DR@FT: Efficient Remote Attestation Framework
for Dynamic Systems*

Wenjuan Xd, Gail-Joon AhA, Hongxin HZ, Xinwen Zhang, Jean-Pierre Seifért

1 Frostburg State Universityxu@ r ost bur g. edu
2 Arizona State Universityyahn@su. edu, hxhu@su. edu
3 Samsung Information Systems Ameriga,nwen. z@ansung. com
4 Deutsche Telekom Lab and Technical University of Berlin,
jean—pierre.seifert @el ekom de

Abstract. Remote attestation is an important mechanism to providertrss-
worthiness proof of a computing system by verifying its grtyy. In this paper,
we propose an innovative remote attestation frameworled@R@FT for effi-
ciently measuring a target system based on an informatientbsed integrity
model. With this model, the high integrity processes of aeysare first veri-
fied through measurements and these processes are thestgdtem accesses
initiated by low integrity processes. Also, our framewoskifies the latest state
changes for a target system instead of considering theeesystem informa-
tion. In addition, we adopt a graph-based method to reptésgrity violations
with a ranked violation graph, which supports intuitivegeaing of attestation
results. Our experiments and performance evaluation dstrada the feasibility
and practicality of DR@FT.

1 Introduction

In distributed computing environments, it is crucial to m@@ whether remote parties
run buggy, malicious application codes or are improperhficured by rogue software.
Remote attestation techniques have been proposed forutpege. These techniques
help analyze the integrity of remote systems to determieie ttustworthiness. Typical
attestation mechanisms are designed based on the foll@tgpg. First, an attestation
requesterdttestej sends a challenge to a target systateSteg, which responds with
the evidence of integrity of its hardware and software congmts. Second, the attester
derives runtime properties of the attestee and determirgesustworthiness of the at-
testee. Finally and optionally, the attester returns ttesttion result, such as integrity
measurement status, to the attestee. Remote attestatidrelpareduce potential risks
that are caused by a tampered system.

Various attestation approaches and techniques have bepased. Trusted Com-
puting Group (TCG) [2] introduces trusted platform moddl®1) which can securely

* The work of Gail-J. Ahn and Hongxin Hu was partially suppdrby the grants from National
Science Foundation (NSF-11S-0900970 and NSF-CNS-0831866 Department of Energy
(DE-SC0004308). The work of Gail-J. Ahn and Wenjuan Xu wa® gartially supported by
the grants from National Science Foundation (NSF-11S-@®8) and Department of Energy
Early Career Principal Investigator Award (DE-FG02-03BR@E5).

2 Wenjuan Xu et al.

store and provide integrity measurements of systems to ateeparty. Integrity mea-
surement mechanisms have been proposed to facilitate pladitties of TPM at appli-
cation level. For instance, Integrity Measurement Ardttitee (IMA) [12] is an imple-
mentation of TCG approach to provide verifiable evidencé wétspect to the current
run-time state of a measured system. Several attestatittrodsehave been proposed
to accommodate privacy properties [7], system behaviolsai8d information flow
model [9]. However, these existing approaches lack theaeffiof attestation where
its system staté&equently changes due to system-centric events such asityguol-
icy updates and software package installations. Last buleast, existing attestation
mechanisms do not have an effective and intuitive way fosgméng attestation results
and reflecting such results in resolving identified secuwiityations.

Towards a systematic attestation solution, we propose farieat remote attesta-
tion framework, called Dynamic Remote Attestation Framewvemd Tactics (DR@FT)
to address aforementioned issues. Our framework is basggsteam integrity property
with adomain-based isolatiomodel. With this property, the high integrity processes of
a system are first verified through measurements and thesegses are then protected
from accesses initiated by low integrity processes. In othards, the protection of
high integrity process is verified by analyzing securityigiek, which specify system
configurations with system and application behaviors. kigwthis principle in place,
DR@FT enables us verify whether certain applications inattestee satisfy integrity
requirements as part of attestation. To accommodate a dgmeature of the systems,
DR@FT verifies the latest changes in a system state, insteaahsidering the entire
system information for each attestation inquiry. Througgse two tactics, our frame-
work attempts to efficiently attest the target system. ABR@FT adopts a graph-based
analysis methodology for analyzing security policy viaas, which helps cognitively
identify suspicious information flows in the attestee. Tatier improve the efficiency
of security violation resolution, we propose a ranking sehdor prioritizing the pol-
icy violations, which provides a method for describing thestworthinesof different
system states withisk levels

This paper is organized as follows. Section 2 overviewstistiag attestation work
and system integrity models. Section 3 describes a donaseehisolation model which
gives the theoretical foundation of DR@FT. Section 4 preseesign requirements
and attestation procedures of DR@FT, followed by policyiysis methods and their
usages in Section 5. We elaborate the implementation detad evaluation results in
Section 6. Section 7 concludes this paper.

2 Background

2.1 Attestation Overview

The TCG specification [2] defines mechanisms for a TPM-embplatform to report

its current hardware and software configuration status &nate challenger. A TCG
attestation process is composed of two steps: (i) an attgdsaform measures hard-
ware and software components starting from BIOS block ameigees a hash value.
The hash value is then stored into a TPM Platform Configunad®egister (PCR). Re-
cursively, it measures BIOS loader and operating systen) (@8e same way and
stores them into TPM PCRs; (ii) an attester obtains thetatt&ssdigital certificate with

DR@FT: Efficient Remote Attestation Framework for Dynamyst®ms 3

an attestation identity key (AIK), AlK-signed PCR valuesdaa measurement log file
from the attestee which is used to reconstruct the attesdf®nn configuration, and
verifies whether this configuration is acceptable. Fromdlstsps we notice that TCG
measurement process is composed of a set of sequentiairstepting the bootstrap
loader. Thus, TCG does not provide effective mechanismsneasuring a system'’s
integrity beyond the system boot, especially considettiegrandomness of executable
contents loaded by a running OS.

IBM IMA [12] extends TCG’s measurement scope to applicatevel. A measure-
ment listM is stored in OS kernel and composedef ... m; corresponding to loaded
executable application codes. For each loadgdan aggregated hash k$ generated
and loaded into TPM PCR, where#H(m() and H=H(H,_1||H(m,)). Upon receiving
the measurements and TPM-signed hash value, the attestesghe authentication of
measurements by verifying the hash value, which helps niéterthe integrity level
of the platform. However, IMA requires to verify the entireraponents of the attestee
platform while the attestee may only demand the verificatiboertain applications.
Also, the integrity status of a system is validated by tesgach measurement entry
independently, focusing on the high integrity processeswvéver, it is impractical to
disregard newly installed untrusted applications or dedanfthe untrusted network.

PRIMA [9] is an attestation work based on IMA and CW-Lite igitiey model [14].
PRIMA attempts to improve the efficiency of attestation byifyéng only codes, data,
and information flows related to trusted subjects. On onadhBRIMA needs to be
extended to capture the dynamic nature of system statesasusbftware and policy
updates, which could be an obstacle for maintaining theieffay. On the other hand,
PRIMA represents an attestation result with binary deniginust or distrust) and does
not give semantic information about how much the attestatqrim can be trusted.

Property-based attestation [7] is an effort to protect theapy of a platform by
collectively mapping related system configurations tosadtiion properties. For exam-
ple, “SELinux-enabled” is a property which can be mapped sgsiem configuration
indicating that the system is protected with an SELinuxgqpoliThat is, this approach
prevents the configurations of a platform from being disetbt a challenger. How-
ever, due to the immense configurations of the hardware dtwase of the platform,
mapping all system configurations to properties is infdasibd impractical.

2.2 Integrity Models

To describe the integrity status for a system, there exisbwa information flow-based
integrity models such as Biba [5], LOMAC [16], Clark-Wils¢t3], and CW-Lite [14].
Biba integrity property is fulfilled if a high integrity press cannot read/execute a lower
integrity object, nor obtain lower integrity data in any ethmanner. LOMAC allows
high integrity processes to read lower integrity data, kibwngrading the process’s
integrity level to the lowest integrity level that has eveeh activated. Clark-Wilson
provides a different view of dependencies, which statesrimétion flow from low in-
tegrity objects to high integrity objects through a speqifiogram called transaction
procedures (TP). Later, the concept of TP is evolved as a ifiltthhe CW-Lite model.
The filter can be a firewall, an authentication process, oognam interface for down-
grading or upgrading the privileges of a process.

4 Wenjuan Xu et al.

With existing integrity models, there is a gap between cetecmeasurements of a
system’s components and the verification of its integriist. We believe an application-
oriented and domain-centric approach accommodates thereetents of attestation
evaluation better than advocating an abstract model. Fample, in a Linux sys-
tem, a subject in traditional integrity models can corregpto a set of processes, be-
longing to a single application domain. For instance, anchgadomain may include
various process types suchfast pd_t, htt p_.sysadmdevpts_t, andhttpd _
prew kka_scri pt _t. All of these types can have information flows among them,
which should be regarded as a single integrity level. Aleasgtive objects in a domain
should share the same integrity protection of its subj@ctsomprehensively describe
the system integrity requirements, in this paper, we pregodomain-based isolation
approach as discussed in the subsequent section.

3 Domain-based Isolation

According to TCG and IMA, the trustworthiness of a system ésatibed with the
measured integrity values (hash values) of loaded softe@mgponents. However, the
measurement efficiency and attestation effectiveness ajer problems of these ap-
proaches since (i) too many components have to be measulddagked, and (ii) too
many known-good hash values are required from differerttvaoé vendors or author-
ities. Fundamentally, in order to trust a single applicati a system, every software
component in the system has to be trusted; otherwise thetattten result should be
negative. In our work, we believe that the trustworthiness gystem is tightly related
to the integrity status, which is, in turn, described by acdeéttegrity rules that are en-
forced by the system. If any of the rules is violated, it skidug detected. Hence, so as
to trust a single application domain, we just need to enwaeytstem TCBincluding
reference monitor and integrity rules protecting the taaglication domain—is not
altered.

Based on this anatomy, we introduce domain-based isolgtianiples for integrity
protection, which are the criteria to describe the intggiatus of a system and thus its
trustworthiness. We first propose general methodologiédetatify high integrity pro-
cesses, which includgystem TCEBinddomain TCBWe then specify security rules for
protecting these high integrity processes. System TC8B;) is similar to the con-
cept of traditional TCB [3], which can be identified alongvihe subjects functioning
as the reference monitor of a system [4]. Applying this cgt¢e SELinux [15], for
example, subjects functioning as the reference monitan sscheckpol i cy and
| oadi ng pol i cy belong to system TCB. Also, subjects used to support the ref-
erence monitor such dser nel andi ni ti al should also be included into system
TCB. With this approach, an initial' C B, can be identified, and other subjects such
asl vmandr est or econ can be added int@'C B, based on their relationships with
the initial TC B,. Other optional methods for identifyii§C B, are proposed in [10].
Considering the similarity of operating systems and cométjons, we expect that the
results would be similar. Furthermore, for the attestatiorpose;l’C B, also includes
integrity measurement and reporting components, such raglkevel integrity mea-
surement agent [1] and attestation request handling agent.

In practice, other thafi'C By, an application or user-space service can also affect
the integrity and the behavior of a system. An existing argni3] clearly states the

DR@FT: Efficient Remote Attestation Framework for Dynamyst®ms 5

situation: “A network server process under a UNIX-like agtarg system might fall vic-
tim to a security breach and compromise an important pahi@gystem’s security, yet
is not part of the operating system’s TCB.” Accordingly, amgyehensive mechanism
of policy analysis for TCB identification and integrity vaglon detection is desired.
Hence, we introduce a concept called information domain {@Bimplydomain TCB,
TC By). Letd be an information domain functioning as a certain applicatr service
through a set of related subjects and objects. A domtaiiCB orT'C' B, is composed
of a set of subjects and objects in information donaimhich have the same level of
security sensitivity. By the same level of security semgiti we mean that, if infor-
mation can flow to some subjects or objects of a domain, it cam fib all others in
the same domain. That is, they need the same level of inggoGtection. Prior to the
identification ofT'C B,, we first identify the information domaid based on its main
functions and relevant information flow associated wittsthiinctions. For example, a
running web server domain consists of many subjects—suehtasd process, plugins,
and tools, and other objects—such as data files, configorits, and logs.

The integrity of an object is determined by the integrity objgcts that have op-
erations on this object. All objects dependentlo@ B, subjects are classified as TCB
protected objects or resources. Thus we need to identiff@lB; subjects from an
information domain and verify the assurance of their intggfo ease this task, a mini-
mumT'C By is first discovered. In the situation that the minimii@' B, subjects have
dependency relationships with other subjects, these sist§bould be added to domain
TCB, or the dependencies should be removed. Based on thHasifas, we first iden-
tify initial T'C B4 subjects which are predominant subjects for the informadiomain
d. We further discover othéFC B, subjects considering subject dependency relation-
ships with the initiall'C B, throughinformation flow transitionswhich means subjects
that can only flow to and from initial'C B, subjects should be included irfa” B,. For
instance, for a web server domalt,t pd is the subject that initiates other web server
related processes. Hend#,t pd is the predominant subject and belongsii6'B,.
Based on all possible information flowsht t pd, we then identify other subjects such
asht t pd- suexec in TCB,.

To protect the identifiedC B; andT'C B, we develop principles similar to those in
Clark-Wilson [13]. Clark-Wilson leverages TP to allow imfoation flow from low in-
tegrity to high integrity processes. To support TP, we attoptoncept of filters. Filters
can be processes or interfaces [11] that normally are distiput information channels
and are created by a particular operation such@en() , accept (), or other calls
that enable data input. For examp$a) process allows a low integrity process (e.g.,
staff) being changed to be a high integrity process (e.gt) foy executingpasswd
process, thupasswd can be regarded as a filter for processes run by root privilege
Also, high integrity process (e.cht t pd administration) can accept low integrity in-
formation (e.g, network data) through the secure chanmél assshd. Consequently,
sshd can be treated as a filter for higher privilege processe# iV identifications of
TCB,, TC By, and filters for information domaid, all the other subjects in a system
are categorized as NON-TCB. Our domain-based isolatioefined as follows:

Definition 1. Domain-based isolatiois satisfied for an information domaihif infor-
mation flows are from"C By; or information flows are from¥'C B, to eitherT'C' B, or

6 Wenjuan Xu et al.

TC B, protected resources; or information flows are from NON-TGRitherT'C By
or T'C B, protected resources via filter(s).

4 DR@FT: Architectural Design and Procedures

DR@FT consists of three main parties: an attestee (thettatggorm), an attester
(attestation challenger), and a trusted authority as showigure 1. The attestee is
required to provide its system state information to thestetefor the verification. Here,
we assume that an attestee is initially itrasted system statend the system state is
changed to a new state after certain system behaviors.

r [1]

Initial Trusted System Attestee Measurements.
State Codes and Data -
l m(tsl) l m(cd) I m(policy) I m(filter) I m(rprocess) Verification
System Sta(e ? ? ? ? Known
Changes o Fingerprints
Subject 1 Code 1 Rule 1 Filter 1 Rprocess 1
New System State < Subject 2 Code 2 Rule 2 Filter 2. Rprocess 2 Reporting Process
Subject 3 Code 3 Rule 3 Filter 3 Rprocess 3 Authentication -
TSL Code and Data Policy Filter Rprocess
Reporting Daemon Initial Trusted
(2] o System State
IMA Bolicy Updates Policy Analysis
Rule 1'
-

TPM @

AlKpyp.
Ak, TP Rlestee

_Attester

PKs/
Sks

O N =

Trusted Authority

Fig. 1. Overview of DR@FT.

A reporting daemon on the attestee gets the measured nevirstatnation (step 1)
with IMA and generates the policy updates (step 2). This daetinen gets AlK-signed
PCR value(s) and sends to the attester. After the attestelvess and authenticates the
information, with the attestee’s AIK public key certificdtem the trusted authority,
it verifies the attestee’s integrity through codes and dat#ivation (step 3), reporting
process authentication (step 4) and policy analysis (Step 5

4.1 System State and Trust Requirement

For the attestation purpose, the system state is capturacsaapshot of an attestee
system at a particular moment, where the factors charattgrihe state can influence
the system integrity on any future moment of the attestetesyBased on the domain-
based isolation, the attestee system integrity can begepred via information flows,
which are characterized by the trusted subject list, filleadicies, and the trustworthi-
ness ofl'C' B;. Based on these properties, we define the system state atélstea as
follows.

Definition 2. A system statat the time period is a tupleT;={ T'SL;, CD;, Policy;,
Filter;, RProcess; }, where

— TSL;={s0, s1....s, } represents a set of high integrity processes which cornedpo
to a set of subjects, s;1....s, INnTCB, andTC By;

DR@FT: Efficient Remote Attestation Framework for Dynamyst®ms 7

— CD;={cd (s0), cd (s1)....cd ,,)} is a set of codes and data for loading a subject
S; S TSLi;

— Policy; is the security policy currently configured on the attestee;

— Filter; is a set of processes defined to allow information flow fromitaegrity
processes to high integrity processes; and

— RProcess; represents a list of processes that measure, monitor, gratt¢he cur-
rentT'SL;, CD;, Filter; and Policy; information. IMA agent and the attestation
reporting daemon are the examples of €rocess;.

According to this definition, a system state does not inclagmrticular applica-
tion’s running state such as its memory page and CPU corgtadks and registers).
It only represents the security configuration or policy ofadiestee system. A system
state transitionindicates one or more changes’itt L;, CD;, Policy;, Filter;, or
RProcess;. A system statd; is trustedif T'SL; belongs tdI'C B; andTC By; CD;
does not contain untrusted codes and d&tal;icy; satisfies domain-based isolation;
Filter; belongs to the defined filter in domain-based isolation; Bitt-ocess; codes
and data do not contain malicious codes and data and fEsecess; processes are
integrity protected from the untrusted processesRbé& cy;.

As mentioned earlier, we assume there exists an initiatedusystem statdy.
Through changing the variables iy, the system transits to other states suctli'as
T, ... T;. The attestation in DR@FT is to verify whether or not any afsh states is
trusted.

4.2 Attestation Procedures

Attestee MeasurementsThe measurement at the attestee side has two different forms
depending orhow muchthe attestee system changes. In case any subjgat’iB; is
updated, the attestee must be fully remeasured from thersygtboot and the attester
needs to attest it completely, since this subject may affexintegrity of subjects in
RProcess of the system such as the measurement agent and reportimpdaafter
the reboot and all'C B, subjects are remeasured, a trusted initial system $taie
built. To perform the remeasurement, the attestee meaasta$s; and generates the
measurement list/; which is added by trusted subject li§t$ L,;) measurement, codes
and data' D;) measurement, policyHolicy;) measurement, filtetF{ilter;) measure-
ment and attestation proced8/rocess;) measurement. Alsd{ (M;) is extended to a
particular PCR of the TPM, whet# is a hash function such as SHAL.

In another case, where there is'Hi6¢' B, subject updated and ti¥eS L; or Filter;
subjects belonging t6 C B, are updated, the attestee only needs to measure the updated
codes and data loaded by the changed TSL or filter subjectgeamerates a measure-
ment list ;. The generation of this measurement list is realized thnahg run-time
measurement supported by the underlying measurement agent

To support both types of measurements, we develop an ditbestaporting daemon
which monitors the run-time measurements of the attesteease the run-time mea-
surements fof’C' B, are changed, the attestee is required to be rebooted apafeid-
sured with IMA. The measurements values are then sent tatibster by the daemon.
On the other side, the changed measurement value is medsuteth and captured
with the reporting daemon only if the measurementfar B, is changed. Obviously,

8 Wenjuan Xu et al.

this daemon should be trusted and is included’®iB,. That is, its codes and data
are required to be protected with integrity policy and cspending hash values are
required to be stored at the attester side.

Policy Updates To analyze if the current state of the attestee satisfies tebzsed
integrity property, the attester requires information @bihe current security policy
loaded at the attestee side. Due to the large volume of palleg in a security policy,
sending all policy rules in each attestation and verifyitigphthem by the attester
may cause the performance overhead. Hence, in DR@FT, #etestonly generates
policy updates from the latest attested trusted state arbshem to the attester for the
attestation of such updates.

To support this mechanism, we have the attestation rejgod@emon monitor any
policy update on attestee system and generate a list of eghgaticy rules. Note that
the policy update comparison is performed between the cuugedated policy and the
stored trusted security polidyolicyg or previously attested and trust€diicy; 1. The
complexity of this policy update algorithm @(nr), wherenr represents the number of
the policy rules in the new policy fil&olicy;.

Codes and Data Verification With received measurement lidt/; and AlK-signed
PCRs, the attester first verifies the measurement integyite{ronstructing the hash
values and compares with PCR values. After this is passedatthster performs the
analyses. Specifically, it obtains the hash valugs b and checks if they corresponds
to known-good fingerprints. Also, the attester needs torasthat theT'SL; belongs

to TCB, andT'C By. In addition, the attester also gets the hash valug'wfer; and
ensures that they belong to the filter list defined on the tattestde. In case this step
succeeds, the attester has the assurance that targetgg®oesattestee side are proved
without containing any untrusted code or data, and thetattean proceed to next steps.
Otherwise, the attester sends a proper attestation resndtidg this situation.

Authenticating Reporting Process To prove that the received measurements and up-
dated policy rules are from the attestee, the attester atithées them by verifying
that all the measurements, updates and integrity measnteagent processes in the
attestee are protected. That is, fR€rocess; does not contain any untrusted codes or
data and its measurements correspond to PCRs in the atfdsterthere is no integrity
violated information flow to these processes from subjett& ®L;, according to the
domain isolation rules. Note that these components canb&lsgpdated, but after any
update of these components, the system should be fully meand attested from
the bootstrap to rebuild a trusted initial system sfiate

Policy Analysis by Attester DR@FT analyzes policy using a graph-based analysis
method. In this method, a policy file is first visualized intgraph. The policy graph
is then analyzed against pre-defined security model suctratomain-based isolation
and a policy violation graph is generated. The main goal & dipproach is to give
semantic information of attestation result to the attestieeh that system administrators
can quickly and intuitively obtain any violated configuoati

Note that verifying all the security policy rules in eacheatation request decrease
the efficiency, as loading policy graph and checking all thiécy rules are costly. Thus,
we need to develop an efficient way for analyzing the attestdiey. In our method,
the attester stores the policy of initial trusted systertestgor the latest trusted system

DR@FT: Efficient Remote Attestation Framework for Dynamyst®ms 9

stateT;, and its corresponding policy graph is loaded which doesaweé any policy
violation. Upon receiving the updated information from tiigestee, the attester just
needs to analyze these updates to see if there is new infornilatv violating integrity
requirements. Through this approach, rather than anaydirthe policy rules and all
information flows for each attestation, we verify the newipothrough only checking
the updated policy rules and the newly identified informafiow.

Attestation Result Sending to Attester In case the attestation is successful, a new
trusted system state is developed and the correspondimgriafion is stored at the at-
tester side for subsequent attestations. On the other Ifehd,attestation fails, there
are several possible attestation results including anyo@wation of the following cases:
CD; Integrity Success/FailR Process; Un/authenticatedand Policy; Fail/Success

To assist the attestee reconfiguration, the attester atwisse representation of the
policy violation graph to the attestee. Moreover, with thaicy violation graph, the
attester specifies the violation ranking and the trustvioess of the attestee, which is
explained in Section 5.

5 Integrity Violation Analysis

As we discussed in Section 1, existing attestation solstsuth as TCG and IMA lack
the expressiveness of the attestation result. In additidhdir boolean-based response
for attestation result, DR@FT adopts a graph-based potiajyais mechanism, where
a policy violation graph can be constructed for identifyaibpolicy violations on the
attestee side. We further introduce a risk model based omking scheme, which
implies how severe the discovered policy violations arelan efficiently they can be
resolved.

NON-TCB

@ @ @ @ Subject SubjectRank Path PathRank
\ /

S1 0.2799 <5y, 81> | 0.2799
Sz 0.3999 <55, S,> | 0.8104
e e S3 0.0799 <S5, 5,> | 0.8104
e e Sa 0.4319 <54, S4> | 0.6048
@ Ss 0.3456 <S5, S,> | 0.6048
TCB(d)
(a) A policy violation graph (b) SubjectRank in TCB(d) (c) PathRank between NON-TCB

and TCB(d)

Fig. 2. Example policy violation graph and rank. The SubjectRantt BathRank indicate the
severity of violating paths.

5.1 Policy Violation Graph
Based on domain-based isolation model, we can discover itvds lof violation paths,

direct violation pathsandindirect violation pathsA direct violation path is a one-hop
path through which an information flow can go from a low intggsubject to a high
integrity subject. We observe that information flows aresitive in general. Therefore,
there may exist information flows from a low integrity sulijera high integrity subject
via several other subjects. This multi-hop path is calleliect violation path. All direct
and indirect violation paths belonging to a domain can qoigst policy violation graph
for this domain.

10 Wenjuan Xu et al.

Definition 3. A policy violation graph for a domaidis a directed grapl&z* = (V¥, E):

- VY C V¥rep U Vicgs U Vieg whereVy g, Vicp, and Vi are subject
vertices containing in direct or indirect violation path§ @omaind and belong to
NON-TCB,I'C By, andT C By, respectively.

— BV C ERy UEjr UER s UERrop U EropaY Epop WhereER,; C (Vipop X
Viopa) Ear © (Viepa X Vics): EXr S (VNrop X Vies), Exres ©
(V¥res*Viren) Ercepa © (Viepa*Vrcpa) @dErcp € (Viep*Vicp),
and all edges irE’? are contained in direct or indirect violation paths of domal

Figure 2 (a) shows an example of policy violation graph whéghmines informa-
tion flows between NON-TCB anfiC B,°. Five direct violation paths are identified in
this graph:< Sy, S1>, <S4, S2>, <S%, So>, <S4, S4>, and< S, S4> across all the
boundaries between NON-TCB afidC B,. Also, eight indirect violation paths exist.
For examplex S5, S5> is a four-hop violation path passing through other thféeeB,,
subjectsSs, S3, andsSy.

5.2 Ranking Policy Violation Graph

In order to explore more features of policy violation graphd facilitate efficient policy
violation detection and resolution, we introduce a schemnednking policy violation
graphs. There are two steps to rank a policy violation grepht, T'C B, subjects in the
policy violation graph are ranked based on dependencyaakitips among them. The
rank of aT'C B, subject shows reachable probability of low integrity imf@tion flows
from NON-TCB subjects to th&'C B, subject. In addition, direct violation paths in the
policy violation graph are evaluated based on the rankB@®@1B, subjects to indicate
severity of these paths which allow low integrity inforneatito reachl’C' B, subjects.
The ranked policy violation graphs are valuable for systémiaistrators as they need
to estimate theisk level of a system and provide a guide for choosing appropriate
strategies for resolving policy violations efficiently.

Ranking Subjects in TCB; Our notation ofSubjectRanKSR) in policy violation
graphs is a criterion that indicates the likelihood of lowemrity information flows
coming to aI'C' B, subject from NON-TCB subjects through direct or indirecilat
tion paths. The ranking scheme we adopt is a similar prodess& analysis applied
in hyper-text link analysis system, such as Google's Pagk& that utilizes a link
structure provided by hyperlinks between web pages to gthajeimportance. Com-
paring with PageRank which focuses on analyzing a web grdpmrenthe entries are
anyweb pages contained in the web graph, the entries of lowrityégformation flows
to T'C B, subjects in a policy violation graph are only identified NO®EB subjects.

Consider a policy violation graph witN NON-TCB subjects, and; is aTC By
subject. LetN(s;) be the number of NON-TCB subjects from which low integrity
information flows could come te;, N’ (s;) the number of NON-TCB subjects from
which low integrity information flows couldirectly reach tos;, In(s;) a set of’C B,
subjects pointing te;, andOut(s;) a set ofl'C' B, subjects pointed frors;. The prob-
ability of low integrity information flows reaching a subjeg is given by:

5 Similarly, the information flows between NON-TCB afftC B., and betweer’C' B, and
T C Bs can be examined accordingly.

DR@FT: Efficient Remote Attestation Framework for Dynamystems 11

N'(s1)
N)| 2

s;€In(s;)

N'(s1)
N(ST)

SR(s;) = N](\?) SHR(s;)

|Out(s;)]

(

+(1—

@

SubjectRankan be interpreted asMarkov Processwhere the states afEC By
subjects, and the transitions are the links betwE€B,; subjects which are all evenly
probable. While a low integrity information flow attemptsr&mach a high integrity sub-
ject, it should select an entrance (a NON-TCB subject) wiiak the path(s) to this
subject. Thus, the possibility of selecting correct esttie a target subject |§’](VL)
After selecting correct entries, there still exist two watrgough direct violation or
indirect violation paths, to reach a target subject. Thaefthe probability of flow

transition from a subject is divided into two par%'((jj)) for direct violation paths and
1-— % for indirect violation paths. Thé — % mass is divided equally among
the subject’s successorg, and Igﬁ((ifj))l is the rank value derived fromy.

Figure 2 (b) displays a result of applying Equation (1) tobécy violation graph
shown in Figure 2 (a). Note that even though a subjgdbas two direct paths from
NON-TCB subjects like a subjeet, the rank value 0§, is higher than the rank value

of s9, because there is another indirect flow pathtdvia ss3).

Ranking Direct Violation Path We further definePathRank(PR) as the rank of a
direct violation path, which reflects the severity of the violation path throughiakih
low integrity information flows may come t6'C' B, subjects. Direct violation paths
are regarded as the entries of low integrity datd'tdB, in policy violation graph.
Therefore, the ranks of direct violation paths give a gumtesfystem administrators to
adopt suitable defense countermeasures for solving fahtiiolations. To calculate
PathRanlaccurately, three conditions are needed to be taken intmatq1) the num-
ber of T'C B, that low integrity flows can reach through this direct vi@atpath; (2)
SubjectRank of reacheébdC B, subjects; and (3) the number of hops to readi(aB,
subject via this direct violation path.

Suppose< s;,s; > is a direct violation path from a NON-TCB subjegt to a
TC B, subjects; in a policy violation graph. LeReach(< s'i’sj >) be a function
returning a set off'C' B, subjects to which low integrity information flows may go
through a direct violation patk s;-, sj >, SR(s;) the rank of aI'C' B, subjects;, and
Hs(s;-, s1) a function returning the hops of the shortest path from a NGB subject
s; to aT'C B, subjects;. The following equation is utilized to compute a rank valtdie o
the direct violation patkc s, s; >.

PR(< s;,8; >) = > HSZSSLZZ) ?

sj€Reach(<s).s;>)

Figure 2 (c) shows th@athRankof the example policy violation graph, which is
calculated by the above-defined equation. For example;, s2 > has a higher rank

%It is possible that a system administrator may also want &huete indirect violation paths
for violation resolution. In that case, our ranking schernald be adopted to rank indirect
violation paths as well.

12 Wenjuan Xu et al.

than< s’l,sl >, because< 5'2,32 > may result in low integrity information flows to
reach more or importarfiC B, subjects thar< s, s; >.

5.3 Evaluating Trustworthiness
Let P; be a set of all direct violation paths in a policy violatioragh. The entire rank,
which can be considered as a risk level of the system, canrbputed as follows:

RiskLevel = Z PR(< s;., sj >) (3)

’
<s8;:8;>€Py

The calculated risk level could reflect the trustworthingfsan attestee. Generally,
the lower risk level indicates the higher trustworthinelss system. When an attestation
is successful and there is no violation path being identifteglrisk level of the attested
system iszerq which means an attestee has the highest trustworthinestheOother
hand, when an attestation is failed, corresponding ris&llef/a target system is com-
puted. Aselective serviceould be achieved based on this fine-grained attestatiait.res
That is, the number of services provided by a service provalthe target system may
be decided with respect to the trust level of the target syskéence, a system admin-
istrator could refer to this attestation result as the eatédnn of her system as well as
resolution guidelines since this quantitive response d/givle her a proper justification
to adopt countermeasures for improving the trustwortlsnés target system.

6 Implementation Details and Evaluation Results

We have implemented DR@FT to evaluate its effectivenessnagasure the perfor-
mance. Our attestee platform is a Lenovo ThinkPad X61 withl ldore 2Duo Proces-
sor L7500 1.6GHz, 2 GB RAM, and Atmel TPM. We enable SELinuihwhe default
policy based on the current distribution of SELinux [15].fMeasure the attestee system
with TPM, we update the Linux kernel to 2.6.26.rc8 with thie& IMA implementa-
tion [1], where SELinux hooks and IMA functions are enablddving IMA enabled,

we configure the measurement of the attestee informatidar &fe attestee system ker-
nel is booted, we mount treey sf s file system and inspect the measurement list values
inascii _runti me_neasur enent s andasci i _bi os_neasur enment s.

6.1 Attestation Implementation
We start from a legitimate attestee and make measuremehis attestee system for the
later verification. To invoke a new attestation request ftomattester, the attestation
reporting daemon runs in the attestee and monitors theestsgstem. This daemon
is composed of two main threads: One monitors and gets thesystem state mea-
surements, and the other monitors and obtains the policatepdf the attestee. The
daemon is also measured and the result can be obtained thittitggitimate attestee.
Thus the integrity of the daemon can be verified later by ttestdr. In case the attestee
system state is updated due to new software installati@ngihg policy, and so on, an
appropriate thread of the daemon automatically obtaine¢laemeasurement values as
discussed in Section 4. The daemon then securely tranbeegtestation information
to the attester based on the security mechanisms suppgrthd brusted authority.
After receiving the updated system information from thesttte, the measurement
module of the attester checks the received measuremerntsatfee stored PCR to

DR@FT: Efficient Remote Attestation Framework for Dynamystems 13

prove its integrity. To analyze the revised attestee pptivg policy analysis module
is developed as a daemon, which is derived from a policy aisbngine. We extend
the engine to identify violated information flows from thedaped policy rules based
on domain-based isolation rules. We also accommodate st ation procedures pre-
sented in Section 4.2, as well as our rank scheme to evahmteustworthiness of the
attestee.

6.2 Evaluation
To assess the proposed attestation framework, we atteststiied platform with Apache

web server installed. To configure the trusted subject fishe Apache domain, we
first identifyT'C B, based on the reference monitor-based TCB identificatiehyding
the integrity measurement, monitoring agents, and daefari'C B, of the Apache,
we identify the Apache information domain, Apaché'B,, includinght t pd_t and
htt pd_suexec_t, and the initial filterssshd_t, passwd_t, su_t, through the
domain-based isolation principles. Bdfit' B, andT'C B, are identified with a graph-
ical policy analysis tool [17]. We then install the unverifieodes and data to evaluate
the effectiveness of our attestation framework.

Installing Malicious Code We first install a Linux rootkit, which gains adminis-
trative control without being detected. Here, we assignrtwkit with the domain
unconfi ned_t thatenablesinformation flows to domaini t r c_t labelingi nitrc
process, which belongs 6C B; of the attestee. Following the framework proposed in
Section 4, the attestee system is measured from the bgoigtiathe configured IMA.
After getting the new measurement values, the reportingidaesends these measure-
ments to the attester. Note that there is no policy updatkisneixperiment. Different
from IMA, we only measure th@C B, andTC B, subjects. After getting the mea-
surements from the attestee, the attester verifies themadyzimg the measured hash
values. Our measurement partially shows the initial mesamants of thé ni t r ¢ (ina
trusted initial system state) and the changed value bea@duke installed rootkit. The
difference between these two measurements indicatesitfiaadii ni t r c is altered,
and the attester confirms that the attestee is not in a tretdésl

Installing Vulnerable Software In this experimentation, we install a vulnerable soft-
ware called Mplayer on the attestee side. Mplayer is a mddigepand encoder soft-
ware which is susceptible to several integer overflows irrétaé video stream dumux-
ing code. These flaws allow an attacker to cause a denial witseor potentially ex-
ecution of the arbitrary code by supplying a deliberatelgfted video file. After a
Mplayer is installed, a Mplayer policy module is also loadei the attestee policy.

In this policy module, there are several different subjectsh ast af f _npl ayer _t
andsysadmnpl ayer _t . Also, some objects are defined in security policies such as
user _npl ayer _hone_t andst af f _npl ayer _hone_t.

After the Mplayer is installed, the attestation daemon fitindg the new measure-
ment of Mplayer is generated and the security policy of thetesy is changed. As the
Mplayer does not belong t6C B, and Apach&'C By, the attestation daemon does not
need to send the measurements to the attester. Consegtrendsiemon only computes
the security policy updates and sends the information tattester.

Upon receiving the updated policies, we analyze these epdatd obtain a policy
violation graph as shown in Figure 3. Through objects such &s _t ,sysadmdevt ps_t,

14 Wenjuan Xu et al.

thlpd_awstats_script_t httpd_prewikka_script_t — o346 sysadm_mplayer_t
LU e sysadm_mencoder_t
Hind "‘\\9_0575’6////”'“"“ staff_mplayer t
ttpd_suexec_t O httpd_rotatelogs_t,0 03850 staff_mencoder_t@
\03133 """" = user_mj l;er t B
httpd t " 03426 P
- user_mencoder_t@

0.3889

0.5269

nesd_var_run_t

sysadm_devpts t (J&——_

Fig. 3. Information flow verification for Mplayer. The links show theformation flow from
Mplayer (filled circle nodes) to Apache (unfilled nodes). Thek values on the paths indicate
the severity of the corresponding violation paths.

andncsd_var _r un_t , information flows from Mplayer can reach Apache domain. In
addition, rank values are calculated and shown in the paliolation graph, which
guides effective violation resolutions. For example, ¢hare three higher ranked paths
including paths fromsysadmdevpt s_t to htt pd_t, fromncsd_var run-t to
htt pd._rot at el ogs_t,andfromci fs_t tohtt pd_prew kka_scri pt _t.Mean-
while, a risk level value (1.2584) reflecting the trustwartss of the attestee system is
computed based on the ranked policy violation graph.

Once receiving the attestation result shown in Figure 3sylseem administrator can
resolve the violation that has the higher rank than othdnsisTthe administrator can
firstresolve the violation related td t pd_t through introducindpt t pd_sysadmdevpt s_t .

al low httpdt httpdsysadmdevtps_t:chrfile {ioctl read wite
getattr |ock append};

After the policy violation resolution, the risk level of thatestee system is low-
ered to 0.7315 Continuously, after the attestee resolves all the ideutifiolicy vi-
olations and the risk level is decreased tozZeeg the attestation daemon gets a new
policy update and sends it to the attester. Upon receiviisguipdate, the attester ver-
ifies whether the identified information flows violate dombimsed isolation integrity
rules since these flows are within the NON-TCB—even thoughetlare new informa-
tion flows compared to the stordtblicy,. Thus, an attestation resultis generated which
specifies the risk level (in this cassgrg of the current attestee system. Consequently,
a new trusted system state is built for the attestee. Iniaddithe information of this
new trusted system state is stored in the attester sideddatér attestation.

6.3 Performance
To examine the scalability and efficiency of DR@FT, we inigede how well the at-
testee measurement agent, attestation daemon, and tstergpelicy analysis module
scale along with the increased complexity, and how effitfeDR@FT performs by
comparing it with the traditional approaches.

In DR@FT, the important situations influencing the attésteperformance include
system updates and policy changes. Hence, we evaluaterfoepance of DR@FT by

DR@FT: Efficient Remote Attestation Framework for Dynamystems 15

changing codes and data to be measured and modifying thetggmlicies. Based on

our study, we observe that normal policy increased or dseckao more than 40KB
when installing or uninstalling software. Also, a systenmaustrator does not make
the enormous changes over the policy. Therefore the pediocmis measured with the
range from zero to around 40KB in terms of policy size.

Table 1. Attestation Performance Analysis (in seconds)

Policy Change Dynamic Static

Size Tpupdate|Tsend|TPanalysis|Overhead Trsend|TPanatysis| Overhead
0 0.23 0 0 0.23 14.76 [90.13 104.89
-0.002MB (Reductior|0.12 0.002 {0.02 0.14 14.76 |90.11 104.87
-0.019MB (Reductior|0.08 0.01 |0.03 0.12 14.74 189.97 104.34
-0.024MB (Reductior|0.04 0.02 (0.03 0.09 14.74 189.89 104.23
0.012MB (Reduction)0.37 0.01 (0.03 0.41 14.77 190.19 104.96
0.026MB (Addition) [0.58 0.02 (0.03 0.63 14.78 [90.33 105.11
0.038MB (Addition) [0.67 0.03 (0.04 0.74 14.79 |90.46 105.25

Performance on the attestee sideBased on DR@FT, the attestee has three main fac-
tors influencing the attestation performance. (1) Time sfugthe measurement: Based
on our experimentation, the measurement time increasghlplinearly with the size
of the target files. For example, measuring policy files with2MB and 20.3MB re-
quires 14.63 seconds and 18.26 seconds, respectivelyukilegsodes around 27MB
requires 25.3sec. (2) Time spent for identifying policy af@7'p,pqq..: Based on the
specification in Section 4, policy updates are required tadbatified and sent to the
attester. As shown in Table 1, for a system policy which isdize of 17.2MB at its
precedent state, the increase of the policy size requires time for updating the pol-
icy and vice versa. (3) Time spent for sending policy upddigs..q: Basically, the
more policy updates, the higher overhead was observed.

Performance on the attester sideln DR@FT, the measurement verification is rela-
tively straightforward. At the attester side, the time dfenpolicy analysisl panaiysis
mainly influences its performance. As shown in Table 1, thedyeais time roughly in-
creases when the policy change rate increases.

Comparison of dynamic and static attestation To further specify the efficiency of
DR@FT, we compare the overhead of DR@FT with a static attestdn the static
approach, the attestee sends all system state informatim attester, and the attester
verifies the entire information step by step. As shown in &dhlthe time spent for the
static attestation is composedBbseng aNd T panalysis, Which represent the time for
sending policy module and analyzing them, respectivelwi@isly, the dynamic ap-
proach can dramatically reduce the overhead compared &idtie approach. It shows
that DR@FT is an efficient way when policies on an attesteepgated frequently.

7 Conclusion

We have presented a dynamic remote attestation framewtidddaR@FT for effi-
ciently verifying if a system satisfies integrity protectiproperty and indicates integrity
violations which determine its trustworthiness level. Tittegrity property of our work
is based on an information flow-based domain isolation maadkich is utilized to
describe the integrity requirements and identify intggriiblations of a system. To

16 Wenjuan Xu et al.

achieve the efficiency and effectiveness of remote attestdDR@FT focuses on sys-
tem changes on the attestee side. We have extended ourapgticy analysis engine
to represent integrity violations with the rank scheme.ddition, our results showed
that our dynamic approach can dramatically reduce the eaerbompared to the static
approach. We believe such a comprehensive method wouldsiisiem administrators
reconfigure the system with more efficient and strategic raann

There are several directions that our attestation frameeam be extended to. First,
DR@FT can attest dynamic system configurations, but it doegattest the trustwor-
thiness of dynamic contents such as the state informatiateceapplications and the
contextual properties of CPU. Second, our risk evaluateasaot explain the tolerable
risk level and relevant system properties. In additiorvedification tasks are performed
at the attester side. The attester may need to delegate stewition tasks to trusted
components at the attestee or other trusted side. Our fwrewould seek a flexible
and systematic way to address these issues.

References

A

. LIM Patch. http://lkml.org/lkml/2008/6/27.
. Trusted computing group, https://www.trustedcompgnoup.org/home.
3. Trusted Computer System Evaluation Criteriblnited States Government Department of
Defense (DOD), Profile Books, 1985.
. A. P. Anderson. Computer security technology planning\stESD-TR-73-5111, 1972.
5. K. J. Biba. Integrity consideration for secure compuesttesyr. Technical report, Mitre Corp.
Report TR-3153, Bedford, Mass., 1977.
6. S.Brinand L. Page. The anatomy of a large-scale hypeekWieb search engin€omputer
networks and ISDN systen80(1-7):107-117, 1998.
7. L. Chen, R. Landfermann, H. Lohr, M. Rohe, A.-R. Sadeghi C. Stiible. A protocol for
property-based attestation. ACM STC, 2006
8. V. Haldar, D. Chandra, and M. Franz. Semantic remotetattes: a virtual machine directed
approach to trusted computing. WSENIX conference on Virtual Machine Research And
Technology Symposium, 2004
9. T. Jaeger, R. Sailer, and U. Shankar. Prima: policy-redustegrity measurement architec-
ture. INACM SACMAT, 2006
10. T. Jaeger, R. Sailer, and X. Zhang. Analyzing integritgtgction in the selinux example
policy. InUSENIX Security, 2003
11. N. Provos, M. Friedl, and P. Honeyman. Preventing @iel escalation.12th USENIX
Security Symposiurpage 11, August 2003.
12. R. Sailer, X. Zhang, T. Jaeger, and L. van Doorn. Desighnimplementation of a tcg-based
integrity measurement architecture. USENIX Security, 2004
13. R. S. Sandhu. Lattice-based access control moldgEE Computer26(11):9-19, 1993.
14. U. Shankar, T. Jaeger, and R. Sailer. Toward automatedriation-flow integrity verifica-
tion for security-critical applications. INDSS, 2006
15. S. Smalley. Configuring the selinux policy. http://wwea.gov/SELinux/docs.html, 2003.
16. T.Fraser. Lomac: Low water-mark integrity protectiondots environment. IRroceedings
of the IEEE Symposium on Security and Privadgay 2000.
17. W. Xu, X. Zhang, and G.-J. Ahn. Towards system integritgtgction with graph-based
policy analysis. IrProc. of the IFIP WG 11.3 Working Conference on Data and Ajapions
Security 2009.

N

I

