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Abstract Steganography is the science of hiding information within seemingly harmless messages or inno-

cent media. This paper addresses the problems of efficient construction of secure steganography in ordinary

covert channels. Without relying on any sampling assumption, we provide a general construction of secure

steganography under computational indistinguishability. Our results show that unpredictability of mapping

function in covertext sampler is indispensable for secure stegosystem on indistinguishability against adaptive

chosen hiddentext attacks. We completely prove that computationally secure steganography can be constructed

on pseudorandom function and unbiased sampling function under ordinary covert channels, that is, its secu-

rity is inversely proportional to the sum of errors of these two functions, as well as the legth of hiddentexts.

More importantly, our research is not dependent upon pseudorandom ciphertext assumption of cryptosystem or

perfect sampling assumption. Hence, our results are practically useful for construction and analysis of secure

stegosystems.
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1 Introduction

Steganography is the science of hiding information within seemingly harmless messages or innocent media

to supply various applications, such as anonymous communications [1], anonymous online transactions,

covert channels in computer systems [2], covert or subliminal communications, invisible watermarking

and fingerprinting [3] for protection of intellectual property rights, etc. It is quite obvious that hiding-

information messages (stegotext) must be indistinguishable from harmless messages (covertext) if we

expect that communication is unconscious for human beings or undetectable for computers. Thereby, the

starting point of this paper is also indistinguishability.

The security, as robustness and imperceptiveness, is a vital aspect of the research of steganography.

Cachin [4] firstly formalized an information-theoretic model for steganography in 1998. They introduced
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a relative entropy function as a basic measure of information contained in an observation to define

unconditionally secure stegosystem. Up to 2002, Hopper et al. [5,6] firstly attempted to formalize

steganography from a complexity-theoretic point of view. However, the security proofs only hold under

perfect sampling oracle assumption, which requires the samplers are independent each other. However, it

is not practical in most circumstances. Moreover, this paper obtains the precondition for the existence of

secure steganography on a strong assumption that IND-CPA security cryptosystems have pseduorandom

ciphertext, as well as the perfect sampling without bias. Unfortunately, this assumption does not hold in

some existing cryptosystems (see [7]).

Following these works, many scholars began to research various technologies of semantic security for

steganography. For instance, Dedic et al. [8] further lowered the requirement for hiding-channel and pro-

vided ‘black-box steganography’. This paper provided two improved algorithms based on rejection-sample

encoder of [5]. Ahn et al. [9] created a public-key steganography and chosen-stegotext attacks (SS-CSA).

Backes et al. [10], as well as Hopper [11], considered adaptive chosen-covertext attacks. Lysyanskaya

et al. [12] discussed the problem of imperfect sample by weakening assumption, in which the covertext

distribution is modeled as a stateful Markov process. But further discussions of the underlying questions

and unconditional imperfect sample are still needed in order to construct more practical stegosystems.

As is known to all, indistinguishability is a significant factor in cryptographic security analysis. We

also believe that it is the foundation of security analysis in steganography. Although this point has

already been discussed in prior papers [5,8,11,12], there is still a lack of thoughtful attention to show

how to construct secure stegosystems without sampling assumption. The real-world stegosystems are

most often broken because they make invalid assumptions about the adversary’s abilities. Typically,

this is an assumption about an adversary’s lack of knowledge about covertext distribution. There are

many ways to characterize this sort of abilities: perfect sampling for independent distribution [5], semi-

adaptive sampling for α-memoryless distribution from some Markov process of order α [12], etc. These

assumptions are still too strong for real-world applications. Hence, it is essential to examine whether it is

possible to weaken or eliminate these assumptions. Fortunately, pseudorandomness and unpredictability

methods on complexity-theory, as well as randomized unbiased sampling functions will help settle this

issue in ordinary covert channels.

In this paper, we focus on the construction of secure steganography under ordinary covert channels

without sampling assumption. By constructing a more general model of stegosystem, we prove that

unpredictability of mapping function in covertext sampler is indispensable for secure stegosystem on

indistinguishability against adaptive chosen hiddentext attack (IND-CHA). Furthermore, computation-

ally secure steganography is feasible if there exist ε1-pseudorandom function and ε2-unbiased sampling

function, where ε1 and ε2 are two negligible errors. Although some previous studies have induced similar

conclusions, our results provide more complete line of investigations and a more general conclusion. Espe-

cially, our research was not based upon the strong IND-CPA assumption and perfect sampling assumption,

in which the ciphertext of cryptosystem used to build stegosystem must be pseudorandom. Hence, our

construction reveals important insights into more general constructibility of secure steganography, and

these results are also practically useful for construction and analysis of stegosystems.

The rest of the paper is organized as follows. In Section 2, we describe some basic notions and general

definition of stegosystem. In Section 3, we define a formal model of IND-CHA security based on left-right

oracle. In Section 4, a practical construction of stegosystem is proposed for IND-CHA security, and a

security analysis of this construction is described as well. Finally, we conclude this paper in Section 5.

2 Preliminary and definition

2.1 Notions and preliminaries

The security in this paper is stated as a game in which an adversary has the ability to select two

messages. One of the messages is randomly selected and hidden. The stegosystem is then called secure
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if no adversary can do better than a random guess in finding out which message was hidden. Before we

formalize the game, we recall the concept of negligible function:

Definition 1 (Negligible). A function f : N → [0, 1] is called negligible if for every polynomial p(·)
there exists an N such that |f(n)| < 1/p(n) for all n > N .

That is, f is asymptotically smaller than any inverse polynomial. This paper will focus on languages in

BPP (bounded-error probabilistic polynomial time), which can be recognized by probabilistic polynomial-

time machines with a negligible error probability.

Computational indistinguishability, introduced by Goldwasser and Bellare [13] and defined in full

generality by Yao [14], is defined as follows:

Definition 2 (Computational indistinguishability). Two probability ensembles, X = {Xn}n∈N and

Y = {Yn}n∈N, are computationally indistinguishable, if for every probabilistic polynomial-time (PPT)

distinguisher D, every positive polynomial p(·), and all sufficiently large n’s,

|Pr[D(1n, Xn) = 1]− Pr[D(1n, Yn) = 1]| < 1

p(n)
. (1)

Note that, |Xn| = Ω(n) denotes the length of samples in Xn. Clearly, if two ensembles are statistically

close then they are also computationally indistinguishable. The converse, however, is not true. Let Un

denote uniform distribution on n-bit strings. The ensemble {Un}n∈N is called standard uniform ensemble.

Given the above definition, it is easy to define pseudorandomness:

Definition 3 (Pseudorandom ensembles). An ensemble X = {Xn}n∈N is called pseudorandom if there

exists a uniform ensemble U = {Un}n∈N such that X and U are indistinguishable in polynomial time.

Furthermore, let f : {0, 1}s×{0, 1}L→ {0, 1}l denote a family of functions. We call the function f is a

pseudorandom function if f is a deterministic polynomial-time algorithm and the ensemble {fk(Un)}n∈N
is also pseudorandom1).

Other important notions involve sampling and unbiased function. The simplest method for sampling

from a complex combinatorial structure is Monte Carlo method, often known as rejection sampling.

Without lost of generality, we will also use the method in this paper and write SampleCf (k, b) to denote a

rejection-sampling algorithm, which samples from a covertext distribution C according to oracle OC such

that multi-bit symbol b can be embedded in it, for a function fk(·) with a certain key k. However, this

algorithm differs greatly from general Monte Carlo method due to Oracle.

To evaluate the statistical property of mapping function in sampling space, we define the unbiased

function as follows:

Definition 4 (Unbiased function). A function f : K × C → R is a (tb, ε)-unbiased function on the

distribution K, C,R, if for all r ∈ R, |Prx←C [fk(x) = r] − 1/|R|| � ε, where |R| is the number of elements

in R and tb denotes the time-complexity in f .

We say that a function f is unbiased if ε = 0, that is, Prx←C [fk(x) = r] = 1/|R|. An ε-biased function

is called an unbiased function if ε is a negligible function.

2.2 Definition of stegosystem

We assume that there is a public channel in which a sender can communicate with a receiver and to

which an adversary can have perfect read-only access. In addition, there is a covertext source by which

any covertext is generated to hide message. The model of stegosystems [5,6] can be formally defined as

follows:

• C is a covertext space with probability distribution PrC . We assume that C can be denoted by all

finite sequences {(c1, . . . , cl)|l ∈ N, ci ∈ Σ, 1 � i � l} after sampling, where Σ is a finite source alphabet2).

1) The extensive property of pseudorandom function in cryptography may be unnecessary for steganography, thus a

universal hash function is often used in practice.
2) Without loss of generality, we can also map a symbol ri in a finite alphabet Σ into an element ci in a finite field Fq.

For example, the image watermarking is regarded as the modular operation in GF (28) finite field.
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• P is a hiddentext space with probability distribution PrP , which is statistically independent of PrC .
• S is a stegotext space with probability distribution PrS . We assume that S is equal to C as sets

(S = C) according to the requirement of imperceptibility, but PrS might be different from PrC , sometimes.

We assume that any sequence of covertexts over the public channel consists of independent repetitions

of covertexts. Similar to cryptography, let K = {0, 1}∗ denote a key space. Then, a stegosystem Φ can

be defined in terms of the above (C,P ,S,K), as follows:
Definition 5 (Stegosystem [11,12]). An efficient stegosystem is a triple, SS = (G, E ,D), of probabilistic
polynomial-time algorithms satisfying the following conditions:

• On input 1n, algorithm G (called key-generator) outputs a bit strings k as the private-key, where n

is a security parameter.

• For a private-key k ∈ K in the range of G(1n), a covertext distribution C, and every hiddentext

m ∈ P , the encoding algorithm E outputs a stegotext s ∈ S, i.e., s← EC(1n, k,m).

• For a private-key k ∈ K in the range of G(1n), a covertext distribution C, and every stegotext s ∈ S,
the decoding algorithm D outputs a message m ∈ P or an invalid symbol ⊥, i.e., {m,⊥} ← DC(1n, k, s),
and the probability that

Pr
[DC (1n, k, EC(1n, k,m)

) �= m
]

is negligible in n, where the probability is taken over the internal coin tosses of algorithms E and D, as
well as the covertext distribution C.

The algorithm D returns either a symbol ⊥ indicating failure (an empty message), or a hiddentext

m ∈ P . Especially, we require that Pr[DC(1n, k, EC(1n, k,⊥)) =⊥] = 1 holds. We sometimes rewrite the

encoding and decoding algorithms as ECk (m) and DCk (s) for short. In this paper, we focus on an efficient

algorithm to detect whether a hiddentext is presented instead of decrypting the stegotext. In this case,

the decoding algorithm D is also called a deterministic algorithm if it outputs a bit b ∈ {0, 1}, where
b = 1 denotes the presence of hiding information, otherwise b = 0. We call this kind of D a detector.

According to the definition in [5,8,11,12], we assume that there exists an encoding algorithm to realize

cn ← ECG(1n)(⊥) for an empty message, and then we have the definition of hiding property, as follows:

Definition 6 (Computational hiding property [5,12]). A stegosystem (G, E ,D) has computational hiding

property if the following holds: Given a covertext distribution C, both a covertext cn ← ECG(1n)(⊥) and its

any stegotext sn ← ECG(1n)(m) are indistinguishable in polynomial-time if for any probabilistic polynomial-

time algorithmD, every hiddentextm ∈ P , every polynomial p(·), and all sufficiently large n, the following

inequation holds,

∣
∣∣Pr

[
DC

(
1n, ECG(1n)(m)

)
= 1

]
− Pr

[
DC

(
1n, ECG(1n)(⊥)

)
= 1

]∣∣∣ <
1

p(n)
.

The probability is taken over the internal coin tosses of algorithms G, E and the property of C.

3 Definition of IND-CHA security

The security in this paper is stated as a game in which an adversary has the ability to select two

messages. One of the messages is randomly selected and hidden. The stegosystem is then called secure

if the adversary cannot do better than a random guess in finding out which message is hidden. Loosely

speaking, this game means that it is hard to distinguish between covertext and stegotext.

We will use a formal definition to describe the IND-CHA attack, in which indistinguishability is mea-

sured via the “left-or-right” model [13]. Define the left-or-right oracle ECk (LR(·, ·, b)), where b ∈ {0, 1},
to take input (x0, x1) and do the following: if b = 0 it computes c0 ← ECk (x0) and returns c0; else it

computes c1 ← ECk (x1) and returns c1. In this case, the goal of such an adversary is to distinguish

whether he is seeing the encodings of the hiddentext that he supplied to the encoder, or simply random

samples from the channel. This choice is decided by a left-or-right oracle ECk (LR(·,⊥, b)) except that the
second variable is replaced by the null strings ⊥. We fix a specific stegosystem SS = (G, E ,D). Such an

experiment consists of four stages as follows:
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1. Key generation: A key k is generated by the key generation algorithm G.
2. Training stage: Malice prepares some hiddentext messages and sends to the oracle O, O encodes

them and returns the results to Malice. After repeating many times, Malice halts and chooses a messages

m ∈ P ;
3. Challenge stage: Malice sends m to the oracle O. O tosses a fair coin b ∈U {0, 1}, then provides

c← ECk (LR(m,⊥, b)) to Malice;

4. Guessing stage: Upon receipt of c, Malice must answer a bit b′ as his guess of O’s coin tossing b.

Definition 7 (Hiding attack of stegosystem). Let SS = (G, E ,D) be a symmetric stegosystem. Let

b ∈ {0, 1} and n ∈ N. Let Acha be an adversary that has access to one oracle. We consider the following

experiments:

Algorithm Expind-cha-bSS,Acha
(1n).

k
R← G(1n),

x← A
EC
k (LR(·,·,b))

cha (1n).

Return x.

Above it is mandated that the two messages queried by ECK(LR(·, ·, b)) always have equal length, and

that ⊥ denotes a null messages. We define the advantage of the adversaries via

Advind-chaSS,Acha
(1n) =

∣
∣
∣Pr

[
Expind-cha-1SS,Acha

(1n) = 1
]
− Pr

[
Expind-cha-0SS,Acha

(1n) = 1
]∣∣
∣ .

We define the advantage functions of the scheme as follows. For any integers t,qe and ue, InSec
ind-cha
SS (t, qe,

ue) = maxAcha
{Advind-chaSS,Acha

(1n)} where the maximum is over all Acha with time-complexity t, each making

to the Ek(LR(·, ·, b)) oracle at most qe queries the sum of those lengths is at most ue bits of hiddentext.

So that, we define the secure stegosystem under the hiding attack:

Definition 8 (IND-CHA security). The stegosystem SS = (G, E ,D) is called (t, qe, ue, ε)-indistinguisha-

bility against adaptive chosen-hiddentext attack if the function ε = InSecind-chaSS (t, qe, ue) is negligible for

any adversary A whose time-complexity is bounded by a polynomial in n.

4 Construction of secure steganography

In this section we address the problems of existence and construction of secure stegosystem on compu-

tational complexity. Intuitively, the more unpredictable the appearance of stego-objects is, the more

difficult it would be to distinguish from them in covert channels. In support of this idea, we focus on the

relationship of unpredictability and hiding property to provide a general construction of secure stegosys-

tem, and then we analyze the security requirements of this construction to explain the preconditions for

the existence of IND-CHA stegosystem.

4.1 Construction of IND-CHA stegosystem

In this subsection, we turn attention to the efficient construction of secure steganography with com-

putationally hiding property. Before giving our stegosystem, we present a simple sampling algorithm

(sampler), which is a key part in our construction. In this algorithm, we still use the similar construction

suggested in [5,6], but just do a little bit of change to satisfy the requirements of an imperfect sampling

oracle model. The sampling algorithm can be briefly described as follows:

Algorithm SampleCf (k, b).
Require: a key k, a value b ∈ {0, 1}e,

1: repeat

2: s←R OC ,
3: until fk(s) = b.

4: Return s.
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In this construction, given a mapping function fk(·) : K× C → R with the key k and R = {0, 1}e, the
encoding algorithm in our stegosystem is based on the rejection-sampling algorithm SampleCf (k, b). This
algorithm can sample a covertext distribution C according to oracle OC , such that an e-bit symbol b would

been embedded in it. For the sake of simplification, this algorithm is sometimes abbreviated to gCk (b).
S = {s1, s2, . . . , sm} is a set of all different candidate samples, which are usually some inconspicuous

samples based on models of human (auditory and visual) perception. And then, the algorithm randomly

chooses a sample s from them until fk(s) = b, where ←R denotes the random choosing of oracle O. Our

objective is to analyze the property of mapping function fk(·) by this simple construction.

The rejection-sampling function has the following characters to induce greater usability and flexibility

in ordinary covert channels: we do not assume the existence of a perfect oracle OC , “one that can

perform independent draws, one that can be rewound, etc”. This kind of independence assumption is

so strong that it is seldom satisfied in real-life applications 3). Instead, the sampling oracle OC can

be executed under arbitrary channel in our rejection-sampling algorithm, so that the samples may be

related to each other for multi-times samplings. The reason for making this assumption is that the proof

of our subsequent theorem also does not rely on the distribution characteristic of samplers but the choice

of mapping function fk(·), when analyzing the indistinguishability between two sample sequences with

polynomial-size.

Algorithm ECk (m). Algorithm DC
k (s).

1: z ← Encoder (m). 1: Parse s as {s1‖s2‖ · · · ‖sl},
2: Parse z as {z1‖z2‖ · · · ‖zl}, 2: for i = 1 To l do

3: for i = 1 To l do 3: zi ← fk(si),

4: si ← gCk (zi), 4: end for,

5: end for. 5: m← Decoder(z1‖z2‖ · · · ‖zl).
6: Return s← {s1‖s2‖ · · · ‖sl}. Return m.

We now turn to the description of the stegosystem. Algorithm E first encodes an input messagem using

the given encoding function Encoder, which outputs z. And then it repeatedly invokes Sample to embed

z into a sequence of covertext symbols. Algorithm D proceeds analogously: the message is extracted

from each constant-size symbols in a covertext s by mapping function f , then the concatenation of these

messages is decoded by algorithm Decoder, and the resulting value is returned.

4.2 Unpredictability and steganography

Now we devote into an analysis of the above stegosystem. Apparently, these algorithms (E and D)
construct a valid stegosystem. Without loss of generality, we assume that our analysis is based on binary

field {0, 1}, namely the output of Encoder is a binary string and the output of fk(·) is a value in {0, 1}.
We first consider the character of the encoder Encoder. We find that the output of Encoder ought to

be unpredictable in order to realize the hiding property. This kind of unpredictability is defined by

Goldreich [15] as follows:

Definition 9 (Unpredictability [15]). An ensemble {Xn}n∈N is called (tp, ε)-unpredictable in polynomial

time if for every probabilistic polynomial-time algorithm A and a negligible ε,

Pr[A(1|Xn|, Xn) = NextA(Xn)] <
1

2
+ ε,

where NextA(x) returns the i + 1 bit of x if on input (1|x|, x) algorithm A reads only i < |x| of the bits

of x, and returns a uniformly chosen bit otherwise (i.e., in case A reads the entire string x), tp denotes

time-complexity in A.

3) As [5,6] had said, “Our definitions (this assumption) do not rule out efficient constructions for channels where more is

known about the distribution”, “In practice, this oracle is also the weakest point of all our constructions”, and “A real-world

warden would use this to his advantage”.
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In the above stegosystem, we require that each stegotext block be unpredictable in order to reach

indistinguishability between covertext and stegotext. In the same way, we also require the encoding

message hidden in each block is unpredictable. Without loss of generality, we will consider the binary

hiding, that is, zi ∈ {0, 1} for any i ∈ {1, 2, . . . , l} in z. We have the following theorem.

Theorem 1 (Unpredictability implies security of steganography). If the output of the encoding function

Encoder is (tp,
1

p(n) )-unpredictable (it can pass all next-bit tests) and the mapping function f is (tb,
1

q(n) )-

unbiased distributed, then the construction (SampleCf , ECk ,DCk ) over the covertext distribute C is a (tp −
l(n)tb, l(n), l(n)|Σ|, l(n)

p(n) +
5l(n)
q(n) )-secure stegosystem against IND-CHA attack for all sufficiently large n,

where l(n) is a polynomial in n, and |Σ| denotes the length of source alphabet Σ in C.
Proof. Assume that there is a probabilistic polynomial-time algorithm AC that can distinguish the

output of algorithm E from the covertext c under C with at least 1
p′(n) . Then, for an arbitrary hiddentext

m, and all sufficiently large n, we may drop the absolute value and assume that

Pr
[
AC

(
1n, ECk (m)

)
= 1

]− Pr
[
AC

(
1n, ECk (⊥)

)
= 1

]
� 1

p′(n)
.

For any polynomial l(·), let the encoding result of the hiddentext m be denoted by z = (z1, . . . , zn′) by

Encoder, where each zi is a bit and the length of z is n′ = l(n). We also parse the covertext c = ECk (⊥) as
{c1‖c2‖ . . . ‖cn′}. For all k ∈ G(1n), we consider the following sequence of distributions {pk,0, . . . , pk,n′}
on the symbol sets Σn′

:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

pk,0 = {c1, c2, . . . , cn′ : c← C},
pk,1 = {gCk (z1), c2, . . . , cn′ : c← C, z ← P},

...

pk,r = { gCk (z1), . . . , g
C
k (zr), cr+1, . . . , cn′ : c← C, z ← P },

pk,r+1 = { gCk (z1), . . . , g
C
k (zr+1), cr+2, . . . , cn′ : c← C, z ← P },

...

pk,n′ = {gCk (z1), gCk (z2), . . . , gCk (zn′) : z ← P}.

We start with the true covertext (see pk,0), and in each step we replace one more sample of the covertext

from the left by a stegotext block, which is encoded by gCk . Finally, in pk,n′ we have the distribution of

the stegotext. So that, we observe that

Pr
[
AC

(
1n, ECk (⊥)

)
= 1

]
= Pr

[
AC(1n, y0) = 1 : y0

pk,0←−− Σn′]
,

Pr
[
AC

(
1n, ECk (m)

)
= 1

]
= Pr

[
AC(1n, yn

′
) = 1 : yn

′ pk,n′←−−− Σn′]
.

According to our assumption, algorithm A is able to distinguish between the distribution of stegotext

pk,n′ and the distribution of covertext pk,0. We say that A is able to distinguish between two subsequent

distributions pk,r and pk,r+1, for some r ∈ N, as follows:

1

p′(n)
�

(
Pr[AC(1n, ECk (m)) = 1]− Pr[AC(1n, ECk (⊥)) = 1]

)

= Pr
[
AC(1n, yn

′
) = 1 : yn

′ pk,n′←−−− Σn′]− Pr
[
AC(1n, y0) = 1 : y0

pk,0←−− Σn′]

=

n′−1∑

r=0

(
Pr

[
AC(1n, yr+1) = 1 : yr+1 pk,r+1←−−−− Σn′]− Pr

[
AC(1n, yr) = 1 : yr

pk,r←−− Σn′])
. (2)

Since we notice that pk,r differs from pk,r+1 only at one position, namely at r + 1, algorithm A can

also be used to successfully predict the next sample gCk (zr+1) from
{
gCk (z1), g

C
k (z2), . . . , g

C
k (zr)

}
for some
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r; that is, for randomly chosen r, we expect that the r-th term in the sum is � 1
n′·p′(n)

4)
.

More precisely, we will derive a probabilistic polynomial-time algorithm D from algorithm A, which

can predict the next bit with higher probability from the inputs z = (z1, . . . , zn′) ∈ {0, 1}n′
for the

infinitely many k ∈ G(1n). We start with a more precise description of algorithm D as follows:

1. Choose r uniformly in {0, 1, . . . , n′ − 1}.
2. Choose a covertxt sequence {cr+1, . . . , cn′} under distribution C, and sets

yr =
(
gCk (z1), . . . , g

C
k (zr), cr+1, . . . , cn′

)
.

3. If AC(i, yr) = 1, then output fk(cr+1) as a prediction, and otherwise output 1− fk(cr+1), namely

DC(r, z) =

{
fk(cr+1), AC(1n, yr) = 1,

1− fk(cr+1), AC(1n, yr) = 0.

Without loss of generality, if we can assume that fk(·) is a 1
q(n) -unbiased function (the output of

function is approximately uniformly distributed with a negligible bias), then we assume min(Pr[fk(cr+1) =

zr+1],Pr[fk(cr+1) = zr+1]) � 1
2 − 1

q(n) in terms of Lemma 1, where zr+1 = 1− zr+1. Moreover, using the

definition of A, we get

sD(n′) = Pr
[
DC(1n, z) = NextD(z) : z ← {0, 1}n′]

=
1

n′

n′−1∑

r=0

⎧
⎨

⎩

Pr
[
AC (1n, yr) = 1, fk(cr+1) = zr+1 : yr

pk,r←−− Σn′
]

+Pr
[
AC (1n, yr) = 0, 1− fk(cr+1) = zr+1 : y

r pk,r←−− Σn′
]

⎫
⎬

⎭

=
1

n′

n′−1∑

r=0

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Pr
[
AC (1n, yr) = 1 : fk(cr+1) = zr+1, y

r pk,r←−− Σn′
]
·

Pr[fk(cr+1) = zr+1 : cr+1 ← OC ]
+Pr

[
AC (1n, yr) = 0 : fk(cr+1) = zr+1, y

r pk,r←−− Σn′
]
·

Pr[fk(cr+1) = zr+1 : cr+1 ← OC ]

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

=
1

n′
·
n′−1∑

r=0

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Pr
[
AC

(
1n, yr+1

)
= 1 : yr+1 pk,r+1←−−−− Σn′

]
·

Pr[fk(cr+1) = zr+1 : cr+1 ← OC ]+(
1− Pr

[
AC

(
1n, yr+1

)
= 1 : yr+1

pk,r+1←−−−− Σn′
])
·

Pr[fk(cr+1) = zr+1 : cr+1 ← OC ]

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

� 1

2
− 1

q(n)
+

(
1

2
− 1

q(n)

)
· 1
n′
·
n′−1∑

r=0

⎧
⎨

⎩

Pr
[
AC

(
1n, yr+1

)
= 1 : yr+1 pk,r+1←−−−− Σn′

]

−Pr
[
AC

(
1n, yr+1

)
= 1 : yr+1

pk,r+1←−−−− Σn′
]

⎫
⎬

⎭

� 1

2
− 2

q(n)
+

1

2n′
·
n′−1∑

r=0

⎧
⎨

⎩

Pr
[
AC

(
1n, yr+1

)
= 1 : yr+1 pk,r+1←−−−− Σn′

]

−Pr
[
AC

(
1n, yr+1

)
= 1 : yr+1

pk,r+1←−−−− Σn′
]

⎫
⎬

⎭
, (3)

where yr+1 = (gCk (z1), . . . , g
C
k (zr), g

C
k (zr+1), cr+2, . . . , cn′). Note that, yr

pk,r←−− Σn′
includes cr+1 ← OC .

On the assumption that fk(·) is an ε-unbiased function, we know that yr is distributed identically to the

distribution obtained by taking yr+1 and yr+1 with probability 1
2 +

1
q(n) and 1

2 − 1
q(n) , respectively. Thus,

we obtain

Pr
[
AC(1n, yr) = 1 : yr

pk,r←−− Σn′]

4) Note that, we cannot have Pr
[
AC(1n, yr+1) = 1 : yr+1

pk,r+1←−−−−− Σn′]−Pr
[
AC(1n, yr) = 1 : yr

pk,r←−−− Σn′] � 1
n′·p′(n)

,

considering that some elements may be � 1
n′·p′(n)

but it is not necessary for others.
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= Pr
[
AC(1n, yr) = 1 : fk(cr+1) = zr+1, y

r pk,r←−− Σn′]
Pr[fk(cr+1) = zr+1 : cr+1 ← OC ]

+Pr
[
AC(1n, yr) = 1 : fk(cr+1) = zr+1, yr

pk,r←−− Σn′]
Pr[fk(cr+1) = zr+1 : cr+1 ← OC ]

�
(
1

2
− 1

q(n)

)(
Pr

[
AC(1n, yr+1) = 1 : yr+1 pk,r+1←−−−− Σn′]

+Pr
[
AC(1n, yr+1) = 1 : yr+1

pk,r+1←−−−− Σn′] )
. (4)

This equation implies

Pr
[
AC(1n, yr+1) = 1 : yr+1 pk,r+1←−−−− Σn′]

�
(

1

( 1
2− 1

q(n) )
· Pr

[
AC(1n, yr) = 1 : yr

pk,r←−− Σn′
]
− Pr

[
AC(1n, yr+1) = 1 : yr+1 pk,r+1←−−−− Σn′

] )
.

Thus, in term of Eq. (2), we get

sD(n′) =
1

2
− 2

q(n)
+

1

2n′

n′−1∑

r=0

⎧
⎨

⎩

Pr
[
AC

(
1n, yr+1

)
= 1 : yr+1 pk,r+1←−−−− Σn′

]

−Pr
[
AC

(
1n, yr+1

)
= 1 : yr+1

pk,r+1←−−−− Σn′
]

⎫
⎬

⎭

� 1

2
− 2

q(n)
+

1

2n′

n′−1∑

r=0

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Pr
[
AC(1n, yr+1) = 1 : yr+1 pk,r+1←−−−− Σn′

]
−

⎛

⎝
1

( 1
2− 1

q(n) )
· Pr

[
AC(1n, yr) = 1 : yr

pk,r←−− Σn′
]
−

Pr
[
AC(1n, yr+1) = 1 : yr+1 pk,r+1←−−−− Σn′

]

⎞

⎠

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

=
1

2
− 2

q(n)
+

1

2n′

n′−1∑

r=0

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(
2Pr

[
AC(1n, yr+1) = 1 : yr+1 pk,r+1←−−−− Σn′

]
−

2Pr
[
AC(1n, yr) = 1 : yr

pk,r←−− Σn′
] )
−

4
q(n)−2 Pr

[
AC(1n, yr) = 1 : yr

pk,r←−− Σn′
]

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

� 1

2
− 2

q(n)
+

1

n′p′(n)
− 2

q(n)− 2

� 1

2
− 5

q(n)
+

1

n′p′(n)
,

where q(n) � 6. This means that the advantage of algorithm D is at least 1
n′p′(n)− 5

q(n) in this experiment

for n′ = l(n). This is in contradiction to our hypothesis that the embedded sequence z is unpredictable

in a polynomial-time. The time-complexity t of our construction is at most tp − n′tb since tp � t+ n′tb.
Moreover, the advantage of adversaries for this construction 1

p′(n) is at most l(n)
p(n) +

5l(n)
q(n) since 1

p(n) �
1

n′p′(n) − 5
q(n) for at most l(n) queries and at most l(n)|Σ| bits of hiddentext. The theorem follows.

The proof made use of a so-called “hybrid” argument. More importantly, this proof is provided with

the predictability in worst case. This means that secure steganography must be unpredictable for all bits

of hiddentext. Conversely, a stegosystem should be insecure only if an adversary can guess successfully on

some bits. In the practical applications, we are able to use these bits to predict the message of hiddentext

or to implement the steganalysis [16].

4.3 Preconditions of secure stegosystems

In order to prove the existence of computational hiding property in ordinary covert channels, we propose a

new construction (SampleCf , ECk ,DCk ) with imperfect oracle, in which the samples are not necessarily to be

independent of each other. The conclusion of the above theorem is significant to steganography analysis;

moreover the process of proof has some interesting meanings for the construction of the computationally

secure stegosystems. In the construction we know that there exist two kernel parts: mapping function f

and encoding function Encoder. According to the proof process, we have the following preconditions:
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Precondition 1. The mapping function fk(·) is an unbiased function for a key k.

Precondition 2. The encoding function Encoder(·) can generate an unpredictable sequence.

Precondition 1 is derived from the assumption of Eqs. (3) and (4): the function fk(·) is a 1
q(n) -unbiased

function with a polynomial negligible bias 1
q(n) . This means that |Prc←C [fk(c) = b] − 1

2 | � 1
q(n) over

distribution C for any b ∈ {0, 1}. It is easy to deduce 1
2 − 1

q(n) � min{Prc←C [fk(c) = b],Prc←C [fk(c) = b]}
and max{Prc←C [fk(c) = b],Prc←C [fk(c) = b]} � 1

2 + 1
q(n) for arbitrary distribution C in terms of the

following simple lemma:

Lemma 1. Given an ε-unbiased function f : K × C → R, that is, |Prx←C [fk(x) = r]− 1
|R| | � ε. Let S

be an arbitrary distributed random variable with values in R. Assume that S and f are independent.

Then 1
|R| − ε � Prx←C [fk(x) = S] � 1

|R| + ε.

Proof. In terms of the definition of ε-unbiased function, we have 1
|R| − ε � Prx←C [fk(x) = r] � 1

|R| + ε.

Since fk(x) is independent of S, we have

Pr
x←C

[fk(x) = S] =
∑

r←R
Pr
x←C

[S = r|fk(x) = r] · Pr
x←C

[fk(x) = r]

�
(

1

|R| + ε

) ∑

r←R
Pr[S = r] =

1

|R| + ε.

Thus, we also have Prx←R[fk(x) = S] � 1
|R| − ε, and the lemma follows.

Normally, the above lemma means that the mapping function f is independent of the covertext distribu-

tion C.5) In Theorem 1, the success probability of prediction of the algorithmD is at least 1
2− 5

q(n)+
1

n′p′(n) .

It is obvious that the bias of mapping function 1
q(n) decreases the success probability of prediction. More-

over, as a special case of this theorem, the success probability of prediction is at least 1
2 + 1

n′p′(n) when

the mapping function fk(x) is an unbiased function. Note that, we emphasize that this function ought

to employ a key k to realize the randomness of the sampling process. Obviously, we can use one-way

function with a hard-core predicate or balanced boolean function to construct an unbiased function.

Precondition 2 is the direct consequence of cryptographic theory. Yao has indicated that an ensemble

is pseudorandom if and only if it is unpredictable in polynomial time as follows:

Theorem 2 (Yao’s Theorem [14,15]). Let I = (In)n∈N be a key set with security parameter n, and

G = (Gk : Xk −→ {0, 1}l(n))k∈I be a pseudorandom bit generator with polynomial stretch function l and

key generator K. Then G is computationally perfect if and only if G passes all next-bit tests.

Yao’s theorem means that the proposed scheme is able to realize the Precondition 2 of computational

hiding stegosystem if there exists a pseudorandom bit generator. Furthermore, according to relationship

between one-way function and pseudorandom bit generator, the weaker assumption of the computational

hiding stegosystem is that there exists a strong one-way function, which can induce a pseudorandom bit

generator [15].

Taking these two preconditions together, we claim that a (block-based) stegosystem with IND-CHA

security enjoys the following characteristics:

Corollary 1. There exists a computationally secure stegosystem with IND-CHA security, if the follow-

ing two conditions are satisfied: 1) there exists a pseudorandom function with a negligible error, which

is used to construct the encoder of the hiddentext message; 2) there exists an unbiased function with a

negligible bias, which is used to construct the rejection-sampling function.

Note that, the advantage of adversaries in winning IND-CHA game is at most l(n)
p(n) +

5l(n)
q(n) in terms

of Theorem 1, where the length of hiddentext l(n) must be far less than the polynomial value p(n) and

q(n). This means that the adversary’s advantage is proportional to the length of hiddentext l(n) and is

inversely proportional to the polynomials p(n) or q(n). The less l(n) or the larger p(n) and q(n) there

are, the more secure the stegosystem is.

5) The reason is that we have Pr[fk(x) = r] =
∑

c∈C Pr[fk(c) = r] · PrC [c] = 1
|R|

∑
c∈C PrC [c] = 1

|R| for the unbiased

function fk(x).
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5 Conclusions and further work

In this paper, we provide a more general construction of secure steganography without any special assump-

tions. We prove that our construction is a computationally secure stegosystem with indistinguishability

against adaptive chosen hiddentext attacks. Based on it, the security analysis proves that the compu-

tationally secure steganography is feasible if there exist pseudorandom function and unbiased sampling

function. Similarly, both trapdoor one-way permutation and unbiased sampler also are the foundation

of construction of secure private-key and public-key steganography schemes. These results are practi-

cally useful for construction and analysis of stegosystems. As part of future work, we will construct a

proof-of-concept implementation of our method with extensive system evaluation.
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