
DR@FT: Efficient Remote Attestation Framework
for Dynamic Systems⋆

Wenjuan Xu1, Gail-Joon Ahn2, Hongxin Hu2, Xinwen Zhang3, Jean-Pierre Seifert4

1 Frostburg State University,wxu@frostburg.edu
2 Arizona State University,gahn@asu.edu, hxhu@asu.edu

3 Samsung Information Systems America,xinwen.z@samsung.com
4 Deutsche Telekom Lab and Technical University of Berlin,

jean−pierre.seifert@telekom.de

Abstract. Remote attestation is an important mechanism to provide thetrust-
worthiness proof of a computing system by verifying its integrity. In this paper,
we propose an innovative remote attestation framework called DR@FT for effi-
ciently measuring a target system based on an information flow-based integrity
model. With this model, the high integrity processes of a system are first veri-
fied through measurements and these processes are then protected from accesses
initiated by low integrity processes. Also, our framework verifies the latest state
changes for a target system instead of considering the entire system informa-
tion. In addition, we adopt a graph-based method to represent integrity violations
with a ranked violation graph, which supports intuitive reasoning of attestation
results. Our experiments and performance evaluation demonstrate the feasibility
and practicality of DR@FT.

1 Introduction
In distributed computing environments, it is crucial to measure whether remote parties
run buggy, malicious application codes or are improperly configured by rogue software.
Remote attestation techniques have been proposed for this purpose. These techniques
help analyze the integrity of remote systems to determine their trustworthiness. Typical
attestation mechanisms are designed based on the followingsteps. First, an attestation
requester (attester) sends a challenge to a target system (attestee), which responds with
the evidence of integrity of its hardware and software components. Second, the attester
derives runtime properties of the attestee and determines the trustworthiness of the at-
testee. Finally and optionally, the attester returns the attestation result, such as integrity
measurement status, to the attestee. Remote attestation can help reduce potential risks
that are caused by a tampered system.

Various attestation approaches and techniques have been proposed. Trusted Com-
puting Group (TCG) [2] introduces trusted platform module (TPM) which can securely

⋆ The work of Gail-J. Ahn and Hongxin Hu was partially supported by the grants from National
Science Foundation (NSF-IIS-0900970 and NSF-CNS-0831360) and Department of Energy
(DE-SC0004308). The work of Gail-J. Ahn and Wenjuan Xu was also partially supported by
the grants from National Science Foundation (NSF-IIS-0242393) and Department of Energy
Early Career Principal Investigator Award (DE-FG02-03ER25565).



2 Wenjuan Xu et al.

store and provide integrity measurements of systems to a remote party. Integrity mea-
surement mechanisms have been proposed to facilitate the capabilities of TPM at appli-
cation level. For instance, Integrity Measurement Architecture (IMA) [12] is an imple-
mentation of TCG approach to provide verifiable evidence with respect to the current
run-time state of a measured system. Several attestation methods have been proposed
to accommodate privacy properties [7], system behaviors [8], and information flow
model [9]. However, these existing approaches lack the efficacy of attestation where
its system statefrequently changes due to system-centric events such as security pol-
icy updates and software package installations. Last but not least, existing attestation
mechanisms do not have an effective and intuitive way for presenting attestation results
and reflecting such results in resolving identified securityviolations.

Towards a systematic attestation solution, we propose an efficient remote attesta-
tion framework, called Dynamic Remote Attestation Framework and Tactics (DR@FT)
to address aforementioned issues. Our framework is based onsystem integrity property
with adomain-based isolationmodel. With this property, the high integrity processes of
a system are first verified through measurements and these processes are then protected
from accesses initiated by low integrity processes. In other words, the protection of
high integrity process is verified by analyzing security policies, which specify system
configurations with system and application behaviors. Having this principle in place,
DR@FT enables us verify whether certain applications in theattestee satisfy integrity
requirements as part of attestation. To accommodate a dynamic nature of the systems,
DR@FT verifies the latest changes in a system state, instead of considering the entire
system information for each attestation inquiry. Through these two tactics, our frame-
work attempts to efficiently attest the target system. Also,DR@FT adopts a graph-based
analysis methodology for analyzing security policy violations, which helps cognitively
identify suspicious information flows in the attestee. To further improve the efficiency
of security violation resolution, we propose a ranking scheme for prioritizing the pol-
icy violations, which provides a method for describing thetrustworthinessof different
system states withrisk levels.

This paper is organized as follows. Section 2 overviews the existing attestation work
and system integrity models. Section 3 describes a domain-based isolation model which
gives the theoretical foundation of DR@FT. Section 4 presents design requirements
and attestation procedures of DR@FT, followed by policy analysis methods and their
usages in Section 5. We elaborate the implementation details and evaluation results in
Section 6. Section 7 concludes this paper.

2 Background

2.1 Attestation Overview
The TCG specification [2] defines mechanisms for a TPM-enabled platform to report
its current hardware and software configuration status to a remote challenger. A TCG
attestation process is composed of two steps: (i) an attestee platform measures hard-
ware and software components starting from BIOS block and generates a hash value.
The hash value is then stored into a TPM Platform Configuration Register (PCR). Re-
cursively, it measures BIOS loader and operating system (OS) in the same way and
stores them into TPM PCRs; (ii) an attester obtains the attestee’s digital certificate with



DR@FT: Efficient Remote Attestation Framework for Dynamic Systems 3

an attestation identity key (AIK), AIK-signed PCR values, and a measurement log file
from the attestee which is used to reconstruct the attestee platform configuration, and
verifies whether this configuration is acceptable. From these steps we notice that TCG
measurement process is composed of a set of sequential stepsincluding the bootstrap
loader. Thus, TCG does not provide effective mechanisms formeasuring a system’s
integrity beyond the system boot, especially considering the randomness of executable
contents loaded by a running OS.

IBM IMA [12] extends TCG’s measurement scope to applicationlevel. A measure-
ment listM is stored in OS kernel and composed ofm0 ... mi corresponding to loaded
executable application codes. For each loadedmi, an aggregated hash Hi is generated
and loaded into TPM PCR, where H0=H(m0) and Hi=H(Hi−1||H(mi)). Upon receiving
the measurements and TPM-signed hash value, the attester proves the authentication of
measurements by verifying the hash value, which helps determine the integrity level
of the platform. However, IMA requires to verify the entire components of the attestee
platform while the attestee may only demand the verificationof certain applications.
Also, the integrity status of a system is validated by testing each measurement entry
independently, focusing on the high integrity processes. However, it is impractical to
disregard newly installed untrusted applications or data from the untrusted network.

PRIMA [9] is an attestation work based on IMA and CW-Lite integrity model [14].
PRIMA attempts to improve the efficiency of attestation by verifying only codes, data,
and information flows related to trusted subjects. On one hand, PRIMA needs to be
extended to capture the dynamic nature of system states suchas software and policy
updates, which could be an obstacle for maintaining the efficiency. On the other hand,
PRIMA represents an attestation result with binary decision (trust or distrust) and does
not give semantic information about how much the attestee platform can be trusted.

Property-based attestation [7] is an effort to protect the privacy of a platform by
collectively mapping related system configurations to attestation properties. For exam-
ple, “SELinux-enabled” is a property which can be mapped to asystem configuration
indicating that the system is protected with an SELinux policy. That is, this approach
prevents the configurations of a platform from being disclosed to a challenger. How-
ever, due to the immense configurations of the hardware and software of the platform,
mapping all system configurations to properties is infeasible and impractical.

2.2 Integrity Models

To describe the integrity status for a system, there exist various information flow-based
integrity models such as Biba [5], LOMAC [16], Clark-Wilson[13], and CW-Lite [14].
Biba integrity property is fulfilled if a high integrity process cannot read/execute a lower
integrity object, nor obtain lower integrity data in any other manner. LOMAC allows
high integrity processes to read lower integrity data, while downgrading the process’s
integrity level to the lowest integrity level that has ever been activated. Clark-Wilson
provides a different view of dependencies, which states information flow from low in-
tegrity objects to high integrity objects through a specificprogram called transaction
procedures (TP). Later, the concept of TP is evolved as a filter in the CW-Lite model.
The filter can be a firewall, an authentication process, or a program interface for down-
grading or upgrading the privileges of a process.



4 Wenjuan Xu et al.

With existing integrity models, there is a gap between concrete measurements of a
system’s components and the verification of its integrity status. We believe an application-
oriented and domain-centric approach accommodates the requirements of attestation
evaluation better than advocating an abstract model. For example, in a Linux sys-
tem, a subject in traditional integrity models can correspond to a set of processes, be-
longing to a single application domain. For instance, an Apache domain may include
various process types such ashttpd t, http sysadm devpts t, andhttpd
prewikka script t. All of these types can have information flows among them,
which should be regarded as a single integrity level. Also, sensitive objects in a domain
should share the same integrity protection of its subjects.To comprehensively describe
the system integrity requirements, in this paper, we propose a domain-based isolation
approach as discussed in the subsequent section.

3 Domain-based Isolation
According to TCG and IMA, the trustworthiness of a system is described with the
measured integrity values (hash values) of loaded softwarecomponents. However, the
measurement efficiency and attestation effectiveness are major problems of these ap-
proaches since (i) too many components have to be measured and tracked, and (ii) too
many known-good hash values are required from different software vendors or author-
ities. Fundamentally, in order to trust a single application of a system, every software
component in the system has to be trusted; otherwise the attestation result should be
negative. In our work, we believe that the trustworthiness of a system is tightly related
to the integrity status, which is, in turn, described by a setof integrity rules that are en-
forced by the system. If any of the rules is violated, it should be detected. Hence, so as
to trust a single application domain, we just need to ensure thesystem TCB–including
reference monitor and integrity rules protecting the target application domain–is not
altered.

Based on this anatomy, we introduce domain-based isolationprinciples for integrity
protection, which are the criteria to describe the integrity status of a system and thus its
trustworthiness. We first propose general methodologies toidentify high integrity pro-
cesses, which includesystem TCBanddomain TCB. We then specify security rules for
protecting these high integrity processes. System TCB (TCBs) is similar to the con-
cept of traditional TCB [3], which can be identified along with the subjects functioning
as the reference monitor of a system [4]. Applying this concept to SELinux [15], for
example, subjects functioning as the reference monitor such ascheckpolicy and
loading policy belong to system TCB. Also, subjects used to support the ref-
erence monitor such askernel andinitial should also be included into system
TCB. With this approach, an initialTCBs can be identified, and other subjects such
aslvm andrestorecon can be added intoTCBs based on their relationships with
the initial TCBs. Other optional methods for identifyingTCBs are proposed in [10].
Considering the similarity of operating systems and configurations, we expect that the
results would be similar. Furthermore, for the attestationpurpose,TCBs also includes
integrity measurement and reporting components, such as kernel level integrity mea-
surement agent [1] and attestation request handling agent.

In practice, other thanTCBs, an application or user-space service can also affect
the integrity and the behavior of a system. An existing argument [3] clearly states the



DR@FT: Efficient Remote Attestation Framework for Dynamic Systems 5

situation: “A network server process under a UNIX-like operating system might fall vic-
tim to a security breach and compromise an important part of the system’s security, yet
is not part of the operating system’s TCB.” Accordingly, a comprehensive mechanism
of policy analysis for TCB identification and integrity violation detection is desired.
Hence, we introduce a concept called information domain TCB(or simplydomain TCB,
TCBd). Let d be an information domain functioning as a certain application or service
through a set of related subjects and objects. A domaind’s TCB orTCBd is composed
of a set of subjects and objects in information domaind which have the same level of
security sensitivity. By the same level of security sensitivity, we mean that, if infor-
mation can flow to some subjects or objects of a domain, it can flow to all others in
the same domain. That is, they need the same level of integrity protection. Prior to the
identification ofTCBd, we first identify the information domaind based on its main
functions and relevant information flow associated with these functions. For example, a
running web server domain consists of many subjects–such ashttpd process, plugins,
and tools, and other objects–such as data files, configuration files, and logs.

The integrity of an object is determined by the integrity of subjects that have op-
erations on this object. All objects dependent onTCBd subjects are classified as TCB
protected objects or resources. Thus we need to identify allTCBd subjects from an
information domain and verify the assurance of their integrity. To ease this task, a mini-
mumTCBd is first discovered. In the situation that the minimumTCBd subjects have
dependency relationships with other subjects, these subjects should be added to domain
TCB, or the dependencies should be removed. Based on these principles, we first iden-
tify initial TCBd subjects which are predominant subjects for the information domain
d. We further discover otherTCBd subjects considering subject dependency relation-
ships with the initialTCBd throughinformation flow transitions, which means subjects
that can only flow to and from initialTCBd subjects should be included intoTCBd. For
instance, for a web server domain,httpd is the subject that initiates other web server
related processes. Hence,httpd is the predominant subject and belongs toTCBd.
Based on all possible information flows tohttpd, we then identify other subjects such
ashttpd-suexec in TCBd.

To protect the identifiedTCBs andTCBd, we develop principles similar to those in
Clark-Wilson [13]. Clark-Wilson leverages TP to allow information flow from low in-
tegrity to high integrity processes. To support TP, we adoptthe concept of filters. Filters
can be processes or interfaces [11] that normally are distinct input information channels
and are created by a particular operation such asopen(), accept(), or other calls
that enable data input. For example,su process allows a low integrity process (e.g.,
staff) being changed to be a high integrity process (e.g., root) by executingpasswd
process, thuspasswd can be regarded as a filter for processes run by root privilege.
Also, high integrity process (e.g.,httpd administration) can accept low integrity in-
formation (e.g, network data) through the secure channel such assshd. Consequently,
sshd can be treated as a filter for higher privilege processes. With the identifications of
TCBs, TCBd, and filters for information domaind, all the other subjects in a system
are categorized as NON-TCB. Our domain-based isolation is defined as follows:

Definition 1. Domain-based isolationis satisfied for an information domaind if infor-
mation flows are fromTCBd; or information flows are fromTCBs to eitherTCBd or



6 Wenjuan Xu et al.

TCBd protected resources; or information flows are from NON-TCB to eitherTCBd

or TCBd protected resources via filter(s).

4 DR@FT: Architectural Design and Procedures
DR@FT consists of three main parties: an attestee (the target platform), an attester
(attestation challenger), and a trusted authority as shownin Figure 1. The attestee is
required to provide its system state information to the attester for the verification. Here,
we assume that an attestee is initially in atrusted system stateand the system state is
changed to a new state after certain system behaviors.

TPM

Policy Analysis

Attester

Policy Updates

Attestee Measurements

Rule 1'

Rule 2'

1

6

Known 

Fingerprints

Attestee

3

4

5
Initial Trusted

System State  

Codes and Data 

Verification

2

IMA

Initial Trusted System 

State 

New System State

System State 

Changes

Reporting Process

Authentication

AIKpub / 

AIkpvt

Trusted Authority

PKs / 

Sks

Subject 1

Subject 2

Subject 3

TSL Code and Data

m(tsl)

Code 1

Code 2

Code 3

m(cd)

Rule 1

Rule 2

Rule 3

m(policy)

Filter 1

Filter 2

Filter 3

m(filter)

Rprocess 1

Rprocess 2

Rprocess 3

m(rprocess)

Policy Filter Rprocess
Reporting Daemon

Fig. 1. Overview of DR@FT.

A reporting daemon on the attestee gets the measured new state information (step 1)
with IMA and generates the policy updates (step 2). This daemon then gets AIK-signed
PCR value(s) and sends to the attester. After the attester receives and authenticates the
information, with the attestee’s AIK public key certificatefrom the trusted authority,
it verifies the attestee’s integrity through codes and data verification (step 3), reporting
process authentication (step 4) and policy analysis (step 5).

4.1 System State and Trust Requirement
For the attestation purpose, the system state is captured asa snapshot of an attestee
system at a particular moment, where the factors characterizing the state can influence
the system integrity on any future moment of the attestee system. Based on the domain-
based isolation, the attestee system integrity can be represented via information flows,
which are characterized by the trusted subject list, filters, policies, and the trustworthi-
ness ofTCBs. Based on these properties, we define the system state of the attestee as
follows.

Definition 2. A system stateat the time periodi is a tupleTi={ TSLi, CDi, Policyi,
Filteri, RProcessi }, where

– TSLi={s0, s1....sn} represents a set of high integrity processes which corresponds
to a set of subjectss0, s1....sn in TCBs andTCBd;



DR@FT: Efficient Remote Attestation Framework for Dynamic Systems 7

– CDi={cd (s0), cd (s1)....cd (sn)} is a set of codes and data for loading a subject
sj ∈ TSLi;

– Policyi is the security policy currently configured on the attestee;
– Filteri is a set of processes defined to allow information flow from lowintegrity

processes to high integrity processes; and
– RProcessi represents a list of processes that measure, monitor, and report the cur-

rentTSLi, CDi, Filteri andPolicyi information. IMA agent and the attestation
reporting daemon are the examples of theRProcessi.

According to this definition, a system state does not includea particular applica-
tion’s running state such as its memory page and CPU context (stacks and registers).
It only represents the security configuration or policy of anattestee system. A system
state transitionindicates one or more changes inTSLi, CDi, Policyi, Filteri, or
RProcessi. A system stateTi is trustedif TSLi belongs toTCBs andTCBd; CDi

does not contain untrusted codes and data;Policyi satisfies domain-based isolation;
Filteri belongs to the defined filter in domain-based isolation; andRProcessi codes
and data do not contain malicious codes and data and theseRProcessi processes are
integrity protected from the untrusted processes viaPolicyi.

As mentioned earlier, we assume there exists an initial trusted system stateT0.
Through changing the variables inT0, the system transits to other states such asT1,
T2 ... Ti. The attestation in DR@FT is to verify whether or not any of these states is
trusted.

4.2 Attestation Procedures
Attestee MeasurementsThe measurement at the attestee side has two different forms,
depending onhow muchthe attestee system changes. In case any subject inTCBs is
updated, the attestee must be fully remeasured from the system reboot and the attester
needs to attest it completely, since this subject may affectthe integrity of subjects in
RProcess of the system such as the measurement agent and reporting daemon. After
the reboot and allTCBs subjects are remeasured, a trusted initial system stateT0 is
built. To perform the remeasurement, the attestee measuresa stateTi and generates the
measurement listMi which is added by trusted subject list (TSLi) measurement, codes
and data (CDi) measurement, policy (Policyi) measurement, filter (Filteri) measure-
ment and attestation process (RProcessi) measurement. Also,H(Mi) is extended to a
particular PCR of the TPM, whereH is a hash function such as SHA1.

In another case, where there is noTCBs subject updated and theTSLi or Filteri

subjects belonging toTCBd are updated, the attestee only needs to measure the updated
codes and data loaded by the changed TSL or filter subjects, and generates a measure-
ment listMi. The generation of this measurement list is realized through the run-time
measurement supported by the underlying measurement agent.

To support both types of measurements, we develop an attestation reporting daemon
which monitors the run-time measurements of the attestee. In case the run-time mea-
surements forTCBs are changed, the attestee is required to be rebooted and fully mea-
sured with IMA. The measurements values are then sent to the attester by the daemon.
On the other side, the changed measurement value is measuredby IMA and captured
with the reporting daemon only if the measurement forTCBd is changed. Obviously,



8 Wenjuan Xu et al.

this daemon should be trusted and is included inTCBs. That is, its codes and data
are required to be protected with integrity policy and corresponding hash values are
required to be stored at the attester side.

Policy Updates To analyze if the current state of the attestee satisfies domain-based
integrity property, the attester requires information about the current security policy
loaded at the attestee side. Due to the large volume of policyrules in a security policy,
sending all policy rules in each attestation and verifying all of them by the attester
may cause the performance overhead. Hence, in DR@FT, the attestee only generates
policy updates from the latest attested trusted state and sends them to the attester for the
attestation of such updates.

To support this mechanism, we have the attestation reporting daemon monitor any
policy update on attestee system and generate a list of updated policy rules. Note that
the policy update comparison is performed between the current updated policy and the
stored trusted security policyPolicy0 or previously attested and trustedPolicyi−1. The
complexity of this policy update algorithm isO(nr), wherenr represents the number of
the policy rules in the new policy filePolicyi.

Codes and Data Verification With received measurement listMi and AIK-signed
PCRs, the attester first verifies the measurement integrity by re-constructing the hash
values and compares with PCR values. After this is passed, the attester performs the
analyses. Specifically, it obtains the hash values ofCDi and checks if they corresponds
to known-good fingerprints. Also, the attester needs to assure that theTSLi belongs
to TCBs andTCBd. In addition, the attester also gets the hash value ofFilteri and
ensures that they belong to the filter list defined on the attester side. In case this step
succeeds, the attester has the assurance that target processes on attestee side are proved
without containing any untrusted code or data, and the attester can proceed to next steps.
Otherwise, the attester sends a proper attestation result denoting this situation.

Authenticating Reporting Process To prove that the received measurements and up-
dated policy rules are from the attestee, the attester authenticates them by verifying
that all the measurements, updates and integrity measurement agent processes in the
attestee are protected. That is, theRProcessi does not contain any untrusted codes or
data and its measurements correspond to PCRs in the attester. Also, there is no integrity
violated information flow to these processes from subjects of TSLi, according to the
domain isolation rules. Note that these components can alsobe updated, but after any
update of these components, the system should be fully remeasured and attested from
the bootstrap to rebuild a trusted initial system stateT0.

Policy Analysis by Attester DR@FT analyzes policy using a graph-based analysis
method. In this method, a policy file is first visualized into agraph. The policy graph
is then analyzed against pre-defined security model such as our domain-based isolation
and a policy violation graph is generated. The main goal of this approach is to give
semantic information of attestation result to the attestee, such that system administrators
can quickly and intuitively obtain any violated configuration.

Note that verifying all the security policy rules in each attestation request decrease
the efficiency, as loading policy graph and checking all the policy rules are costly. Thus,
we need to develop an efficient way for analyzing the attesteepolicy. In our method,
the attester stores the policy of initial trusted system stateT0 or the latest trusted system



DR@FT: Efficient Remote Attestation Framework for Dynamic Systems 9

stateTi, and its corresponding policy graph is loaded which does nothave any policy
violation. Upon receiving the updated information from theattestee, the attester just
needs to analyze these updates to see if there is new information flow violating integrity
requirements. Through this approach, rather than analyzing all the policy rules and all
information flows for each attestation, we verify the new policy through only checking
the updated policy rules and the newly identified information flow.

Attestation Result Sending to Attester In case the attestation is successful, a new
trusted system state is developed and the corresponding information is stored at the at-
tester side for subsequent attestations. On the other hand,if the attestation fails, there
are several possible attestation results including any combination of the following cases:
CDi Integrity Success/Fail, RProcessi Un/authenticated, andPolicyi Fail/Success.
To assist the attestee reconfiguration, the attester also sends a representation of the
policy violation graph to the attestee. Moreover, with thispolicy violation graph, the
attester specifies the violation ranking and the trustworthiness of the attestee, which is
explained in Section 5.

5 Integrity Violation Analysis
As we discussed in Section 1, existing attestation solutions such as TCG and IMA lack
the expressiveness of the attestation result. In addition to their boolean-based response
for attestation result, DR@FT adopts a graph-based policy analysis mechanism, where
a policy violation graph can be constructed for identifyingall policy violations on the
attestee side. We further introduce a risk model based on a ranking scheme, which
implies how severe the discovered policy violations are andhow efficiently they can be
resolved.

Fig. 2. Example policy violation graph and rank. The SubjectRank and PathRank indicate the
severity of violating paths.

5.1 Policy Violation Graph
Based on domain-based isolation model, we can discover two kinds of violation paths,
direct violation pathsandindirect violation paths. A direct violation path is a one-hop
path through which an information flow can go from a low integrity subject to a high
integrity subject. We observe that information flows are transitive in general. Therefore,
there may exist information flows from a low integrity subject to a high integrity subject
via several other subjects. This multi-hop path is called indirect violation path. All direct
and indirect violation paths belonging to a domain can construct a policy violation graph
for this domain.



10 Wenjuan Xu et al.

Definition 3. A policy violation graph for a domaind is a directed graphGv = (V v, Ev):

– V v ⊆ V v
NTCB ∪ V v

TCBd ∪ V v
TCB whereV v

NTCB, V v
TCBd andV v

TCB are subject
vertices containing in direct or indirect violation paths of domaind and belong to
NON-TCB,TCBd, andTCBs, respectively.

– Ev ⊆ Ev
Nd ∪Ev

dT ∪Ev
NT ∪Ev

NTCB ∪Ev
TCBd ∪Ev

TCB whereEv
Nd ⊆ (V v

NTCB ×
V v

TCBd), Ev
dT ⊆ (V v

TCBd × V v
TCB), Ev

NT ⊆ (V v
NTCB × V v

TCB), Ev
NTCB ⊆

(V v
NTCB×V v

NTCB), Ev
TCBd ⊆ (V v

TCBd×V v
TCBd), andEv

TCB ⊆ (V v
TCB×V v

TCB),
and all edges inEv are contained in direct or indirect violation paths of domain d.

Figure 2 (a) shows an example of policy violation graph whichexamines informa-
tion flows between NON-TCB andTCBd

5. Five direct violation paths are identified in
this graph:<S′

1, S1>, <S′
2, S2>, <S′

3, S2>, <S′
4, S4>, and<S′

5, S4> across all the
boundaries between NON-TCB andTCBd. Also, eight indirect violation paths exist.
For example,<S′

2, S5> is a four-hop violation path passing through other threeTCBd

subjectsS2, S3, andS4.

5.2 Ranking Policy Violation Graph
In order to explore more features of policy violation graphsand facilitate efficient policy
violation detection and resolution, we introduce a scheme for ranking policy violation
graphs. There are two steps to rank a policy violation graph.First,TCBd subjects in the
policy violation graph are ranked based on dependency relationships among them. The
rank of aTCBd subject shows reachable probability of low integrity information flows
from NON-TCB subjects to theTCBd subject. In addition, direct violation paths in the
policy violation graph are evaluated based on the ranks ofTCBd subjects to indicate
severity of these paths which allow low integrity information to reachTCBd subjects.
The ranked policy violation graphs are valuable for system administrators as they need
to estimate therisk level of a system and provide a guide for choosing appropriate
strategies for resolving policy violations efficiently.

Ranking Subjects in TCBd Our notation ofSubjectRank(SR) in policy violation
graphs is a criterion that indicates the likelihood of low integrity information flows
coming to aTCBd subject from NON-TCB subjects through direct or indirect viola-
tion paths. The ranking scheme we adopt is a similar process of rank analysis applied
in hyper-text link analysis system, such as Google’s PageRank [6] that utilizes a link
structure provided by hyperlinks between web pages to gaugetheir importance. Com-
paring with PageRank which focuses on analyzing a web graph where the entries are
anyweb pages contained in the web graph, the entries of low integrity information flows
to TCBd subjects in a policy violation graph are only identified NON-TCB subjects.

Consider a policy violation graph withN NON-TCB subjects, andsi is a TCBd

subject. LetN(si) be the number of NON-TCB subjects from which low integrity
information flows could come tosi, N

′

(si) the number of NON-TCB subjects from
which low integrity information flows coulddirectly reach tosi, In(si) a set ofTCBd

subjects pointing tosi, andOut(sj) a set ofTCBd subjects pointed fromsj . The prob-
ability of low integrity information flows reaching a subject si is given by:

5 Similarly, the information flows between NON-TCB andTCBs, and betweenTCBd and
TCBs can be examined accordingly.



DR@FT: Efficient Remote Attestation Framework for Dynamic Systems 11

SR(si) =
N(si)

N
(
N

′

(si)

N(si)
+ (1 −

N
′

(si)

N(si)
)

X

sj∈In(si)

SR(sj)

|Out(sj)|
) (1)

SubjectRankcan be interpreted as aMarkov Process, where the states areTCBd

subjects, and the transitions are the links betweenTCBd subjects which are all evenly
probable. While a low integrity information flow attempts toreach a high integrity sub-
ject, it should select an entrance (a NON-TCB subject) whichhas the path(s) to this
subject. Thus, the possibility of selecting correct entries to a target subject isN(si)

N
.

After selecting correct entries, there still exist two ways, through direct violation or
indirect violation paths, to reach a target subject. Therefore, the probability of flow

transition from a subject is divided into two parts:N
′

(si)
N(si)

for direct violation paths and

1 − N
′

(si)
N(si)

for indirect violation paths. The1 − N
′

(si)
N(si)

mass is divided equally among

the subject’s successorssj , and SR(sj)
|Out(sj)|

is the rank value derived fromsj .
Figure 2 (b) displays a result of applying Equation (1) to thepolicy violation graph

shown in Figure 2 (a). Note that even though a subjects4 has two direct paths from
NON-TCB subjects like a subjects2, the rank value ofs4 is higher than the rank value
of s2, because there is another indirect flow path tos4 (via s3).

Ranking Direct Violation Path We further definePathRank(PR) as the rank of a
direct violation path6, which reflects the severity of the violation path through which
low integrity information flows may come toTCBd subjects. Direct violation paths
are regarded as the entries of low integrity data toTCBd in policy violation graph.
Therefore, the ranks of direct violation paths give a guide for system administrators to
adopt suitable defense countermeasures for solving identified violations. To calculate
PathRankaccurately, three conditions are needed to be taken into account: (1) the num-
ber ofTCBd that low integrity flows can reach through this direct violation path; (2)
SubjectRank of reachedTCBd subjects; and (3) the number of hops to reach aTCBd

subject via this direct violation path.
Suppose< s

′

i, sj > is a direct violation path from a NON-TCB subjects
′

i to a
TCBd subjectsj in a policy violation graph. LetReach(< s

′

i, sj >) be a function
returning a set ofTCBd subjects to which low integrity information flows may go
through a direct violation path< s

′

i, sj >, SR(sl) the rank of aTCBd subjectsl, and
Hs(s

′

i, sl) a function returning the hops of the shortest path from a NON-TCB subject
s
′

i to aTCBd subjectsl. The following equation is utilized to compute a rank value of
the direct violation path< s

′

i, sj >.

PR(< s
′

i, sj >) =
X

sl∈Reach(<s
′

i
,sj>)

SR(sl)

Hs(s
′

i
, sl)

(2)

Figure 2 (c) shows thePathRankof the example policy violation graph, which is
calculated by the above-defined equation. For example,< s

′

2, s2 > has a higher rank

6 It is possible that a system administrator may also want to evaluate indirect violation paths
for violation resolution. In that case, our ranking scheme could be adopted to rank indirect
violation paths as well.



12 Wenjuan Xu et al.

than< s
′

1, s1 >, because< s
′

2, s2 > may result in low integrity information flows to
reach more or importantTCBd subjects than< s

′

1, s1 >.

5.3 Evaluating Trustworthiness
Let Pd be a set of all direct violation paths in a policy violation graph. The entire rank,
which can be considered as a risk level of the system, can be computed as follows:

RiskLevel =
X

<s
′

i
,sj>∈Pd

PR(< s
′

i, sj >) (3)

The calculated risk level could reflect the trustworthinessof an attestee. Generally,
the lower risk level indicates the higher trustworthiness of a system. When an attestation
is successful and there is no violation path being identified, the risk level of the attested
system iszero, which means an attestee has the highest trustworthiness. On the other
hand, when an attestation is failed, corresponding risk level of a target system is com-
puted. Aselective servicecould be achieved based on this fine-grained attestation result.
That is, the number of services provided by a service provider to the target system may
be decided with respect to the trust level of the target system. Hence, a system admin-
istrator could refer to this attestation result as the evaluation of her system as well as
resolution guidelines since this quantitive response would give her a proper justification
to adopt countermeasures for improving the trustworthiness of a target system.

6 Implementation Details and Evaluation Results
We have implemented DR@FT to evaluate its effectiveness andmeasure the perfor-
mance. Our attestee platform is a Lenovo ThinkPad X61 with Intel Core 2Duo Proces-
sor L7500 1.6GHz, 2 GB RAM, and Atmel TPM. We enable SELinux with the default
policy based on the current distribution of SELinux [15]. Tomeasure the attestee system
with TPM, we update the Linux kernel to 2.6.26.rc8 with the latest IMA implementa-
tion [1], where SELinux hooks and IMA functions are enabled.Having IMA enabled,
we configure the measurement of the attestee information. After the attestee system ker-
nel is booted, we mount thesysfs file system and inspect the measurement list values
in ascii runtime measurements andascii bios measurements.

6.1 Attestation Implementation
We start from a legitimate attestee and make measurements ofthe attestee system for the
later verification. To invoke a new attestation request fromthe attester, the attestation
reporting daemon runs in the attestee and monitors the attestee system. This daemon
is composed of two main threads: One monitors and gets the newsystem state mea-
surements, and the other monitors and obtains the policy updates of the attestee. The
daemon is also measured and the result can be obtained through the legitimate attestee.
Thus the integrity of the daemon can be verified later by the attester. In case the attestee
system state is updated due to new software installation, changing policy, and so on, an
appropriate thread of the daemon automatically obtains thenew measurement values as
discussed in Section 4. The daemon then securely transfers the attestation information
to the attester based on the security mechanisms supported by the trusted authority.

After receiving the updated system information from the attestee, the measurement
module of the attester checks the received measurements against the stored PCR to



DR@FT: Efficient Remote Attestation Framework for Dynamic Systems 13

prove its integrity. To analyze the revised attestee policy, the policy analysis module
is developed as a daemon, which is derived from a policy analysis engine. We extend
the engine to identify violated information flows from the updated policy rules based
on domain-based isolation rules. We also accommodate the attestation procedures pre-
sented in Section 4.2, as well as our rank scheme to evaluate the trustworthiness of the
attestee.

6.2 Evaluation
To assess the proposed attestation framework, we attest ourtestbed platform with Apache
web server installed. To configure the trusted subject list of the Apache domain, we
first identifyTCBs based on the reference monitor-based TCB identification, including
the integrity measurement, monitoring agents, and daemon.ForTCBd of the Apache,
we identify the Apache information domain, ApacheTCBd, includinghttpd t and
httpd suexec t, and the initial filterssshd t, passwd t, su t, through the
domain-based isolation principles. BothTCBs andTCBd are identified with a graph-
ical policy analysis tool [17]. We then install the unverified codes and data to evaluate
the effectiveness of our attestation framework.

Installing Malicious Code We first install a Linux rootkit, which gains adminis-
trative control without being detected. Here, we assign therootkit with the domain
unconfined t that enables information flows to domaininitrc t labelinginitrc
process, which belongs toTCBs of the attestee. Following the framework proposed in
Section 4, the attestee system is measured from the bootstrap with the configured IMA.
After getting the new measurement values, the reporting daemon sends these measure-
ments to the attester. Note that there is no policy update in this experiment. Different
from IMA, we only measure theTCBs andTCBd subjects. After getting the mea-
surements from the attestee, the attester verifies them by analyzing the measured hash
values. Our measurement partially shows the initial measurements of theinitrc (in a
trusted initial system state) and the changed value becauseof the installed rootkit. The
difference between these two measurements indicates the original initrc is altered,
and the attester confirms that the attestee is not in a trustedstate.

Installing Vulnerable Software In this experimentation, we install a vulnerable soft-
ware called Mplayer on the attestee side. Mplayer is a media player and encoder soft-
ware which is susceptible to several integer overflows in thereal video stream dumux-
ing code. These flaws allow an attacker to cause a denial of service or potentially ex-
ecution of the arbitrary code by supplying a deliberately crafted video file. After a
Mplayer is installed, a Mplayer policy module is also loadedinto the attestee policy.
In this policy module, there are several different subjectssuch asstaff mplayer t
andsysadm mplayer t. Also, some objects are defined in security policies such as
user mplayer home t andstaff mplayer home t.

After the Mplayer is installed, the attestation daemon findsthat the new measure-
ment of Mplayer is generated and the security policy of the system is changed. As the
Mplayer does not belong toTCBs and ApacheTCBd, the attestation daemon does not
need to send the measurements to the attester. Consequently, the daemon only computes
the security policy updates and sends the information to theattester.

Upon receiving the updated policies, we analyze these updates and obtain a policy
violation graph as shown in Figure 3. Through objects such ascifs t,sysadm devtps t,



14 Wenjuan Xu et al.

staff_mencoder_t

user_mencoder_t

sysadm_mencoder_t

sysadm_mplayer_t

user_mplayer_t

staff_mplayer_t

httpd_t

httpd_suexec_t

httpd_prewikka_script_thttpd_awstats_script_t

httpd_rotatelogs_t

ncsd_var_run_t

sysadm_devpts_t

cifs_t
0.1713

0.1713 0.12963

0.12963
0.5269

0.3889

0.3426

0.26345

0.26345

0.3426

0.3889

0.3333

0.0556

0.1713

0.12963

Fig. 3. Information flow verification for Mplayer. The links show theinformation flow from
Mplayer (filled circle nodes) to Apache (unfilled nodes). Therank values on the paths indicate
the severity of the corresponding violation paths.

andncsd var run t, information flows from Mplayer can reach Apache domain. In
addition, rank values are calculated and shown in the policyviolation graph, which
guides effective violation resolutions. For example, there are three higher ranked paths
including paths fromsysadm devpts t to httpd t, from ncsd var run t to
httpd rotatelogs t, and fromcifs t tohttpd prewikka script t. Mean-
while, a risk level value (1.2584) reflecting the trustworthiness of the attestee system is
computed based on the ranked policy violation graph.

Once receiving the attestation result shown in Figure 3, thesystem administrator can
resolve the violation that has the higher rank than others. Thus, the administrator can
first resolve the violation related tohttpd t through introducinghttpd sysadm devpts t.

allow httpd t httpd sysadm devtps t:chr file {ioctl read write
getattr lock append};

After the policy violation resolution, the risk level of theattestee system is low-
ered to 0.7315. Continuously, after the attestee resolves all the identified policy vi-
olations and the risk level is decreased to bezero, the attestation daemon gets a new
policy update and sends it to the attester. Upon receiving this update, the attester ver-
ifies whether the identified information flows violate domain-based isolation integrity
rules since these flows are within the NON-TCB–even though there are new informa-
tion flows compared to the storedPolicy0. Thus, an attestation result is generated which
specifies the risk level (in this case,zero) of the current attestee system. Consequently,
a new trusted system state is built for the attestee. In addition, the information of this
new trusted system state is stored in the attester side for the later attestation.

6.3 Performance
To examine the scalability and efficiency of DR@FT, we investigate how well the at-
testee measurement agent, attestation daemon, and the attester policy analysis module
scale along with the increased complexity, and how efficiently DR@FT performs by
comparing it with the traditional approaches.

In DR@FT, the important situations influencing the attestation performance include
system updates and policy changes. Hence, we evaluate the performance of DR@FT by



DR@FT: Efficient Remote Attestation Framework for Dynamic Systems 15

changing codes and data to be measured and modifying the security policies. Based on
our study, we observe that normal policy increased or decreased no more than 40KB
when installing or uninstalling software. Also, a system administrator does not make
the enormous changes over the policy. Therefore the performance is measured with the
range from zero to around 40KB in terms of policy size.

Table 1.Attestation Performance Analysis (in seconds)

Policy Change Dynamic Static
Size TPupdate Tsend TP analysis Overhead TP send TP analysis Overhead
0 0.23 0 0 0.23 14.76 90.13 104.89
-0.002MB (Reduction)0.12 0.002 0.02 0.14 14.76 90.11 104.87
-0.019MB (Reduction)0.08 0.01 0.03 0.12 14.74 89.97 104.34
-0.024MB (Reduction)0.04 0.02 0.03 0.09 14.74 89.89 104.23
0.012MB (Reduction) 0.37 0.01 0.03 0.41 14.77 90.19 104.96
0.026MB (Addition) 0.58 0.02 0.03 0.63 14.78 90.33 105.11
0.038MB (Addition) 0.67 0.03 0.04 0.74 14.79 90.46 105.25

Performance on the attestee sideBased on DR@FT, the attestee has three main fac-
tors influencing the attestation performance. (1) Time spent for the measurement: Based
on our experimentation, the measurement time increases roughly linearly with the size
of the target files. For example, measuring policy files with 17.2MB and 20.3MB re-
quires 14.63 seconds and 18.26 seconds, respectively. Measuring codes around 27MB
requires 25.3sec. (2) Time spent for identifying policy updatesTPupdate: Based on the
specification in Section 4, policy updates are required to beidentified and sent to the
attester. As shown in Table 1, for a system policy which is thesize of 17.2MB at its
precedent state, the increase of the policy size requires more time for updating the pol-
icy and vice versa. (3) Time spent for sending policy updatesTPsend: Basically, the
more policy updates, the higher overhead was observed.
Performance on the attester sideIn DR@FT, the measurement verification is rela-
tively straightforward. At the attester side, the time spent for policy analysisTPanalysis

mainly influences its performance. As shown in Table 1, the analysis time roughly in-
creases when the policy change rate increases.
Comparison of dynamic and static attestation To further specify the efficiency of
DR@FT, we compare the overhead of DR@FT with a static attestation. In the static
approach, the attestee sends all system state information to an attester, and the attester
verifies the entire information step by step. As shown in Table 1, the time spent for the
static attestation is composed ofTPsend andTPanalysis, which represent the time for
sending policy module and analyzing them, respectively. Obviously, the dynamic ap-
proach can dramatically reduce the overhead compared to thestatic approach. It shows
that DR@FT is an efficient way when policies on an attestee areupdated frequently.

7 Conclusion
We have presented a dynamic remote attestation framework called DR@FT for effi-
ciently verifying if a system satisfies integrity protection property and indicates integrity
violations which determine its trustworthiness level. Theintegrity property of our work
is based on an information flow-based domain isolation model, which is utilized to
describe the integrity requirements and identify integrity violations of a system. To



16 Wenjuan Xu et al.

achieve the efficiency and effectiveness of remote attestation, DR@FT focuses on sys-
tem changes on the attestee side. We have extended our intuitive policy analysis engine
to represent integrity violations with the rank scheme. In addition, our results showed
that our dynamic approach can dramatically reduce the overhead compared to the static
approach. We believe such a comprehensive method would helpsystem administrators
reconfigure the system with more efficient and strategic manner.

There are several directions that our attestation framework can be extended to. First,
DR@FT can attest dynamic system configurations, but it does not attest the trustwor-
thiness of dynamic contents such as the state information related applications and the
contextual properties of CPU. Second, our risk evaluation does not explain the tolerable
risk level and relevant system properties. In addition, allverification tasks are performed
at the attester side. The attester may need to delegate some attestation tasks to trusted
components at the attestee or other trusted side. Our futurework would seek a flexible
and systematic way to address these issues.

References

1. LIM Patch. http://lkml.org/lkml/2008/6/27.
2. Trusted computing group, https://www.trustedcomputinggroup.org/home.
3. Trusted Computer System Evaluation Criteria. United States Government Department of

Defense (DOD), Profile Books, 1985.
4. A. P. Anderson. Computer security technology planning study. ESD-TR-73-51, II, 1972.
5. K. J. Biba. Integrity consideration for secure compuer system. Technical report, Mitre Corp.

Report TR-3153, Bedford, Mass., 1977.
6. S. Brin and L. Page. The anatomy of a large-scale hypertextual Web search engine.Computer

networks and ISDN systems, 30(1-7):107–117, 1998.
7. L. Chen, R. Landfermann, H. Löhr, M. Rohe, A.-R. Sadeghi,and C. Stüble. A protocol for

property-based attestation. InACM STC, 2006.
8. V. Haldar, D. Chandra, and M. Franz. Semantic remote attestation: a virtual machine directed

approach to trusted computing. InUSENIX conference on Virtual Machine Research And
Technology Symposium, 2004.

9. T. Jaeger, R. Sailer, and U. Shankar. Prima: policy-reduced integrity measurement architec-
ture. InACM SACMAT, 2006.

10. T. Jaeger, R. Sailer, and X. Zhang. Analyzing integrity protection in the selinux example
policy. In USENIX Security, 2003.

11. N. Provos, M. Friedl, and P. Honeyman. Preventing privilege escalation.12th USENIX
Security Symposium, page 11, August 2003.

12. R. Sailer, X. Zhang, T. Jaeger, and L. van Doorn. Design and implementation of a tcg-based
integrity measurement architecture. InUSENIX Security, 2004.

13. R. S. Sandhu. Lattice-based access control models.IEEE Computer, 26(11):9–19, 1993.
14. U. Shankar, T. Jaeger, and R. Sailer. Toward automated information-flow integrity verifica-

tion for security-critical applications. InNDSS, 2006.
15. S. Smalley. Configuring the selinux policy. http://www.nsa.gov/SELinux/docs.html, 2003.
16. T.Fraser. Lomac: Low water-mark integrity protection for cots environment. InProceedings

of the IEEE Symposium on Security and Privacy, May 2000.
17. W. Xu, X. Zhang, and G.-J. Ahn. Towards system integrity protection with graph-based

policy analysis. InProc. of the IFIP WG 11.3 Working Conference on Data and Applications
Security, 2009.


