
A Collaborative Framework for Privacy Protection

in Online Social Networks

Yan Zhu1,2, Zexing Hu1, Huaixi Wang3, Hongxin Hu4, Gail-Joon Ahn4

1Institute of Computer Science and Technology, Peking University, Beijing 100871, China
2Key Laboratory of Network and Software Security Assurance (Peking University), Ministry of Education, China

3School of Mathematical Sciences, Peking University, Beijing 100871, China,
4Laboratory of Security Engineering for Future Computing (SEFCOM), Arizona State University, Tempe, AZ 85287, USA

Email: {yan.zhu,huzx,wanghx}@pku.edu.cn, {hxhu,gahn}@asu.edu

September 17, 2010

Abstract

With the wide use of online social networks (OSNs), the problem of data privacy has attracted much
attention. Several approaches have been proposed to address this issue. One of privacy management ap-
proaches for OSN leverages a key management technique to enable a user to simply post encrypted contents
so that only users who can satisfy the associate security policy can derive the key to access the data. How-
ever, the key management policies of existing schemes may grant access to unaurhorized users and cannot
efficiently determine authorized users. In this paper, we propose a collaborative framework which enforces
access control for OSN through an innovative key management focused on communities. This framework
introduces a community key management based on a new group-oriented convergence cryptosystem, as
well as provides an efficient privacy preservation needed in a private OSN. To prove the feasibility of our
approach, we also discuss a proof-of-concept implementation of our framework. Experimental results show
that our construction can achieve the identified design goals for OSNs with the acceptable performance.

1 Introduction

Online social networks (OSNs) have become an important web service where people can publish and share
resources (personal tastes, blogs, or viewpoints) through different types of relationships [1]. A number of
social network sites have recently emerged and they are becoming a popular and useful approach in people’s
daily life. For example, people can make friends with Facebook (http://www.facebook.com) or MySpace
(http://www.myspace.com), find job information in LinkedIn (http://www.linkedin.com), and so on. The
availability of information brings convenience to modern life while significantly raising issues related to per-
sonal privacy. For instance, personal private data may be used for promoting unnecessary products, and
resources may be abused by some unauthorized users, etc.

It is crucial to effectively protect user privacy in OSN. A significant amount of work for privacy protection
on OSN has been introduced [2–4]. For example, flyByNight [2] is a Facebook application designed to protect
the privacy of messages exchanged between Facebook users. NOYB (short for “None Of Your Business”) [5]
is another system targeted at cryptographically protecting user privacy on Facebook. Persona [3] is a private
OSN which encrypts user data with attribute-based encryption (ABE), allowing users to apply fine-grained
policies over users who may view their data. Although some new techniques were introduced in these solutions,
it is still necessary for a centralized server to enforce access control, which cannot protect the privacy of
users against the centralized server. Also, some solutions implemented access control at client-side but their
approach should be synchronous, requiring multiple users to be online simultaneously.

One of efficient ways for enforcing access control in OSN is to allow users to put the encrypted data on
the server and then only the users who can derive the decryption key would decrypt and access the data.
Normally, it can be performed through key management. The advantage of this approach is that a user just
simply posts her content but the unauthorized users are not able to obtain the key. Some schemes based on

1



Table 1: Comparison between two existing OSN shcemes and our scheme.
flyByNight [2] Persona [3] Our scheme

Cryptosystem ElGamal/Proxy encryption PKC/ABE ElGamal/GCC
Autonomy ElGamal managed by system

manager; Proxy Encryption
by application proxy

PKC managed by system
manager; ABE managed by
group creator

Full autonomy

Independence Yes Yes Yes, a set of trusted users
Collaboration No No Yes
Anonymous authentication No No Yes
Revocation No No Yes
Integrity checking No No Yes
Relationship transitive By group manager From friend to friend From friend to friend
Post message encryption One-time by client-side;Each

download by application proxy
One-time by client-side One-time by client-side

this idea have been proposed [6–8]. However, these schemes based on traditional cryptographic techniques
have limitations when dealing with multiple groups in OSN since either users must store multiple copies of
encrypted data but are unable to give data based on membership in multiple groups, or users must know the
identities of everyone to whom they give access.

We believe that a practical and effective key management access control scheme should provide the follow-
ing properties: 1) Autonomy, once a user joins in a private OSN, he chooses his public key and private key by
himself and the OSN manager cannot obtain his private key; 2) Independence, a community is constructed by
a set of trusted users and there is no third party involved; 3) Collaboration, the kernel members can collab-
orate to construct and maintain a private OSN so as to reduce the maintenance complexity; 4) Anonymous
Authentication, OSN can verify the validity of the user’s access permission for a private OSN without a user’s
identity; and 5) Revocation, a community could revoke the permission of authorized users permanently or
temporarily.

1.1 Our Contributions

To meet the privacy needs of OSN, we present a solution. which fulfills above-mentioned requirements. Our
collaborative framework can provide flexible, efficient privacy protections needed in a private OSN without
the intervention of a system manager. We briefly summarize the contributions of our work in this paper.

∙ We propose a system architecture for a private OSN. In this architecture community creators can
collaborate to manage and maintain their communities. There is no need for a centralized management
server to build PKC/PKI for key exchange and to monitor the behavior of all users;

∙ We provide a community key management method for our architecture based on a new group-oriented
convergence cryptosystem (GCC). This method leverages the following properties: the community is
built on convergence of some users’ private keys, the upload and download of resources provide the
authentication and integrity checking, as well as there exist efficient mechanisms for access permission
delegation and sophisticated revocation; and

∙ To prove the feasibility of our architecture, a proof-of-concept prototype of the proposed approach is
implemented by constructing a GCC cryptosystem and an application of community key management
method. Experimental results show that our construction can achieve the identified design goals for
protecting privacy in OSN with the acceptable performance.

Table 1 summarizes the comparison results between flyByNight [2], Persona [3], and our scheme. We can
observe that our approach have following advantages: autonomy, collaboration, anonymous authentication,
revocation, and integrity checking. These features could significantly mitigate privacy risks in using OSNs.

2



1.2 Organization

The rest of this paper is organized as follows. We describe the common cryptographic techniques for OSN
and how to comprise better cryptosystems in Section 2. We discuss the system architecture of our private
OSN in Section 3. We introduce the preliminaries of our GCC scheme and present our basic construction for
community key management in Section 4. Section 5 discusses how the proposed approach can be realized in
a practical application. We describe the related work in Section 6 followed by the conclusion in Section 7.

2 Cryptography in OSNs

The main task of cryptography in building a private OSN is to restrict the information available in an
appropriate range. We make use of relationships or social links to represent this range in a social network.
For example, family, neighbor, co-worker, boss, teammate, and other relations might define such a relationship
in a private OSN. In this paper, the relationship is simply termed “friend”.

Encrypting sensitive information to protect it from misuse is hardly a new concept, but the OSN setting
is different from typical group scenarios. One of the differences is that the sender may not be in charge
of group membership. For example, Alice may post a message on Bob’s wall, encrypted for Bob’s friends,
without (necessarily) knowing the list of Bobs friends. Another aspect of the OSN setting is that the number
of potential users might be very large in a group. These two features lead to the deployment and management
of data in OSN arduous.

2.1 Limitations of Common Encryption Approach

In order to construct A private OSN setting, serval schemes have been proposed in recent years . Although
these schemes adopted different cryptographic techniques, such as traditional symmetric/asymmetric encryp-
tion [6, 7, 9, 10], as well as attribute-based encryption (ABE) [3, 11, 12], they have a same working model:
To create a new group from a list of known friends, Alice (the creator) encrypts a newly-generated group key
with the public key of each member of the new group (obtained from PKC/PKI). She then distributes this key
to the members of that group and uses the key to encrypt messages for the group. The information sharing
can be realized by exchanging the key within the groups. In this model, the group key may be symmetric,
in which case only group members can encrypt for the group, or asymmetric, which allows non-members to
encrypt as well.

Although it looks as though this model has a simple structure, it in fact requires not only the establishment
of a PKC/PKI system, but also requires a tedious task of key management for the creator. Moreover, the
users’ public keys based on PKC/PKI are used to distribute the group key in this model. This means that all
members in a social network are managed and monitored by a centralized management server. In addition,
this model has several usability and security issues:

∙ The user needs to store many community keys if he/she belongs to several communities;

∙ There does not exist an efficient way to revoke the member permanently or temporarily; and

∙ There does not exist an efficient way for anonymous authentication with the view of tracing the behavior
of users and computer forensics.

Moreover, a group creators must carefully carry out various maintenance work, such as deleting obsolete
information, keeping undesired readers off, and putting hot topics in order, and so on.

2.2 Our Approach

Our approach, to protect sensitive information in web services from unauthorized access, is to encrypt informa-
tion using user-controlled keys and to provide access to data using user-controlled delegation. This approach
is constructed on a new group-oriented convergence cryptosystem (GCC), which implements encryption and
authentication for groups. The most striking feature of this cryptosystem is that this system is organized

3



and managed in a spontaneous way without a system manager. That is, a group of trusted users, not one
user, collaborate to manage and maintain a private community. Moreover, this cryptosystem does not need
a PKC/PKI system to realize the exchange of group key.

To use GCC, each user in OSN generates the user’s private key by himself and registers a public label
into the OSN. To create a community, some known users with the same interest (called as the creators of
community) generate a community key (CK) in a cooperation way. All of the creators’ private keys are
valid for this community key. For each friend, a user can then generate an access permission key (APK)
corresponding to his own private key and the friend’s public label. Using the private key and the community’s
APK, the user can decrypt (or access) the shared information, but not encrypt (or publish) the information
into the community. The encryption operation cannot be implemented unless a user holds the community
key.

In order to avoid the adoption of PKC/PKI systems, a temporary public key generated from a user’s private
key can be used to realize the exchange of encrypted key. In addition, there exists an efficient authentication
protocol, by which a untrusted storage service provider (SSP) can check whether or not a user belongs to a
certain community.

Furthermore, in our model each user in OSN has only one private key. Each time the user joins in a
community, she will be assigned an APK key from her friends, but this APK is invalid for other users. This
approach can effectively prevent security problems caused by the loss of access permission key.

3 Our System Architecture

In this section, we introduce a private OSN architecture based on a group-oriented convergence cryptosystem.
In this architecture, a predominant method of sharing data in OSNs is via collaborative applications.

3.1 Community and Member Category

Before we describe the framework of our scheme, we first introduce an important concept – community, which
is the core notion of our approach. Following the traditional definition of social network, a community is a
loose collection of users with the same interest. In our private OSN, a community is organized and managed
by collaborative Web applications. By joining a community, one gains the right to create new contents
in this community and access others’ contents. For instance, the quintessential Facebook application, the
Wall, is a peruser forum that features posts and comments from the user and his friends; the Facebook
Photos application stores comments and tags for each picture and displays them to friends; and the Flickr
photo management and sharing application allows each photograph has a page where members of the Flickr
community can comment on photographs.

Figure 1: The system architecture for a private OSN.

We introduce a generic model to implement above-mentioned collaborative OSN applications. Figure 1
shows a system architecture for our model. In this architecture, a third party is required to be responsible
for the web-based applications, as well as the storage of published data. Meanwhile, it also provides some

4



services for users, such as Web browser service. But we do not demand that this third party is credible for
a private OSN. Existing social network sites, such as Facebook, Flickr, and Myspace, even cloud computing
platforms are appropriate environments applying our model.

In order to define the range of access control in a private OSN, we classify the users in social networks
into four categories:

∙ Kernel members (KM): can create and manage a special community by collaboration and have rights
to publish, delete, access or update resources released by other members of the community;

∙ Full authorized members (FAM): have full rights to publish and access resources in the community, but
do not have permissions to delete or update resources;

∙ Authorized members (AM): can access the resources by using her own access permission, but cannot
publish these resources;

∙ Unauthorized users (UU): may not have permissions to access resources published by community mem-
bers.

Note that, it is technically possible using the “delete” and “update” operations to compromise the security
of a community, for example, the malicious member can make use of them to manipulate or forge others’
opinions. Hence, it is necessary for authorized members to restrict their maintenance operations only for
kernel members. Moreover, it is critical to adopt an efficient authentication method to distinguish kernel
members from the others.

3.2 Our Model and Architecture

Our private OSN model could be built in existing social network platforms, such as Facebook, Orkut, etc,
which usually allow developers to create “applications” to extend the types of information that can be stored,
manipulated, and shared using social network interfaces. Fig. 2 depicts a application dataFlow for our
architecture. In this model, an OSN Platform API acts as a middleware for all interactions between application
providers and end users. End users, including kernel members, (full) authorized members, and unauthorized
users, initiate contact with an application provider through a URL on OSN platforms. The platforms interpret
input data along with these requests and pass their interpreted data via the Internet to the application
servers, whose addresses are registered with platforms by the application developers. The application server
then performs requested actions based on a platform-interpreted user input, perhaps including database
operations. The application server then delivers to the platform an output page consisting of HTML and
platform-specific markup, including scripts. The platform then interprets this output page, replacing the
platform-specific markup with standard HTML and JavaScript, and delivers the interpreted output page to
end users. A cryptographic module based on ActiveX is used to implement the decryption of output page in
the client’s browser.

Figure 2: The application dataFlow for our architecture.

5



In this architecture, the resource publisher enforces access control through encryption and key management
on our GCC scheme. Based on the above application dataflow, in Fig. 3 we describe a flowchart for publishing
and accessing resources as follows:

∙ In a social network each user can choose a favorite label and generate a private key by herself, and then
register her label into an OSN platform by UserRegister algorithm;

∙ When somebody wants to share resources with others, she constructs a community together with a set
of trusted friends on an OSN platform by BuildCommunity algorithm. Finally, each member gets a
community key, which can be used to access, manage and maintain the resources in this community;

∙ When a user wishes to access a community, her friends hold the community key can delegate an access
permission key (APK) to her by using DelegatePermission algorithm;

∙ If one community member wants to post message and resource into the community, she picks the
community key, invokes UploadResource algorithm to encrypt the resource with her private key, and
then transmits the encrypted data to the storage server; and

∙ Anytime one community member can obtain the encrypted data from the sever, and invoke Download-
Resource algorithm to retrieve the original post or resource by her private key and APK.

Social

Network

Platform

Upload

Resource

Post or Resource Encrypted Data

Download

Resource

Community

Members

Encrypted Data

Client side

Cryptographic Module

Delegate

Permission
Access Permission

Key (APK)

BuildCommunity

Community key

UserRegister

Application

And Storage

Server

Convergence

information
Community

information

User label
User label

Private key

User’s Private key

Post or Resource

Figure 3: Cryptographic module and application flow for our architecture.

According to our description, we enforce access control and key management at the client side by a group
of kernel members. In our architecture, we do not need to assume that the system manager is trusted to
manage a private OSN, so that the community can be constructed in an autonomous and collaborative way,
without the involvement of a system manager. To enable access control through key management without a
system manager, our design should satisfy several important security and performance requirements, such as
autonomy, independence, collaboration, authentication, and revocation.

4 Community Key Management

In this section, we articulate our scheme for community key management based on above-mentioned archi-
tecture. To design this scheme, our work addresses following problems: how do the kernel members define
a community? how do the authorized members generate and distribute the community keys? how do the
members grant access permissions corresponding to a community? how does an untrusted third party (e.g.
the OSN platform) can authenticate the kernel members of community?

6



Table 2: Notations and symbols used in paper.
Term Definition

𝑢.𝑖𝑑 𝑢’s label
𝑢.𝑠𝑘 𝑢’s private key
𝑢.𝑝𝑚 𝑢’s permission
𝑢.𝑝𝑘 𝑢’s Elgamal public key
𝑔𝑘 a community key

Setup(𝜅) Initiate the global parameter 𝑝 of the system by a security parameter 𝜅
Register(𝑝, 𝑖𝑑) Choose private keys in terms of global parameter 𝑝 and 𝑖𝑑

Converge(𝑆) Generate convergence information Σ from the set of public keys of all kernel
members 𝑆

CKeyGen(𝑢.𝑠𝑘,Σ) Build the community key 𝑔𝑘 with a user’s key 𝑢.𝑠𝑘 and a convergence infor-
mation Σ

CEncrypt
(𝑢.𝑠𝑘, 𝑢.𝑝𝑚, 𝑔𝑘, 𝐹 )

Encrypt a resource 𝐹 by using a user’s key 𝑢.𝑠𝑘, a member’s permission 𝑢.𝑝𝑚,
and a community key 𝑔𝑘

CDecrypt (𝑢.𝑠𝑘, 𝑢.𝑝𝑚,𝐶) Decrypt the ciphertext 𝐶 by using a user’s key 𝑢.𝑠𝑘 and a member’s permission
𝑢.𝑝𝑚

CVerify (𝐹,𝐶) Verify the integrity of the resource 𝐹 in the ciphertext 𝐶

Permission (𝑢.𝑠𝑘, 𝑔𝑘, 𝑢′.𝑖𝑑) Generate the access permission of a community by using a user’s key 𝑢.𝑠𝑘, a
community key 𝑔𝑘 and a target user’s label 𝑢′.𝑖𝑑

Revocation (𝑢.𝑠𝑘, 𝑔𝑘,ℛ, 𝐹 ) Revoke a set of users ℛ from a community by using a user’s key 𝑢.𝑠𝑘 and a
community key 𝑔𝑘

EGSetup(𝑢.𝑠𝑘, 𝑔) Generate ElGamal public key 𝑢.𝑝𝑘 from a user’s key 𝑢.𝑠𝑘 and a generator 𝑔
EGEncrypt(𝑢.𝑝𝑘,𝑚) ElGamal encrypt message 𝑚 to obtain a ciphertext 𝑐 with a public key 𝑢.𝑝𝑘
EGDecrypt(𝑢.𝑠𝑘, 𝑐) ElGamal decrypt ciphertext 𝑐 with private key 𝑢.𝑠𝑘

KAuthenticate(𝐴,𝐵) Authentication protocol between a kernel member 𝐴 and a verifier 𝐵
FAuthenticate(𝐴,𝐵) Authentication protocol between a (Full) authorized member 𝐴 and a verifier

𝐵

In view of those problems, we propose a community key management scheme as follows: each user in OSN
has an unique private key generated by UserRegister algorithm, while guaranteeing that OSN cannot know
this key; community management mainly relies on three algorithms, Buildcommunity, DelegatePermission
and Revocation, to build community and grant/revoke access permissions without the help of OSN; two
algorithms, UploadResource and DownloadResource, are employed for creating, requesting, updating and
deleting resources. In addition, a community maintains and enforces the public community’s member list
(CML). The kernel members may change the resource CML and revoke specific members to the resources
by cryptographic revocation algorithm. Additionally, storage services in our model support two operations
for data storage and retrieval: upload and download, which are re-realized by encryption and decryption
operations on our GCC scheme. In short, the algorithms described in this section are able to allow different
members to quickly and flexibly access data and resources in terms of their permissions.

Before we describe our construction, the symbols and notations in our GCC scheme are showed in Table
2. Detailed descriptions for these notations and corresponding algorithms are given in Appendix. We will
make use of these symbols and notations to elaborate our construction.

4.1 UserRegister

First of all, the system manager invokes 𝑆𝑒𝑡𝑢𝑝(𝜅) to generate a global parameter 𝑝 and makes it public. Based
on this parameter, any user 𝑢𝑖 in OSN may choose a favorite label 𝑢𝑖.𝑖𝑑 and generate his private key 𝑢𝑖.𝑠𝑘 by
invoking 𝑅𝑒𝑔𝑖𝑠𝑡𝑒𝑟(𝑖𝑑). Then, the manager registers this label after the user sends it to her.

Algorithm 1 UserRegister(𝜅):

1: manager: 𝑝← 𝑆𝑒𝑡𝑢𝑝(𝜅);
2: 𝑢𝑖: choose a favorite 𝑢𝑖.𝑖𝑑;
3: 𝑢𝑖: 𝑢𝑖.𝑠𝑘 ← 𝑅𝑒𝑔𝑖𝑠𝑡𝑒𝑟(𝑢𝑖.𝑖𝑑);
4: 𝑢𝑖 → manager: 𝑢𝑖.𝑖𝑑;

7



Note that, the manager only needs to execute 𝑆𝑒𝑡𝑢𝑝(𝜅) one time and does not know the user’s private
key.

4.2 BuildCommunity

The BuildCommunity function allows a set of trusted users to build a community. In our scheme, a community
is built by collaboration of a set of users, rather than defined by one user alone. Furthermore, the community
key is obtained by convergence of information of these members, instead of specified by one user or the system
manager.

For a set of trusted users 𝒮 = {𝑢1, ⋅ ⋅ ⋅ , 𝑢𝑚}, anyone in 𝒮, called the dealer, can build the community key
𝑔𝑘 as follows: the dealer chooses a random generator 𝑔 ∈ 𝔾 for this community, and distributes it to all users
in 𝒮; each user in 𝒮 returns a temporary public key 𝑢𝑖.𝑝𝑘 (as the commitment of his private key) in terms
of 𝑔 for 𝑖 ∈ [1,𝑚]; next, the dealer generates a convergence information Σ from all temporary public keys
{𝑢1.𝑝𝑘, ⋅ ⋅ ⋅ , 𝑢𝑚.𝑝𝑘}, and then builds the community key 𝑔𝑘 in terms of 𝐶𝐾𝑒𝑦𝐺𝑒𝑛(𝑢.𝑠𝑘,Σ) without the help
of manager.

Algorithm 2 BuildCommunity(𝑑𝑒𝑎𝑙𝑒𝑟,𝒮):
1: dealer: 𝑔 ← 𝑅𝑎𝑛𝑑𝑜𝑚(𝑝); // to generate a random integer.
2: dealer → 𝒮: distribute 𝑔 to all members in 𝒮;
3: 𝑢𝑖: 𝑢𝑖.𝑝𝑘 ← 𝐸𝐺𝑆𝑒𝑡𝑢𝑝(𝑢𝑖.𝑠𝑘, 𝑔);
4: 𝑢𝑖 → dealer: 𝑢𝑖.𝑝𝑘;
5: dealer: Σ← Converge(𝑆 = {𝑢1.𝑝𝑘, ⋅ ⋅ ⋅ , 𝑢𝑚.𝑝𝑘});
6: dealer: 𝑔𝑘 ←CKeyGen(𝑢.𝑠𝑘,Σ);
7: dealer → 𝒮: distribute 𝑔𝑘 to all members in 𝒮;

4.3 DelegatePermission

The permission delegation is a process to transfer the permission of a member in the community to her
friends. By DelegatePermission algorithm, the members delegate the “read” right of a community to the
external users. In order to avoid a unbounded delegation, we require that only kernel members and full
authorized members can employ this algorithm to delegate access permissions. This algorithm includes two
steps: 1) the access permission 𝑝𝑚 is generated in terms of the user’s label; and 2) the access permission 𝑝𝑚
is securely transmitted from the member to her friends. We make use of ElGamal encryption to build a secure
channel.

Algorithm 3 DelegatePermission(𝑢𝑖, 𝑢𝑗):

1: 𝑢𝑖: 𝑔 ← obtain from 𝑔𝑘;
2: 𝑢𝑖 → 𝑢𝑗 : 𝑔;
3: 𝑢𝑗 : 𝑢𝑗 .𝑝𝑘 ← 𝐸𝐺𝑆𝑒𝑡𝑢𝑝(𝑢𝑗 .𝑠𝑘, 𝑔);
4: 𝑢𝑖 ← 𝑢𝑗 : 𝑢𝑗 .𝑝𝑘;
5: 𝑢𝑖: 𝑢𝑗 .𝑝𝑚← 𝑃𝑒𝑟𝑚𝑖𝑠𝑠𝑖𝑜𝑛(𝑢𝑖.𝑠𝑘, 𝑔𝑘, 𝑢𝑗 .𝑖𝑑);
6: 𝑢𝑖: 𝑐← 𝐸𝐺𝐸𝑛𝑐𝑟𝑦𝑝𝑡(𝑢𝑗 .𝑝𝑘, 𝑢𝑗 .𝑝𝑚);
7: 𝑢𝑖 → 𝑢𝑗 : 𝑐;
8: 𝑢𝑗 : 𝑢𝑗 .𝑝𝑚← 𝐸𝐺𝐷𝑒𝑐𝑟𝑦𝑝𝑡(𝑢𝑗 .𝑠𝑘, 𝑐);

To assign the permission, the member 𝑢𝑖 firstly retrieves the generator 𝑔 in the community key 𝑔𝑘 and sends
it to her friend 𝑢𝑗 . On receiving 𝑔, 𝑢𝑗 sets up a temporary ElGamal public key in terms of 𝐸𝐺𝑆𝑒𝑡𝑢𝑝(𝑢𝑗 .𝑠𝑘, 𝑔)
and returns the public key to 𝑢𝑖. And then 𝑢𝑖 computes the access permission of 𝑢𝑗 by his private key, the
data received from 𝑢𝑗 and the community key 𝑔𝑘. Next, 𝑢𝑖 encrypts the permission with 𝑢𝑗 ’s temporary
public key and sends it to 𝑢𝑗 . Finally, 𝑢𝑗 decrypts the ciphertext with her private key and recovers the access
permission.

8



If the member 𝑢𝑖 wishes to delegate the “write” right to her friend, she only needs to transmit the commu-
nity key besides the permission 𝑝𝑚. That is, 𝑢𝑖 merely replaces the line 6 by 𝑐← 𝐸𝐺𝐸𝑛𝑐𝑟𝑦𝑝𝑡(𝑢𝑗 .𝑝𝑘,𝑚𝑗 .𝑝𝑚∣∣𝑔𝑘),
where ∣∣ denotes the concatenation operation for two strings.

4.4 UploadResource

The UploadResource function is a process that a kernel member or a full authorized member publishes a
message for the community. Since the encryption is introduced, the member must hold a valid community
key 𝑔𝑘 to implement this process. Thus, authorized members have no permission to publish messages. In
addition, we propose an efficient authentication protocol – 𝐹𝐴𝑡ℎ𝑒𝑛𝑡𝑖𝑐𝑎𝑡𝑒(𝐴,𝐵) – to check the identification
of members. This process can prevent illegal users to submit invalid ciphertexts to the community.

Algorithm 4 UploadResource(𝑢𝑖, 𝐹 ):

1: 𝑢↔ 𝑆𝑁𝑃 : 𝑏← 𝐹𝐴𝑡ℎ𝑒𝑛𝑡𝑖𝑐𝑎𝑡𝑒(𝑢𝑖, 𝑆𝑁𝑃 );
2: if 𝑏 is true then
3: 𝑢𝑖: 𝐶 ← 𝐸𝑛𝑐𝑟𝑦𝑝𝑡(𝑢𝑖.𝑠𝑘, 𝑢𝑖.𝑝𝑚, 𝑔𝑘, 𝐹 );
4: 𝑢𝑖 → 𝑆𝑁𝑃 : 𝐶;
5: 𝑆𝑁𝑃 → 𝐶𝑆𝑃 : upload(𝐶);
6: end if

Suppose the member 𝑢𝑖 wants to publish resource 𝐹 for a special community G. Firstly, the 𝑢𝑖 interacts
with the social network platform (SNP) to verify whether she is an authorized member. After the 𝑢𝑖 passes
the authentication protocol, she can encrypt the message and then submit the ciphertext to SNP. Finally, the
SNP uploads the ciphertext to a storage service provider (SSP).

4.5 DownloadResource

The DownloadResource function allows a member to access messages in a private OSN. In order to im-
prove the performance, this function is executed on the cryptographic module of end user. By using the
user’s private key 𝑠𝑘 and the access permission 𝑝𝑚 for a certain community, any member 𝑢𝑖 can decrypt en-
crypted resources obtained from the social network platform and the storage server according to the algorithm
𝐷𝑒𝑐𝑟𝑦𝑝𝑡(𝑢𝑖.𝑠𝑘, 𝑢𝑖.𝑝𝑚,𝐶). Hence, all authorized members in a private OSN can retrieve encrypted data from
the storage service provider.

Algorithm 5 AccessResources(𝑢𝑖, 𝐶):

1: 𝑢𝑖: 𝐹 ← 𝐷𝑒𝑐𝑟𝑦𝑝𝑡(𝑢𝑖.𝑠𝑘, 𝑢𝑖.𝑝𝑚,𝐶)
2: 𝑢𝑖: 𝑏← 𝐶𝑉 𝑒𝑟𝑖𝑓𝑦(𝐹,𝐶)
3: if 𝑏 is true then
4: 𝑢𝑖: Message is intact and output 𝐹
5: end if

In order to check the integrity of message, the GCC scheme provides an efficient verification algorithm
𝐶𝑉 𝑒𝑟𝑖𝑓𝑦 for the ciphertext by using the cryptographic Hash function. Hence, once the ciphertext has been
decrypted, the member can verify whether the decrypted message is intact. If the result of this process is
𝑡𝑟𝑢𝑒, then the message can be returned to the Web browser.

4.6 Revocation

The Revocation function allows to exclude a set of members ℛ from all authorized members. To avoid the
disclosure of privacy, the revocation is an efficient mechanism to maintain the security of a private OSN
during long-term running. With the help of revocation algorithm in the GCC scheme, we can implement the
revocation as follows: given a set of revoked members ℛ (obtained from the user’s public label), the kernel
or full authorized member can invoke the 𝑅𝑒𝑣𝑜𝑐𝑎𝑡𝑖𝑜𝑛(𝑢𝑖.𝑠𝑘, 𝑔𝑘,ℛ, 𝐹 ) to encrypt the message 𝐹 by using the

9



private key and the community key. Such a revocation does not mean the authorized user will no longer
access any resource in the group.

Algorithm 6 Revocation(𝑢𝑖,ℛ, 𝐹 )

1: 𝑢𝑖: 𝐶 ←Revocation(𝑢𝑖.𝑠𝑘, 𝑔𝑘,ℛ, 𝐹 )

If kernel members wish to revoke permanently an authorized member, she only needs to add this member
into the revoked members list (RML) in the community, and then makes this RML public. While uploading
the message into the community, it simply requires that the member uses this RML as the set ℛ to encrypt
the message.

Note that, in the GCC scheme the number of revoked users is strictly less than the number of kernel users
in the group. In order to enhance the capacity of revocation, we can easily increase the number of revoked
users by using some random keypair when the community key is generated.

5 Implementation and Application

5.1 Implementation of the GCC scheme

An experimental GCC cryptosystem was implemented to demonstrate the feasibility of our scheme. This
system was developed with standard C++ language in QT environment, which supports cross-platform de-
ployment. This system consists of three modules: Cryptographic Module, Private Social Network Platform,
and Browser Software. In the cryptographic module, we adopted GNU multiple precision arithmetic library
(GMP) to handle integers of arbitrary precision. Then, a finite field arithmetic library was constructed to
realize the run-time environment of elliptic curve and pairing-based cryptosystems (in terms of PBC liberty
from Stanford University). In addition, a Group-Oriented Convergence Cryptosystem library was developed
based on the finite field arithmetic library to realize various GCC algorithms. Finally, the GCC algorithms
worked with a lightweight private social network platform to provide encryption, authentication and key-label
management services for Web browsers.

5.2 Application for a Blog management

We build a Blog management system where users are able to control access to her data without a third-party.
This system supports the editing and publishing of blog posts, comments, and images. Posted data in this
system are divided into two categories: public data that is visible to all users; and protected data that is
visible only to the members of community that defined by the user. All Blog contents are stored at a server.
The architecture of our application is represented in Fig. 4.

Figure 4: The Blog system architecture.

Once a user is about to post new data to her blog, she first decides which data is public and which data
should be protected. For the protected data, she decides which members of community may have access to
her data, then encrypts this data with her keys and corresponding community key. Public data together with

10



encrypted data are sent to the server. When somebody in the system browse user 𝐴’s blog, she gets data
from the server. The public data is directly displayed to her, while the protected data is displayed with a
default page which means this data is meaningless to the visitor. To view the entire content, she first has to
examine the header of ciphertext to check whether she has permissions to access the community. If she is an
authorized user, she can decrypt the ciphertext and view all contents; Otherwise, the protected data are still
unknown to her.

(a) An example of a private OSN before decryption. (b) An example of a private OSN after decryption.

Figure 5: An example of a private OSN before decryption (left) and after decryption (right).
Fig. 5 shows an example of our implementation. In this example, when a user downloads a HTML page

from a private OSN, she can only see the public data and some gray frames which denote encrypted data
(see Fig. 5 (a)). Note that, there exists an ActiveX control on the top of two sub-figures, which implements
the functions of cryptographic module in Fig. 3. In order to display the encrypted data, the user must
click the button on this ActiveX control and then input the user’s private key and access permission for this
community. If the key and the permission are valid for this community, the ActiveX control would decrypt
the encrypted data and display them to the user. The result is showed in Fig. 5 (b).

6 Related Works

There has been a substantial amount of work addressing the problem of privacy protection in social networks.
One area of research is to protect user’s privacy by enforcing access control. For example, Carminati et al. [11]
proposed an rule-based access control model which allowed users to specify access rules for their contents. An
access rule consists of the resource identifier and a set of conditions which must be satisfied to be allowed to
access the resource. A requestor is authorized to access an resource only if he provides the resource owner with
a proof that she satisfies at least one of the corresponding access rules, by means of relationship certificates.
This scheme enforces access control at client side. In addition, they proposed a mechanism to enforce access
control for web-based social networks [13].

Besides protection of resources, some recent works address the privacy of relationships in social networks,
since availability of information on relationships (trust level, relationship type) gives rise to security concerns:
knowing who is trusted by a user and to what extent being trusted disclose a lot about user’s thoughts
and feelings. For example, Carminati et al. [4] described an access control model on relationship protection.
In this model, the relationship certificates are encrypted using symmetric cryptographic algorithm and are
treated as a resource: a certificate is granted only one satisfies a distribution rule, which is analogous to the
access rule. Ferrer et al. [7] introduced a public-key protocol for private relationships, where certificates were
encrypted asymmertrically and signed. But this scheme has drawbacks: relationship strengths are revealed to
intermediate users and it requires multiple users to engage in a protocol for each new access. In [8], a similar
scheme which also protects the relationship strengths was introduced.

Another way of enforcing access control is by means of key management. Some recent papers addressed
this problem by using access hierarchy, which is considered as a social network graph. Atallah et al. [14]
introduced a hierarchy key management scheme based on hash functions and CCA-secure encryption in terms

11



of relationship hierarchy on social networks. In this scheme, if there exists a path from node 𝐴 to node 𝐵 in
the access graph, then 𝐴 can derive 𝐵’s key only using its own key and hash functions. In [15], a provably-
secure time-bound hierarchical key assignment scheme was also proposed. Frikken et al. [10] introduced a
novel scheme based on [14]. In their scheme, users specify access policies based on distance in the social
network, and access control is enforced via key management. Moreover, this scheme is decentralized and does
not require users to be online at the same time.

Some new cryptographic techniques were introduced into online social networks as well. In [12], a fine-
grained access control scheme through attribute-based encryption (ABE) has been proposed. In this cryp-
tosystem, the ciphertexts are labeled with sets of attributes, and the private keys are associated with access
structures that control which ciphertexts a user is able to decrypt. Furthermore, in [3] a new OSN architecture
(called as Persona) is also used to hide the user data with ABE, allowing users to apply fine-grained policies
over who may view their data. This architecture achieves privacy by encrypting private contents and prevents
misuse of a user’s applications through authentication based on traditional public key cryptography (PKC).

Some recent works also focus on the area of privacy protection within some existing social network sites
(SNS). For example, the solution in [16] offers the users’ access control of their sharing data by hiding and
mapping the selected information into a third-party storage. In [5], the personal information is encrypted
with a pseudo-random substitution cipher from a public dictionary. However, this approach works only for
encrypting personal data from a relatively small domain, and does not support encrypting free entries. In [17],
a Facebook application called as flyByNight was presented to protect private data by storing it in encrypted
form. By using traditional cryptosystem, the client-side encrypts the message with public-keys and decrypts
ciphertext with private-key. This application places significant trust in the Facebook servers and relies on
them to enforce key management.

7 Conclusions

In this paper, we introduced a scheme where resources are shared among communities, which means only
members of a community have access to its resources. Adopting a community key management, we were able
to keep users’ resources confidential, even towards the system manager. In our framework, a random session
key is used and encapsulated for each encryption, and only members can derive the session key and decrypt it
correctly. Our proof-of-concept prototype clearly demonstrated that our scheme is practical to OSNs, allowing
us to generate community keys with the manageable computation overhead.

Acknowledgments

This work of Gail-J. Ahn and Hongxin Hu was partially supported by the grants from National Science
Foundation (NSF-IIS-0900970 and NSF-CNS-0831360). The work of Yan Zhu, Zexing Hu, and Huaixi Wang
was partially supported by National Development and Reform Commission (under project “a monitoring
platform for web safe browsing”) and China Next Generation Internet CNGI Project (CNGI-09-01-12).

References

[1] W. Luo, Q. Xie, and U. Hengartner, “Facecloak: An architecture for user privacy on social networking
sites,” in CSE (3). IEEE Computer Society, 2009, pp. 26–33.

[2] M. M. Lucas and N. Borisov, “flybynight: mitigating the privacy risks of social networking,” in SOUPS,
ser. ACM International Conference Proceeding Series, L. F. Cranor, Ed. ACM, 2009.

[3] R. Baden, A. Bender, N. Spring, B. Bhattacharjee, and D. Starin, “Persona: an online social network
with user-defined privacy,” in SIGCOMM, P. Rodriguez, E. W. Biersack, K. Papagiannaki, and L. Rizzo,
Eds. ACM, 2009, pp. 135–146.

12



[4] B. Carminati, E. Ferrari, and A. Perego, “Private relationships in social networks,” in ICDE Workshops.
IEEE Computer Society, 2007, pp. 163–171.

[5] S. Guha, K. Tang, and P. Francis, “Noyb: privacy in online social networks,” Proceedings of the first
workshop on online social networks, pp. 49–54, 2008.

[6] B. Carminati and E. Ferrari, “Privacy-aware collaborative access control in web-based social networks,”
in DBSec, ser. Lecture Notes in Computer Science, V. Atluri, Ed., vol. 5094. Springer, 2008, pp. 81–96.

[7] J. Domingo-Ferrer, “A public-key protocol for social networks with private relationships,” in MDAI, ser.
Lecture Notes in Computer Science, V. Torra, Y. Narukawa, and Y. Yoshida, Eds., vol. 4617. Springer,
2007, pp. 373–379.

[8] J. Domingo-Ferrer, A. Viejo, F. Sebé, and Ú. González-Nicolás, “Privacy homomorphisms for social
networks with private relationships,” Computer Networks, vol. 52, no. 15, pp. 3007–3016, 2008.

[9] S. D. C. di Vimercati, S. Foresti, S. Jajodia, S. Paraboschi, G. Pelosi, and P. Samarati, “Preserving
confidentiality of security policies in data outsourcing,” in WPES, 2008, pp. 75–84.

[10] K. B. Frikken and P. Srinnivas, “Key allocation schemes for private social networks,” in Proceedings of
the 8th ACM workshop on Privacy in the electronic society, 2009, pp. 11–20.

[11] B. Carminati, E. Ferrari, and A. Perego, “Rule-based access control for social networks,” in OTM Work-
shops (2), ser. Lecture Notes in Computer Science, R. Meersman, Z. Tari, and P. Herrero, Eds., vol.
4278. Springer, 2006, pp. 1734–1744.

[12] V. Goyal, O. Pandey, A. Sahai, and B. Waters, “Attribute-based encryption for fine-grained access control
of encrypted data,” in ACM Conference on Computer and Communications Security, 2006, pp. 89–98.

[13] B. Carminati, E. Ferrari, and A. Perego, “Enforcing access control in web-based social networks,” ACM
Trans. Inf. Syst. Secur., vol. 13, no. 1, 2009.

[14] M. J. Atallah, M. Blanton, N. Fazio, and K. B. Frikken, “Dynamic and efficient key management for
access hierarchies,” ACM Trans. Inf. Syst. Secur., vol. 12, no. 3, 2009.

[15] G. Ateniese, A. D. Santis, A. L. Ferrara, and B. Masucci, “Provably-secure time-bound hierarchical key
assignment schemes,” in ACM Conference on Computer and Communications Security, A. Juels, R. N.
Wright, and S. D. C. di Vimercati, Eds. ACM, 2006, pp. 288–297.

[16] A. Tootoonchian, S. Saroiu, Y. Ganjali, and A. Wolman, “Lockr: Better privacy for social networks,” in
In Proc. of the 5th coNEXT, 2009.

[17] M. M. Lucas and N. Borisov, “Flybynight: mitigating the privacy risks of social networking,” in WPES,
V. Atluri and M. Winslett, Eds. ACM, 2008, pp. 1–8.

.1 Symbol lists

For the sake of clarity, we show the symbols used in the GCC scheme as follows:

.2 Definition of Group-oriented Convergence Cryptosystem

Definition 1 (Group-oriented Convergence Cryptosystem (GCC)). A GCC scheme is a collection of polynomial-
time algorithms (Setup, Register, Converge, CKeyGen, CEncrypt, CDecrypt, CVerify, Permission, Revoca-
tion) and two authentication protocols (KAuthenticate, FAuthenticate) such that :

∙ Setup(𝜅) → {𝑝} is a probabilistic algorithm run by the social network manager to initiate the global
parameter of the system. It takes as input a security parameter 𝜅, outputs the system parameter p.

13



Table 3: Notation and symbols in our scheme.

Notation Meaning

𝒰 All the users in the social network
𝑆 A subset of users
ℛ A subset of revoked users
𝑝 The global parameters of the system
𝑝𝑘, 𝑠𝑘 The public and private keys of one user
𝑔𝑘 The community key
𝜇 Authorization information granted to user
𝑀,𝑉 Vandermonde matrix and its inverse matrix
𝔾,𝔾𝑇 Groups used in bilinear map
𝐻1 A secure hash function that maps strings to 𝔾
𝐻2 A hash function that maps element in 𝔾𝑇 to {0, 1}𝑛
Σ The convergence information

∙ Register(𝑝, 𝑖𝑑) → {𝑠𝑘} is an algorithm used to choose the private key. It takes as input the global
parameter 𝑝 and the 𝑖𝑑, outputs a private key 𝑠𝑘.

∙ Converge(𝑆)→ {Σ} is an algorithm run by the dealer to generate convergence information. It takes as
input a set of public keys of all kernel members 𝑆, and outputs the convergence information Σ.

∙ CKeyGen(𝑠𝑘,Σ) → {𝑔𝑘} is an algorithm run by dealer 𝑢 to build a community. It takes as input 𝑢’s
private key 𝑠𝑘, and convergence information Σ. It outputs the community key 𝑔𝑘.

∙ CEncrypt(𝑠𝑘, 𝑝𝑚, 𝑔𝑘, 𝐹 ) → {𝐶} is a probabilistic algorithm run by the resource owner to securely pub-
lish his resource for a special community. It takes as input the private key 𝑠𝑘, the permission 𝑝𝑚, a
community key 𝑔𝑘, and the resource 𝐹 . It outputs the valid ciphertext 𝐶.

∙ CDecrypt(𝑠𝑘, 𝑝𝑚,𝐶) → {𝐹} is a deterministic algorithm used to decrypt the ciphertext. It takes as
input the private key 𝑠𝑘, the permission 𝑝𝑚, the ciphertext 𝐶, and outputs the plaintext 𝐹 .

∙ CVerify(𝐶,𝐹 )→ {𝑡𝑟𝑢𝑒, 𝑓𝑎𝑙𝑠𝑒} is a deterministic algorithm run by the decipher to verify the integrity of
resource 𝐹 in the ciphertext 𝐶. It takes as input resource 𝐹 and a ciphertext 𝐶. It outputs true if F is
integrated , outputs false otherwise.

∙ Permission(𝑠𝑘, 𝑔𝑘, 𝑖𝑑)→ {𝑝𝑚} is an algorithm run by a community’s member to grant reading right to
user. Let 𝒞 denote the community. It takes as input the private key 𝑠𝑘, the community key 𝑔𝑘, and the
target user 𝑣’s id 𝑖𝑑. It outputs a permission 𝑝𝑚 which enables 𝑣 to access resources in 𝒞 but couldn’t
publish data for 𝒞’s members.

∙ Revocation(𝑠𝑘, 𝑔𝑘,ℛ, 𝐹 )→ {𝐶} is an algorithm run by resource owner to publish resource, while a set
of authorized users ℛ are excluded from being able to decrypt the ciphertext. It takes as input the secret
key 𝑠𝑘, the community key 𝑔𝑘, a subset of revoked user ℛ, and the resource 𝐹 . It outputs the ciphertext
which can not be decrypted by users in ℛ.
∙ KAuthenticate(𝐴,𝐵)→ {true,false} is a protocol to verify whether 𝐴 is kernel member of a community
𝒞. If so, 𝐴 can publish resource at 𝐵 .

∙ FAuthenticate(𝐴,𝐵) → {true,false} is a protocol to verify whether 𝐴 is full authorized user of a com-
munity 𝒞. If so, 𝐴 can publish resource at 𝐵.

14



∙ Setup(𝜅): Given a security parameter 𝜅 ∈ ℤ+, the system manager does:

1. Generate a random 𝜅-bits prime 𝑞, two groups 𝔾,𝔾𝑇 of order 𝑞, and an admissible bilinear map 𝑒 : 𝔾× 𝔾 → 𝔾𝕋.

2. Choose the symmetric encryption/decryption algorithm (𝐸,𝐷), two cryptographic hash functions 𝐻1 : {0, 1}∗ → 𝔾 and 𝐻2 :
𝔾𝑇 → {0, 1}𝑛, where 𝑛 is the size of encryption key. The system parameter is 𝑝 = ⟨𝑞,𝔾,𝔾𝑇 , 𝑒, 𝑛,𝐻1, 𝐻2, 𝐸,𝐷⟩.

∙ Register(𝑝, 𝑖𝑑): Choose a random integer 𝑦 ∈ ℤ∗
𝑞 as this user’s the private key, while 𝑖𝑑 should be an integer in ℤ∗

𝑞 .

∙ Converge(𝑆): Given a set of kernel members 𝑆 = {𝑢1, ⋅ ⋅ ⋅ , 𝑢𝑚}, the algorithm firstly collects the information Ψ =
{(𝑥1, 𝑔𝑦1 ), (𝑥2, 𝑔𝑦2 ), ⋅ ⋅ ⋅ , (𝑥𝑚, 𝑔𝑦𝑚 )}) from 𝑆, then

1. Suppose the underlying interpolation polynomial is 𝑓(𝑥) = 𝑎0 +
∑𝑚−1

𝑖=1 𝑎𝑖𝑥
𝑖. Since 𝑔𝑦𝑘 = 𝑔𝑓(𝑥𝑘), we get 𝑚 equations:

𝑔(𝑎0+𝑎1𝑥𝑘+⋅⋅⋅+𝑎𝑚−1𝑥
𝑚−1
𝑘

) = 𝑔𝑦𝑘 , 𝑘 = 1 . . .𝑚.

2. Let 𝐴 = (𝑎0, 𝑎1, 𝑎2, ⋅ ⋅ ⋅ , 𝑎𝑚−1)𝑇 , 𝑌 = (𝑦1, 𝑦2, 𝑦3, ⋅ ⋅ ⋅ , 𝑦𝑚)𝑇 be the unknown exponents, the Vandermonde matrix: 𝑀 = (𝑚𝑖,𝑗) =

(𝑥𝑗−1
𝑖 ), 1 ≤ 𝑖, 𝑗 ≤ 𝑚. Compute the inverse of matrix 𝑀 : 𝑀−1 = (𝑣𝑖,𝑗), 1 ≤ 𝑖, 𝑗 ≤ 𝑚

3. Since 𝑀𝐴 = 𝑌 , then 𝐴 = 𝑀−1𝑌 , 𝑔𝑎𝑖 =
∏𝑚

𝑗=1(𝑔
𝑦𝑗 )𝑣𝑖+1,𝑗 . Output Σ = {𝑔𝑠 = 𝑔𝑎0 , 𝑔𝑎1 , ⋅ ⋅ ⋅ , 𝑔𝑎𝑚−1}.

∙ CKeyGen(𝑠𝑘,Σ): Let private key be 𝑦, convergence information Σ be {𝑔𝑠, 𝑔𝑎1 , ⋅ ⋅ ⋅ , 𝑔𝑎𝑚−1}
1. For 1 ≤ 𝑘 ≤ 𝑚− 1: choose a random 𝑙𝑘 ∈𝑅 ℤ∗

𝑞 that is not the same as previous, compute 𝑔𝑓(𝑙𝑘) = 𝑔𝑠 ⋅∏𝑚−1
𝑖=1 (𝑔𝑎𝑖 )(𝑙𝑘)

𝑖
.

2. The community key is 𝑔𝑘 = {𝑔, (𝑙1, 𝑔𝑓(𝑙1)), ⋅ ⋅ ⋅ , (𝑙𝑚−1, 𝑔
𝑓(𝑙𝑚−1))}.

∙ CEncrypt(𝑠𝑘, 𝑝𝑚, 𝑔𝑘, 𝐹 ): Let private key be 𝑦, permission be 𝜇, community key be {𝑔, (𝑙1, 𝑔𝑓(𝑙1)), ⋅ ⋅ ⋅ , (𝑙𝑚−1, 𝑔
𝑓(𝑙𝑚−1))}

1. Compute 𝜌 = 𝑔𝑦 if the encrypter is kernel user or 𝜌 = 𝜇 if he is full authorized user. Recover 𝑔𝑠 = 𝜌𝜆0
∏𝑚−1

𝑖=1 (𝑔𝑓(𝑙𝑖))𝜆𝑖 , where

𝜆𝑖 =
∏

0≤𝑘≤𝑚−1,𝑘 ∕=𝑖
𝑙𝑘

𝑙𝑘−𝑙𝑖
(mod 𝑞), 𝑙0 is encrypter’s id.

2. Choose a random integer 𝑟 ∈ ℤ∗
𝑞 , compute the hash of 𝐹 : 𝐻1(𝐹 ) ∈ 𝔾 and 𝑔𝑠2𝑟 = (𝐻1(𝐹 )/𝑔𝑠)𝑟.

3. Choose a random session key 𝑒𝑘 ∈𝑅 𝔾𝑇 , compute the header of ciphertext

ℎ𝑑𝑟 = ⟨𝑔, 𝑔𝑟, 𝑔𝑠2𝑟, 𝑒𝑘 ⋅ 𝑒(𝐻1(𝐹 ), 𝑔𝑟), (𝑙1, 𝑒(𝑔
𝑟, 𝑔𝑓(𝑙1))), ⋅ ⋅ ⋅ , (𝑙𝑚−1, 𝑒(𝑔

𝑟, 𝑔𝑓(𝑙𝑚−1)))⟩.

4. Compute the symmetric key: 𝐾 = 𝐻2(𝑒𝑘), encrypt it symmetrically, i.e. 𝐶𝐹 = 𝐸(𝐾,𝐹 ). Output the ciphertext 𝐶 = (ℎ𝑑𝑟, 𝐶𝐹 ).

∙ CDecrypt(𝑠𝑘, 𝑝𝑚,𝐶): Let private key be 𝑦, permission be 𝜇, and ciphertext header be ℎ𝑑𝑟 = ⟨𝑔, 𝑐1, 𝑐2, 𝑐3, (𝑙1, 𝜏1), ⋅ ⋅ ⋅ , (𝑙𝑚−1, 𝜏𝑚−1)⟩
1. Compute 𝜌 = 𝑔𝑦 if the encrypter is kernel user or 𝜌 = 𝜇 if he is full authorized user. Recover the session key 𝑒𝑘 as follows:

𝑒𝑘 = 𝑐3
𝑒(𝑐1,𝜌)

𝜆0 ⋅∏𝑚−1
𝑖=1 (𝜏𝑖)

𝜆𝑖 ⋅𝑒(𝑔,𝑐2)
where 𝜆𝑖 =

∏
0≤𝑘≤𝑚−1,𝑘 ∕=𝑖

𝑙𝑘
𝑙𝑘−𝑙𝑖

(mod 𝑞), 𝑙0 is the decipher’s id.

2. Recover the symmetric decryption key 𝐾 = 𝐻2(𝑒𝑘), decrypt ciphertext body with 𝐾, i.e. 𝐹 = 𝐷(𝐾,𝐶𝐹 ) where 𝐷 is the
decryption algorithm and 𝐶𝐹 is the ciphertext body.

∙ CVerify(𝐹,𝐶): Let ciphertext header of 𝐶 be ℎ𝑑𝑟 = ⟨𝑔, 𝑐1, 𝑐2, 𝑐3, (𝑙1, 𝜏1), ⋅ ⋅ ⋅ , (𝑙𝑚−1, 𝜏𝑚−1)⟩. Compute 𝑒𝑘 as described in CDecrypt
algorithm, then compute hash value 𝐻1(𝐹 ) and 𝜍 = 𝑒𝑘 ⋅ 𝑒(𝐻1(𝐹 ), 𝑐1). If 𝜍 = 𝑐3, then output “true”. Output “false” otherwise.

∙ Permission(𝑠𝑘, 𝑔𝑘, 𝑖𝑑): Let private key be 𝑦, community key be {𝑔, (𝑙1, 𝑔𝑓(𝑙1)), ⋅ ⋅ ⋅ , (𝑙𝑚−1, 𝑔
𝑓(𝑙𝑚−1))} and target user’s id be 𝑥1.

1. Obtain Σ={𝑔𝑠, 𝑔𝑎1 , ⋅ ⋅ ⋅ , 𝑔𝑎𝑚−1} by calling 𝐶𝑜𝑛𝑣𝑒𝑟𝑔𝑒((𝑥, 𝑔𝑦), (𝑙1, 𝑔𝑓(𝑙1)), ⋅ ⋅ ⋅ , (𝑙𝑚−1, 𝑔
𝑓(𝑙𝑚−1)), 𝑥 is delegator’s id.

2. Compute 𝑔𝑓(𝑥1) = 𝑔𝑠 ⋅∏𝑚−1
𝑖=1 (𝑔𝑎𝑖 )𝑥

𝑖
1 , outputs the permission 𝑝𝑚 = 𝑔𝑓(𝑥1).

∙ Revocation(𝑠𝑘, 𝑔𝑘,ℛ, 𝐹 ): Let private key be 𝑦, community key be {𝑔, (𝑙1, 𝑔𝑓(𝑙1)), ⋅ ⋅ ⋅ , (𝑙𝑚−1, 𝑔
𝑓(𝑙𝑚−1))}, and the revoked users be

{𝑢1, 𝑢2, ⋅ ⋅ ⋅ , 𝑢𝑡). This algorithm has five steps, but steps 1, 2, 5 are the same as steps 1, 2, 4 in 𝐶𝐸𝑛𝑐𝑟𝑦𝑝𝑡 algorithm separatively. We
describe steps 3, 4 as follows:

3. Choose a random session key 𝑒𝑘 ∈𝑅 𝔾𝑇 and call 𝐶𝑜𝑛𝑣𝑒𝑟𝑔𝑒((𝑥, 𝑔𝑦), (𝑙1, 𝑔𝑓(𝑙1)), ⋅ ⋅ ⋅ , (𝑙𝑚−1, 𝑔
𝑓(𝑙𝑚−1)) algorithm to obtain

Σ={𝑔𝑠, 𝑔𝑎1 , ⋅ ⋅ ⋅ , 𝑔𝑎𝑚−1}
4. Suppose the public keys of revoked users are {𝑥1, 𝑥2, ⋅ ⋅ ⋅ , 𝑥𝑡}, compute the header of ciphertext as:

ℎ𝑑𝑟 = ⟨𝑔, 𝑔𝑟, 𝑔𝑠2𝑟, 𝑒𝑘 ⋅ 𝑒(𝐻(𝐹 ), 𝑔𝑟), (𝑙1, 𝜏1), ⋅ ⋅ ⋅ , (𝑙𝑚−𝑡−1, 𝜏𝑚−1−𝑡), (𝑥1, 𝜏𝑚−𝑡), ⋅ ⋅ ⋅ , (𝑥𝑡, 𝜏𝑚−1)⟩.

where 𝜏𝑖 = 𝑒(𝑔𝑟, 𝑔𝑓(𝑙𝑖)), for 1 ≤ 𝑖 ≤ 𝑚− 𝑡− 1; 𝜏𝑖 = 𝑒(𝑔𝑟, 𝑔𝑓(𝑥𝑖)),𝑔𝑓(𝑥𝑖) = 𝑔𝑠 ⋅∏𝑚−1
𝑘=1 (𝑔𝑎𝑘 )𝑥

𝑘
𝑖 , for 𝑚− 𝑡 ≤ 𝑖 ≤ 𝑚− 1.

∙ KAuthenticate(𝐴,𝐵): Let 𝐴’s id and private key be 𝑥, 𝑦, the public information 𝐵 holds is
{𝑒(𝑔, 𝑔)𝑠, (𝑙1, 𝑒(𝑔, 𝑔)𝑓(𝑙1)), ⋅ ⋅ ⋅ , (𝑙𝑚−1, 𝑒(𝑔, 𝑔)

𝑓(𝑙𝑚−1))}:
1. 𝐵 chooses a random integer 𝑡 ∈ ℤ∗

𝑞 and sends it to 𝐴

2. 𝐴 chooses a random integer 𝑟 ∈ ℤ∗
𝑞 , computes 𝜔 = 𝑟 + 𝑦𝑡 and 𝜙 = 𝑒(𝑔, 𝑔)𝑟, then sends {𝜔, 𝜙, 𝑥} to 𝐵

3. 𝐵 computes 𝜐 = (𝑒(𝑔, 𝑔)𝜔𝜆0/𝜙(𝜆0−1))
∏𝑚−1

𝑖=1 [𝑒(𝑔, 𝑔)𝑓(𝑙𝑖)]𝜆𝑖𝑡, 𝜆𝑖 =
∏

0≤𝑘≤𝑚−1,𝑘 ∕=𝑖
𝑙𝑘

𝑙𝑘−𝑙𝑖
(mod 𝑞) for {𝑙0 = 𝑥, 𝑙1, ⋅ ⋅ ⋅ , 𝑙𝑚−1}.

4. If 𝜐 = 𝜙 ⋅ [𝑒(𝑔, 𝑔)𝑠]𝑡, then 𝐵 outputs “success”. Otherwise 𝐵 outputs “failure”.

∙ FAuthenticate(𝐴,𝐵): Let 𝐴’s id be 𝑥, 𝐴’s permission be 𝜇, 𝐴’s community key be {𝑔, (𝑙1, 𝑔𝑓(𝑙1)), ⋅ ⋅ ⋅ , (𝑙𝑚−1, 𝑔
𝑓(𝑙𝑚−1))}, and the public

information 𝐵 holds is {𝑒(𝑔, 𝑔)𝑠, (𝑙1, 𝑒(𝑔, 𝑔)𝑓(𝑙1)), ⋅ ⋅ ⋅ , (𝑙𝑚−1, 𝑒(𝑔, 𝑔)
𝑓(𝑙𝑚−1))}:

1. 𝐵 chooses two random integer {𝑥1, 𝑡 ∈ ℤ∗
𝑞} and sends them to 𝐴

2. 𝐴 chooses a random integer 𝑟 ∈ ℤ∗
𝑞 , computes 𝜙 = 𝑒(𝑔, 𝑔)𝑟 and obtains Σ={𝑔𝑠, 𝑔𝑎1 , ⋅ ⋅ ⋅ , 𝑔𝑎𝑚−1} by calling

𝐶𝑜𝑛𝑣𝑒𝑟𝑔𝑒((𝑥, 𝜇), (𝑙1, 𝑔𝑓(𝑙1)), ⋅ ⋅ ⋅ , (𝑙𝑚−1, 𝑔
𝑓(𝑙𝑚−1)).

3. 𝐴 computes 𝑔𝑓(𝑥1) = 𝑔𝑠 ⋅∏𝑚−1
𝑖=1 (𝑔𝑎𝑖 )𝑥

𝑖
1 and 𝜔 = 𝑒(𝑔, 𝑔)𝑟 ⋅ [𝑒(𝑔, 𝑔)𝑓(𝑥1)]𝑡, then sends {𝜔, 𝜙} to 𝐵.

4. 𝐵 computes 𝜐 = (𝜔𝜆0/𝜙𝜆0−1) ⋅∏𝑚−1
𝑖=1 (𝑒(𝑔, 𝑔)𝑓(𝑙𝑖))𝜆𝑖𝑡, where 𝜆𝑖 =

∏
0≤𝑘≤𝑚−1,𝑘 ∕=𝑖

𝑙𝑘
𝑙𝑘−𝑙𝑖

(mod 𝑞) for {𝑙0 = 𝑥1, 𝑙1, ⋅ ⋅ ⋅ , 𝑙𝑚−1}.
5. If 𝜐 = 𝜙 ⋅ [𝑒(𝑔, 𝑔)𝑠]𝑡, then 𝐵 outputs “success”. Otherwise 𝐵 outputs “failure”.

15


