8700K CPU and 16 GB memories. The performance of
the intra-app analysis is influenced by the number of applications
and the complexity of each application. In our experiment, we mea-
sure the time of generating all the intra-app interactions. As shown

Session 5A: Cyberphysical

e—e Application Analysis

0.25

0.20

0.15 |

Time(seconds)

0.10 -

0.05

50 100
Number of Applications

150 200

(a) Intra-app Analysis

600

+— Channel Analysis

500

Time(seconds)
w IS
8 8
3 3

N
S
3

100

100
Number of Applications

150 200

(b) Channel Analysis
Figure 12: System Performance

in Figure 12a, the time for intra-app analysis of 185 applications is
around 0.3s. The performance overhead of physical channel identifi-
cation depends on the length of application description as shown in
Figure 12b, which is around 573 seconds in total. The average time
of risk analysis for 135 applications is approximately 1.2 seconds.

6 RELATED WORK

IoT Security: Existing research on IoT security has mainly focused
on addressing traditional security issues on IoT environments, such
as device or protocol flaws [16, 21, 36], malicious applications [18,
36], side channels [1, 24], and platform problems [18, 20, 27, 30].

Regarding devices flaws, some researchers focused on exploit-
ing flaws on an IoT platform to attack the system. For example,
Sivaraman et al. showed that an attacker could conduct a multi-
step attack to compromise a local home network from the Internet
by using a malicious mobile application [36]. By exploiting vul-
nerabilities in communication protocols, Ronen et al. developed
a worm that could use the flaws in ZigBee to spread the worm
among smart bulbs [34]. Chen et al. proposed a mechanism that
could analyze device memory corruption vulnerabilities without
analyzing devices’ firmwares [16].

On application level, Jia et al. proposed a runtime authorization
mechanism that uses context information to ensure the corrective-
ness of sensitive action execution [27]. Yuan et al. explored how to
use static analysis and NLP to identify the inconsistency between

842

CCS’18, October 15-19, 2018, Toronto, ON, Canada

the application’s description and its functionality [40]. Moreover,
Celik et al. proposed a static taint analysis tool called SAINT for
tracing sensitive data flows in IoT applications [14]. They also in-
troduced Soteria, a static analysis system for finding safety and
security violations in an IoT application or IoT environment [15].

With respect to platform flaws, Fernandes et al. demonstrated
that the overprivilege problem on the SmartThings Platform allows
malicious applications to access non-authorized devices and sensi-
tive event data [18]. In FlowFence, an information flow control and
data isolation mechanism is proposed, focusing on solving sensitive
information leakage on on the SmartThings platform [19]. Besides,
Wang et al. have demonstrated that log information can be used to
monitor malicious behaviors on the SmartThings platform [41].

Considering side channels on IoT platforms, Ronen et al. proved
that attackers are capable of sending sensitive information by using
strobed smart bulbs [1]. Recently, Han et al. demonstrated that
identifying multiple physical impacts triggered by a specific event
can help users to pair correlated devices, e.g., human walking may
change the status of motion, temperature and humidity sensors [24].
Although these research efforts revealed the possible influence of
physical channels on smart home platforms, they mainly focused
on finding physical impacts from a single physical event.

Although many IoT security problems have been addressed by
existing research, our study revealed that a new type of security
problem could happen due to specific physical functions provided
by IoT devices. Especially, the ability of IoT devices to interact with
physical surrounding needs to be monitored and controlled.

Risk Analysis: Many existing research focuses on the risk anal-
ysis of Android applications. Pandita et al. compared the results of
NLP and static analysis to assess risks of Android applications [33].
They provided a mechanism to verify the consistency between
an Android application’s description and its behaviors. Some re-
searchers utilized machine learning techniques to evaluate the risk
of malicious Android applications. For example, Jing et al. used
SVM to give the risk score of an application based on users’ trusted
applications [28]. Arp et al. used static analysis to extract features
from applications and then used SVM to classify those features.
These work focuses on application-level risk analysis and requires
a large amount of training dataset, which does not exist currently
on IoT platforms. In contract, our work focuses on evaluating risks
of the physical interactions among applications on IoT platforms
using limited intra-app interactions as a baseline.

7 DISCUSSION

In this section, we examine the limitations of our design and imple-
mentation, and discuss potential solutions for addressing those lim-
itations.

Risk Analysis: Our risk analysis is sensitive to assigned chan-
nel values. The value assignment is based on the co-occurrence
frequency of two channels in intra-app interactions. Intuitively, a
higher frequency represents a stronger correlation between two
channels. Hence, we give these channels similar values. However,
such an assignment method may not be optimal. It would be an
interesting problem to measure real-world correlations among dif-
ferent physical channels. In our future work, we plan to integrate
other analysis methods, such as physical verification and machine

Session 5A: Cyberphysical

learning, into our risk analysis. We will also conduct user studies
to verify the correctiveness of our risk analysis.

Risk Mitigation: Our risk mitigation method is relatively straight-
forward, which relies on developers to add more trigger conditions
empirically. We plan to enhance our risk mitigation in two direc-
tions. First, it would be interesting to develop an automatic risk
mitigation mechanism, which can change trigger conditions for
risky interactions by learning existing applications’ benign inter-
actions. Second, we may develop a dynamic access control mech-
anism for IoT platforms without modifying application code. The
access control policies can be generated automatically by machine
learning techniques or from users’ inputs. Thus, our system could
achieve runtime interaction control without modifying existing
applications.

Channel Identification: In our current design, we identify
physical channels by clustering keywords from application descrip-
tions. We may explore other methods to identify the existence of
physical channels. For example, we may use system logs [41] or
trace devices’ sensor readings [24], to understand devices’ interac-
tions with different physical channels.

Description Integrity: Our system uses application descrip-
tions to identify physical channels. We especially use the descrip-
tions of official applications on the Samsung SmartThings platform
for physical channel identification. If an attacker can craft mali-
cious/misleading application descriptions in the applications, we
need to verify the description integrity before using them in our
system. We will investigate solutions to address such a problem.

8 CONCLUSIONS

In this paper, we have designed IoTMonN, an IoT device physical
interaction control system, which can discover all potential inter-
app interaction chains and analyze risk levels of those interaction
chains. We have implemented a prototype of IoTMoN and evaluated
it based on official SmartThings applications. Our evaluation results
have demonstrated that IoTMoN could effectively capture potential
physical interactions among IoT applications and identify high-risk
inter-app interaction chains.

ACKNOWLEDGMENTS

The authors thank Long Cheng for his help in polishing this paper.
We also think Maxwell Harley for his help in the implementation
of prototype system. This material is based upon work supported
in part by the National Science Foundation (NSF) under Grant
no. 1642143, 1723663, and 1700499. Any opinions, findings, and
conclusions or recommendations expressed in this material are
those of the authors and do not necessarily reflect the views of NSF.

REFERENCES

[1] Extended Functionality Attacks on IoT Devices: The Case of Smart Lights, au-
thor=Ronen, Eyal and Shamir, Adi, booktitle=Proceedings of the 2016 IEEE Euro-
pean Symposium on Security and Privacy (EuroS&P), pages=3-12, year=2016,
organization=IEEE.

[2] Zigbee. https://en.wikipedia.org/wiki/Zigbee.

[3] Home automation system market worth 79.57 billion usd by 2022. http://www.
marketsandmarkets.com/PressReleases/home-automation-control-systems.
asp, 2016.

[4] The stanford parser: A statistical parser.
lex-parser.html, 2016.

https://nlp.stanford.edu/software/

843

[5]

(15]

[16]

[17]

(18

[19

[20

[21]

[22

[23
[24]

(35]

(36]

CCS’18, October 15-19, 2018, Toronto, ON, Canada

Ddos attack that disrupted internet was largest of its kind in his-
tory, experts say. https://www.theguardian.com/technology/2016/oct/26/
ddos-attack-dyn-mirai-botnet, 2017.

Euclidean distance. https://en.wikipedia.org/wiki/Euclidean_distance, 2018.
Fenestra. http://www.smartfenestra.com/products/, 2018.

K-means clustering. https://en.wikipedia.org/wiki/K-means_clustering, 2018.
Minkowski distance. https://en.wikipedia.org/wiki/Minkowski_distance, 2018.
Taxicab geometry. https://en.wikipedia.org/wiki/Taxicab_geometry, 2018.
Word2vec, doc2vec & glove: Neural word embeddings for natural language
processing. https://deeplearning4j.org/word2vec.html, 2018.

Apple. ios - home. http://www.apple.com/ios/home/.

D. Arp, M. Spreitzenbarth, M. Hubner, H. Gascon, K. Rieck, and C. Siemens.
DREBIN: Effective and Explainable Detection of Android Malware in Your Pocket.
In Proceedings of the 2014 Network and Distributed Security Symposium (NDSS),
volume 14, pages 23-26, 2014.

Z.B. Celik, L. Babun, A. K. Sikder, H. Aksu, G. Tan, P. McDaniel, and A. S. Uluagac.
Sensitive Information Tracking in Commodity IoT. In Proceedings of the 27th
USENIX Security Symposium (USENIX Security), 2018.

Z.B. Celik, P. McDaniel, and G. Tan. Soteria: Automated IoT Safety and Security
Analysis. In 2018 USENIX Annual Technical Conference (USENIX ATC). USENIX
Association, 2018.

J. Chen, W. Diao, Q. Zhao, C. Zuo, Z. Lin, X. Wang, W. C. Lau, M. Sun, R. Yang,
and K. Zhang. IOTFUZZER: Discovering Memory Corruptions in IoT Through
App-based Fuzzing. In Proceedings of the 22nd Network and Distributed Security
Symposium (NDSS), 2018.

S. Community. Samsung smartthing applications.
SmartThingsCommunity/SmartThingsPublic, 2017.

E. Fernandes, J. Jung, and A. Prakash. Security Analysis of Emerging Smart Home
Applications. In Proceedings of the 37th IEEE Symposium on Security and Privacy
(S&P), May 2016.

E. Fernandes, J. Paupore, A. Rahmati, D. Simionato, M. Conti, and A. Prakash.
FlowFence: Practical Data Protection for Emerging IoT Application Frameworks.
In Proceedings of the 25th USENIX Security Symposium (USENIX Security), 2016.
E. Fernandes, A. Rahmati, J. Jung, and A. Prakash. Decoupled-IFTTT: Con-
straining Privilege in Trigger-Action Platforms for the Internet of Things. arXiv
preprint arXiv:1707.00405, 2017.

D. Fisher. Pair of Bugs Open Honeywell Home Controllers Up to Easy
Hacks. https://threatpost.com/pairof-bugs-open-honeywell-home-controllers-
up-toeasy-hacks/113965/.

B. Fouladi and S. Ghanoun. Honey, I'm home!!-Hacking Z-Wave Home Automa-
tion Systems. Black Hat USA, 2013.

Google. Google home. https://madeby.google.com/home/.

J. Han, A. J. Chung, M. K. Sinha, M. Harishankar, S. Pan, H. Y. Noh, P. Zhang, and
P. Tague. Do You Feel What I Hear? Enabling Autonomous IoT Device Pairing
Using Different Sensor Types. In Proceedings of the 2018 IEEE Symposium on
Security and Privacy (S&P), pages 678-694. IEEE, 2018.

A. Hesseldahl. A hacker’s-eye view of the internet of things.
https://www.recode.net/2015/4/7/11561182/a-hackers-eye-view-of- the-
internet-of-things/, 2015.

IoTivity. Iotivity website. https://www.iotivity.org/.

Y.J.Jia, Q. A. Chen, S. Wang, A. Rahmati, E. Fernandes, Z. M. Mao, and A. Prakash.
ContexIoT: Towards Providing Contextual Integrity to Appified IoT Platforms.
In Proceedings of the 21st Network and Distributed Security Symposium (NDSS),
February 2017.

Y. Jing, G.-J. Ahn, Z. Zhao, and H. Hu. Riskmon: Continuous and Automated Risk
Assessment of Mobile Applications. In Proceedings of the 4th ACM Conference on
Data and Application Security and Privacy, pages 99-110. ACM, 2014.

N. Lomas. Critical Flaw identified In ZigBee Smart Home Devices, 2015.

C. Nandi and M. D. Ernst. Automatic Trigger Generation for Rule-based Smart
Homes. In Proceedings of the 2016 ACM Workshop on Programming Languages
and Analysis for Security, pages 97-102. ACM, 2016.

K. Olejnik, I. Dacosta, J. S. Machado, K. Huguenin, M. E. Khan, and J.-P. Hubaux.
Smarper: Context-aware and Automatic Runtime-permissions for Mobile Devices.
In Proceedings of the 2017 IEEE Symposium on Security and Privacy (S&P), pages
1058-1076. IEEE, 2017.

OpenHAB. openhab - features - introduction. http://www.openhab.org/features/
introduction.html.

P. Rahul, X. Xiao, W. Yang, W. Enck, and T. Xie. WHYPER: Towards Automating
Risk Assessment of Mobile Applications. In Proceedings of the 22nd USENIX
Security Symposium (USENIX Security). Citeseer, 2013.

E. Ronen, A. Shamir, A.-O. Weingarten, and C. O’Flynn. IoT Goes Nuclear:
Creating a ZigBee Chain Reaction. In Proceedings of the 2017 IEEE Symposium on
Security and Privacy (S&P), pages 195-212. IEEE, 2017.

B. Schneier. The Internet of Things Is Wildly Insecure - And Often Unpatchable.
Schneier on Security, 6, 2014.

V. Sivaraman, D. Chan, D. Earl, and R. Boreli. Smart-Phones Attacking Smart-
Homes. In Proceedings of the 9th ACM Conference on Security & Privacy in Wireless
and Mobile Networks (WiSec), pages 195-200. ACM, 2016.

https://github.com/

https://en.wikipedia.org/wiki/Zigbee
http://www.marketsandmarkets.com/PressReleases/home-automation-control-systems.asp
http://www.marketsandmarkets.com/PressReleases/home-automation-control-systems.asp
http://www.marketsandmarkets.com/PressReleases/home-automation-control-systems.asp
https://nlp.stanford.edu/software/lex-parser.html
https://nlp.stanford.edu/software/lex-parser.html
https://www.theguardian.com/technology/2016/oct/26/ddos-attack-dyn-mirai-botnet
https://www.theguardian.com/technology/2016/oct/26/ddos-attack-dyn-mirai-botnet
https://en.wikipedia.org/wiki/Euclidean_distance
http://www.smartfenestra.com/products/
https://en.wikipedia.org/wiki/K-means_clustering
https://en.wikipedia.org/wiki/Minkowski_distance
https://en.wikipedia.org/wiki/Taxicab_geometry
https://deeplearning4j.org/word2vec.html
http://www.apple.com/ios/home/
https://github.com/SmartThingsCommunity/SmartThingsPublic
https://github.com/SmartThingsCommunity/SmartThingsPublic
https://madeby.google.com/home/
https://www.iotivity.org/
http://www.openhab.org/features/introduction.html
http://www.openhab.org/features/introduction.html

G W N =

Session 5A: Cyberphysical

[37] S.Smartthing. Smart home. intelligent living. https://www.smartthings.com/.
[38] S.Smartthing. Smartthings developer documentation. http://docs.smartthings.
com/en/latest/.

Steven. Windows automation in smart homes. https://smarthomegearguide.com/
windows-automation-smart-homes/, 2018.

Y. Tian, N. Zhang, Y.-H. Lin, X. Wang, B. Ur, X. Guo, and P. Tague. SmartAuth:
User-Centered Authorization for the Internet of Things. In Proceedings of the
26th USENIX Security Symposium (USENIX Security), pages 361-378, 2017.

Q. Wang, W. U. Hassan, A. Bates, and C. Gunter. Fear and Logging in the Internet
of Things. In Proceedings of the 22nd Network and Distributed Security Symposium
(NDSS), 2018.

Wikipedia. Mirai (malware). https://en.wikipedia.org/wiki/Mirai_(malware).
Wink. A simpler, smarter home. https://www.wink.com/.

T. Yu, V. Sekar, S. Seshan, Y. Agarwal, and C. Xu. Handling a Trillion (unfixable)
Flaws on a Billion Devices: Rethinking Network Security for the Internet-of-
Things. In Proceedings of the 14th ACM Workshop on Hot Topics in Networks
(HotNets), page 5. ACM, 2015.

[39

[40]

[41]

[42]
[43
[44

A INTRA-APP ANALYSIS

Our system can perform a lightweight static analysis on given
IoT applications. It analyzes the rule grammar of applications by
creating and parsing an AST of the application to find triggers
and actions. The static analysis takes on four distinct phases with
respect to the structure of a Samsung SmartThings application. The
first phase converts the source code of the application into a Groovy
AST. Since the SmartThings platform uses Groovy scripts instead of
wrapping the source in a Groovy class, AstBuilder, provided by the
Groovy project, cannot be utilized. Instead, the CompilationUnit
class can be used to create the AST. The CompilationUnit class is a
package provided by the Groovy language. It is the same one that
the Groovy Console uses for parsing source code into an AST. An
example of its usage is shown in Listing 3. The CompilationUnit
class is suitable for semantic analysis, because it contains classes,
imports, and variable scopes. Listing 3 demonstrates how to use
the CompilationUnit class to generate the AST from a SmartThings
application file, “source.groovy”. By providing the source file and
compilation unit option, the CompilationUnit class can create an
ASTNode object that the analyzer can traverse to understand how
triggers and actions are related to each other.

Listing 3: Using the CompilationUnit Class

def fileData = new File("./source.groovy")
CompilationUnit cu = new CompilationUnit()
cu.addSource(fileData)
cu.compile(Phases.SEMANTIC_ANALYSIS)

def ast = cu.getAst()

The second phase parses the preferences closure to make a list
of inputs and capabilities. The preferences are shown to users as
a menu where they can select what options their SmartThings
applications should use. Since inputs of SmartThings applications
typically have associated functions for changing the state of the
capability, creating an easy-to-access list of these inputs makes the
retrieval easy. The AST is easy to traverse if there are no “section”
blocks or even those blocks do exist. Listing 4 provides an example
of the preference, which showcases the intricacies of the preference
closure. Specifically, it shows how sections are built from inputs,
and inputs can even have sub-sections. One challenge with creating
the list of inputs is that there are default system variables, such as
“location” and “app”, that SmartThings creates. The easiest way to
fix the problem of undefined default variables is to manually add all

(513 OO RN

844

CCS’18, October 15-19, 2018, Toronto, ON, Canada

default variables into the input list to allow them to be consumed
later in the analysis process.

Listing 4: Preferences Closure

preferences {
// Create section for Power Meter input
section("Power Meter") {

input "powerMeter", "capability.powerMeter"
3
// Create input section for contact
input("recipients", "contact", title: "Send to") {
input "sendPush", bool, title: "Send a push?", options:
["Yes", "No"]

input "phone", "phone", title: "Send a Text?"
3
}

The third phase maps inputs to outputs by parsing subscribe
calls to get trigger handlers. The “installed” and “updated” functions
tell SmartThings which previously-defined inputs are triggers and
which are actions. Inside of the “installed” and “updated” functions,
there are calls to “subscribe” and “schedule”, which tell SmartThings
what actions should be performed when the trigger is activated. The
“schedule” function takes three arguments: a trigger name, a trigger
channel, and a trigger handler. Listing 5 shows an example function
for subscribing to events. It subscribes to all events, which are
created and updated by powerMeter in the platform. By traversing
the trigger handler function and checking for references to inputs
located in the preference closure, the analyzer can tell which inputs
are actions that the trigger calls. After performing three phases,
our tool can have a list of triggers and their associated actions.

Listing 5: Installed Function

def installed() {
// subscribe to powerMeter input and the
// "power" attribute.
subscribe(powerMeter, "power", handleMeter)

B INTERACTION CHAIN GRAPH OF 135
APPLICATIONS

Figure 13 shows a complete inter-app interaction chain graph of
135 Samsung SmartThings applications. Red nodes indicate phys-
ical/system channels. Blue nodes are triggers and actions from
intra-app interactions. Blue edges between nodes represent intra-
app interactions. All red edges are the paths of risky inter-app
interaction chains.

C FULL LIST OF RISKY INTERACTION
CHAINS

We provide a full list of risky interaction chains in Table 7. Note
that “multiple devices” in potential device means the related device
is not clear because there are too many potential related devices.
In this case, we just choose one possible related capability each
time to measure the risk of physical interaction of this capability.
The potential devices are inferred from the applications’ capability
usage descriptions.

https://www.smartthings.com/
http://docs.smartthings.com/en/latest/
http://docs.smartthings.com/en/latest/
https://smarthomegearguide.com/windows-automation-smart-homes/
https://smarthomegearguide.com/windows-automation-smart-homes/
https://en.wikipedia.org/wiki/Mirai_(malware)
https://www.wink.com/

Session 5A: Cyberphysical CCS’18, October 15-19, 2018, Toronto, ON, Canada

Figure 13: Inter-app Interaction Chain Graph of 135 SmartThings Applications

845

Session 5A: Cyberphysical

CCS’18, October 15-19, 2018, Toronto, ON, Canada

Table 7: Full List of Risky Interaction Chains

No. Trigger1 Action1 Potential Channel Trigger2 Action2 Potential Outlier
Capability Capability Device Capability Capability Device Distance
1 locationMode switch heater smoke carbonMonoxide | locationMode alarm(window, lock) 70.75
2 time switch feeder, curtain, fan motion motionSensor locationMode bulb, window 64.81
3 time locationMode | multiple devices system locationMode lock lock 62.92
4 locationMode thermostat thermostat temperature tempMeasure switch window, vent 62.75
5 time switch heater temperature tempMeasure locationMode multiple devices 60.01
6 switch thermostat thermostat temperature tempMeasure locationMode alarm(window, lock) 48.74
7 presenceSensor switch toaster smoke carbonMonoxide | locationMode alarm(window, lock) 45.21
8 time locationMode | multiple devices system locationMode switch heater 40.83
9 time locationMode | multiple devices system locationMode switch bulb 40.50
10 watersensor switch bulb illuminance | illuminMeasure switch bulb, heater 35.06
11 waterSensor locationMode | multiple devices system locationMode lock lock 34.91
12 locationMode switch heater, AC temperature tempMeasure switch heater, window 34.37
13 location thermostat thermostat temperature tempMeasure switch heater, window 34.12
14 motionSensor switch bulb illuminance | illuminMeasure switch bulb, window, curtain 30.42
15 time thermostat AC temperature tempMeasure switch vent, heater 29.73
16 time switch feeder, fan, curtain motion motionSensor illuminMeasure window, bulb 27.06
17 time locationMode | multiple devices system locationMode thermostat AC 26.87
18 carbonMonoxide switch alarm motion motionSensor locationMode lock, window 26.63
19 time switch bulb illuminance | illuminMeasure switch curtain, window, bulb 26.48
20 motionSensor locationMode | multiple devices system locationMode lock lock 25.29
21 waterSensor switch valve, bulb illuminance | illuminMeasure switch curtain, window 22.64
22 time switch feeder, fan, curtain motion motionSensor lock lock 21.65
23 presenceSensor switch toaster smoke carbonMonoxide | locationMode alarm(window, lock) 16.38
24 HumidityMeasure switch heater smoke carbonMonoxide | locationMode alarm(window, lock) 16.15
25 timer switch feeder, fan, curtain motion motionSensor switch humidifier 16.11
26 waterSensor locationMode | multiple devices system locationMode switch window, heater 16.02
27 waterSensor locationMode | multiple devices system locationMode switch bulb 15.61
28 tempMeasure switch heater smoke carbonMonoxide | locationMode alarm 12.96
29 time switch feeder, fan, curtain motion motionSensor thermostat thermostat 12.67
30 illuminMeasure switch feeder, fan, curtain motion motionSensor lock lock 11.15
31 time switch bulb illuminance | illuminMeasure switch curtain, window, bulb 5.60
32 motionSensor locationMode | multiple devices system locationMode switch window 4.65
33 locationMode switch bulb illuminance | illuminMeasure switch curtain, window, bulb 4.21
34 time switchlevel bulb illuminance | illuminMeasure switch curtain, window, bulb 4.06
35 waterSensor locationMode | multiple devices system locationMode switch humidifier 3.11
36 time switch bulb illuminance | illuminMeasure thermostat thermostat 1.74
37 motionSensor switch heater temperature tempMeasure switch heater 0.28

846

	Abstract
	1 Introduction
	2 Threat Model & Problem Scope
	3 System Overview
	4 DESIGN AND IMPLEMENTATION
	4.1 Intra-app Analysis
	4.2 Physical Channel Identification
	4.3 Interaction Chain Discovery
	4.4 Risk Analysis & Mitigation

	5 Evaluation
	5.1 Application Analysis
	5.2 Interaction Chain Discovery
	5.3 Risk Analysis
	5.4 System Performance

	6 Related Work
	7 Discussion
	8 Conclusions
	Acknowledgments
	References
	A intra-app Analysis
	B Interaction Chain Graph of 135 Applications
	C Full List of Risky Interaction Chains

