
Enabling Collaborative Data Sharing in Google+
Hongxin Hu

Delaware State University,
Dover, Delaware, 19901

hxhu@asu.edu

Gail-Joon Ahn and Jan Jorgensen
Arizona State University,

Tempe, Arizona, 85287
{gahn,jan.jorgensen}@asu.edu

Abstract—Most of existing online social networks, such as
Facebook and Twitter, are designed to bias towards information
disclosure to a large audience. Google recently launched a new
social network platform, Google+. By introducing the notion
of ‘circles’, Google+ enables users to selectively share data
with specific groups within their personal network, rather than
sharing with all of their social connections at once. Although
Google+ can help mitigate the gap between the individuals’
expectations and their actual privacy settings, it still only allows
a single user to restrict access to her/his data but cannot provide
any mechanism to enforce privacy concerns over data associated
with multiple users. In this paper, we propose an approach to
facilitate collaborative privacy management of shared data in
Google+. We extend and formulate a multiparty access control
model, named MPAC+, to capture the essence of collaborative
authorization requirements in Google+, along with a multiparty
policy specification scheme and a policy enforcement mechanism.
We also discuss a proof-of-concept prototype of our approach and
describe system evaluation and usability study of our prototype.

I. INTRODUCTION

A typical OSN allows users to create connections to
‘friends’, thereby sharing with them a wide variety of personal
information. These connections, however, rarely distinguish
between different types of relationship. Even within a network
of ‘friends’, users may want to regulate the sharing of infor-
mation with different people based on their different relation-
ships. Unfortunately, most of exiting OSNs could not provide
effective mechanisms to sufficiently address how to organize
people and how to utilize relationships for privacy settings.
For example, Facebook has introduced an optional feature
called Friend Lists which allows us to group friends and
specify whether a piece of data should be visible or invisible
to a particular friend list. However, studies have consistently
shown that users struggle to adopt this feature for managing
their friends and customizing their privacy settings [10]. To
address such an issue, Google recently launched a new social
network service, namely Google+, by utilizing ‘circles’ as
its fundamental design feature for sorting connections and
enabling users to selectively share the information with their
friends, family, colleagues, etc, instead of sharing with all of
their connections [9].

Despite the fact that Google+ can help mitigate the gap
between the users’ expectations and their actual privacy set-
tings, it still only allows a single user to regulate access to
information contained in their own spaces but cannot provide
control over data residing outside their spaces. For instance, if
a user posts a comment in a friend’s space, s/he cannot specify

who can view the comment. Furthermore, when a user uploads
a photo and tags friends who appear in the photo, the tagged
friends cannot govern who can see this photo, even though the
tagged friends may have different privacy concerns about the
photo. In another example, the first privacy flaw in Google+
was identified in [1] and this flaw implies that any content
shared with a particular circle could be reshared with anyone
by someone from those circles. This problem was fixed by
Google+ by disabling limited content to be sharable publicly.
However, this solution still cannot prevent users who can
access the shared content from disseminating the content to
anyone in their circles, which may violate the original content
owner’s privacy control. Hence, it is essential to develop an
effective and flexible access control mechanism for Google+,
accommodating the special authorization requirements coming
from multiple associated users for managing the shared data
collaboratively.

In this paper, we attempt to explore a systematic method to
enable collaborative management of shared data in Google+. A
multiparty access control model is formulated for Google+ to
capture the core features of multiparty authorization require-
ments which have not been accommodated in most of existing
access control systems for OSNs so far (e.g., [2], [3]). In
particular, we introduce the notions of circle and trust into our
model, which significantly extends our multiparty authoriza-
tion framework for Facebook-style social networks [5], [7]. In
addition, our model contains a multiparty policy specification
scheme, as well as a policy evaluation mechanism, which deals
with policy conflicts by keeping the balance between the need
for privacy protection and the users’ desire for information
sharing. Moreover, we provide a prototype implementation
of our authorization mechanism, and our experimental results
demonstrate the feasibility and usability of our approach.

The rest of the paper is organized as follows. In Section II,
we articulate our proposed MPAC+ model, including MPAC+
policy specification and MPAC+ policy evaluation. The details
about prototype implementation and experimental results are
described in Section III. We conclude this paper and discuss
our future directions in Section IV.

II. MULTIPARTY ACCESS CONTROL FOR GOOGLE+
A. MPAC+ Model

An OSN system, such as Google+, typically contains a set
of users, a set of user profiles, a set of user contents, and a
set of user relationships (circles in Google+). Existing OSNs



including Google+ do not provide effective mechanism to
support collaborative privacy control over shared data. Several
access control schemes (e.g., [2], [3]) have been recently
introduced to support fine-grained authorization specifications
for OSNs. Unfortunately, these schemes also only allow a
single controller, the resource owner, to specify access control
policies. Indeed, in addition to the owner (the user owning
the content in his/her space) of content, other controllers,
including the contributor (the user publishing the content
in someone else’s space), stakeholder (the user tagged and
associated with the content) and disseminator (the user sharing
the content from someone else’s space to his/her space) of
content, need to govern the access of the shared data as well
due to possibly different privacy concerns.

In real life, users naturally group their connections (the
people they know) into social circles, and also assign them
different priorities called trust. Social circles and trust among
connections can help a user determine how to interact with
other users. The “circles” in Google+ can directly reflect the
feature of social circles in real life of a user. However, the
concept of “trust” cannot be explicitly represented in existing
OSNs including Google+. Obviously, even users in a same
circle may represent different degrees of trust, and users’
trustworthiness can be also leveraged to determine who are
authorized to access a resource. For example, a user may want
to disclose business documents to only co-workers who are
with high trust levels. Thus, in our multiparty access control
model called MPAC+, we assume users can explicitly specify
how much they trust others by assigning each of them a trust
level when they group their connections into circles in OSNs.

We now formally define our MPAC+ model as follows:
• U = {u1, . . . , un} is a set of users of the OSN. Each

user has a unique identifier;
• C = {c1, . . . , cm} is a set of circles created by users in

the OSN. Each circle is identified by a unique identifier
as well;

• O = {o1, . . . , op} is a set of contents in the OSN. Each
content also has a unique identifier;

• P = {p1, . . . , pq} is a set of user profile items in the
OSN. Each profile item is a <attribute: profile-value>
pair, pi =< attri : pvaluei >, where attri is an attribute
identifier and pvaluei is the attribute value;

• UC = {uc1, . . . , uctr} is a collection of user circle sets,
where uci = {uci1, . . . , ucis} is a set of circles created
by a user i ∈ U , where ucij ∈ C;

• UP = {up1, . . . , upv} is a collection of user profile sets,
where upi = {upi1, . . . , upiw} is the profile of a user
i ∈ U , where upij ∈ P ;

• CT = {OW,CB, SH,DS} is a set of controller types,
indicating OwnerOf, ContributorOf, StakeholderOf, and
DisseminatorOf, respectively;

• CO = {COct1 , . . . , COctx} is a collection of binary
user-to-content relations, where COcti ⊆ U×O specifies
a set of < user, content > pairs with a controller type
cti ∈ CT ;

• TL = {tl1, . . . , tly} is a set of supported trust levels,

which are assumed to be in the closed interval [0,1] in
our model;

• CUT ⊆ C×U ×TL is a set of 3-tuples < circle, user,
trust level > representing user-to-circle membership
relations (MemberOf ) with assigned trust levels;

• controllers : O
CT−−→ 2U , a function mapping each

content o ∈ O to a set of users who are the controllers
of the content with the controller type ct ∈ CT :
controllers(o : O, ct : CT ) = {u ∈ U | (u, o) ∈

COct};
• user own circles : U → 2C , a function mapping each

user u ∈ U to a set of circles created by this user:
user own circles(u : U) = {c ∈ C | (∃ucu ∈

UC)[c ∈ ucu]};
• circle contain users : C → 2U , a function mapping

each circle c ∈ C to a set of users who are the members
of this circle:
circle contain users(c : C) = {u ∈ U | (c, u, ∗) 1 ∈

CUT};
• user extended circles : U → 2C , a function mapping

each user u ∈ U to a set of circles of the user’s circles:
user extended circles(u : U) = {c ∈

C | (∃u′ ∈ circle contain users(c
′
) ∧ c

′ ∈
user own circles(u))[c ∈ user own circles(u

′
)]};

• trust level : C,U → TL, a function returning the trust
level of a user-to-circle membership relation:
trust level(c : C, u : U) = {tl ∈ TL | (c, u, tl) ∈

CUT};

B. MPAC+ Policy Specification

Our policy specification scheme is constructed based on the
proposed MPAC+ model. In our model, each controller of a
shared resource can specify one or more rules as a policy that
can govern who can access the resource.
Accessor Specification: Accessors are a set of users who
are granted to access the shared data. In Google+, accessors
can be specified with a set of circles. In addition, as we
discussed previously, trust levels can be used as constraints
on determining authorized users in our model. We formally
define the accessor specification as follows:

Definition 1: (Accessor Specification). Let ac ∈ C ∪
{All Circles} ∪ {Extended Circles} ∪ {∗} be a specific
circle c ∈ C, all circles or extended circles of the controller
who defines the policy, or everyone (*) in the OSN. Let
tlmin ∈ TL and tlmax ∈ TL be, respectively, the minimum
trust level and the maximum trust level that the users in ac
must have. The accessor specification is defined as a set,
{a1, . . . , an}, where each element is a tuple < ac, tlmin >
for positive rule (with “permit” effect) or < ac, tlmax > for
negative rule (with “deny” effect).
Data Specification: In Google+, users can share their contents,
profiles, even circles with others. To facilitate effective policy
conflict resolution for multiparty access control, we introduce
sensitivity levels for data specification, which are assigned

1“*”” is to indicate any value of the trust level within the tuple.



by the controllers to the shared data. A user’s judgment of
the sensitivity level of the data is not binary (private/public),
but multi-dimensional with varying degrees of sensitivity.
Formally, the data specification is defined as follows:

Definition 2: (Data Specification). Let dt ∈ O ∪ C ∪ P
be a data item. Let sl be a sensitivity level, which is a
rational number in the range [0,1], assigned to dt. The data
specification is defined as a tuple < dt, sl >.

Access Control Policy: To summarize the above-mentioned
policy elements, we give the definition of MPAC+ access
control rule as follows:

Definition 3: (MPAC+ Rule). A MPAC+ rule is a 5-tuple
R =< controller, ctype, accessor, data, effect >, where

• controller ∈ U is a user who can regulate the access of
data;

• ctype ∈ CT is the type of the controller;
• accessor is a set of users to whom the authorization is

granted, representing with an access specification defined
in Definition 1.

• data is represented with a data specification defined in
Definition 2; and

• effect ∈ {permit, deny} is the authorization effect of the
rule.

Note that the semantics of accessor specification,
{a1, . . . , an}, in a rule can be explained as the conjunction of
elements in accessor specification, a1∧ . . .∧an, which means
that only common users in the accessor sets defined by the
elements in accessor specification are treated as authorized
users. Also, one controller may define more than one rule in
her/his policy for a shared resource. In this case, users who
satisfy any rule in the policy are considered as authorized
users for the resource. Suppose a controller can leverage five
values: 0.00 (none), 0.25 (low), 0.50 (medium), 0.75 (high),
and 1.00 (highest) to represent both sensitivity levels and
trust levels, the following is an example rule:

Example 1: Alice authorizes users who are in both her
“Friends“ circle and her “Colleagues” circle with at least a
medium trust level to access a photo named “funny.jpg“ she
is tagged in, where Alice considers the photo with a high
sensitivity level and she is a stakeholder of the photo:
r1 = (Alice, SH, {< Friends, 0.50 >,< Colleagues,

0.50 >}, < funny.jpg, 0.75 >, permit).

C. MPAC+ Policy Evaluation

In our MPAC+ model, we adopt three steps to evaluate
an access request over multiparty access control policies as
shown in Figure 1. The first step checks the access request
against the policy specified by each controller and yields a
decision for the controller. In our MPAC+ model, controllers
can leverage a positive rule to define a set of circles to whom
the shared resource is visible, and a negative policy to exclude
some specific circles from whom the shared resource should
be hidden. A strategy called deny-overrides, which in-
dicates that “deny” rule take precedence over “permit” rule, is
adopted to achieve such an exceptional feature in our policy

Permit/DenyPermit/Deny
Fig. 1. MPAC+ Policy Evaluation Process.

evaluation mechanism. In the second step, decisions from all
controllers in response to the access request are aggregated
to make a collaborative decision for the access request. Since
these controllers may generate different decisions (permit
and deny) for the access request, conflicts may occur. The
subsequent sections will address our approach for resolving
such conflicts in detail. In addition, if the target of the
access request is a resource disseminated by a disseminator,
the third step is needed for policy evaluation. In this case,
the disseminator may specify a conflicting privacy control
over the disseminated content with respect to the original
controllers of the content. In order to eliminate the potential
disclosure risk of sensitive information from the procedure of
data dissemination, we again leverage the restrictive conflict
resolution strategy, Deny-overrides, to resolve conflicts
between original controllers’ decision and the disseminator’s
decision.

The process of conflict resolution is to make a decision to
allow or deny the requester’s access to the shared data. In
general, allowing a requester to access the content may cause
privacy risk, but denying a requester to access the content may
result in sharing loss. We adopt a privacy conflict resolution
mechanism to balance privacy protection and the users’desire
for information sharing through quantitative analysis of pri-
vacy risk and sharing loss [6].

Measuring Privacy Risk: The privacy risk of an access request
is an indicator of potential threat to the privacy of controllers
in terms of the shared content: the higher the privacy risk of
an access request, the higher the threat to controllers’ privacy.
Our basic premises for the measurement of privacy risk for an
access request are the following: (a) the lower the trust levels
of the requestor who requires the access request, the higher the
privacy risk; (b) the lower the number of controllers who allow
the requestor to access the content, the higher the privacy risk;
(c) the stronger the general privacy concerns of controllers, the
higher the privacy risk; and (d) the more sensitive the shared
data item, the higher the privacy risk.

In order to measure the privacy risk of an accessor i, denoted
as PR(i), we can use following equation to aggregate the
privacy risks of i due to different denied controllers.

PR(i) = (1− tli)×
∑

j∈controllersd(i)

pcj × slj (1)

where, tli denotes the average trust level of the accessor i;



function controllersd(i) returns all denied controllers of an
access request i; pcj denotes the general privacy concern of
a denied controller j; and slj denotes the sensitivity level of
the shared content explicitly chosen by a denied controller j.

Measuring Sharing Loss: When the decision of privacy
conflict resolution for an access request is “deny”, it may cause
losses in potential content sharing, since there are controllers
expecting to allow the requestor to access the data item.
Similar to the measurement of the privacy risk, four factors are
adopted to measure the sharing loss for a requestor. Compared
with the factors used for quantifying the privacy risk, the
difference is that we only consider allowed controllers for
evaluating the sharing loss of an accessor. The sharing loss
SL(i) of an accessor i is the aggregation of sharing loss with
respect to all allowed controllers as follows:

SL(i) = tli ×
∑

k∈controllersa(i)

(1− pck)× (1− slk) (2)

where, function controllersa(i) returns all allowed controllers
of a requestor i.

Conflict Resolution: The following equation can be utilized to
make the decisions (permitting or denying an access request)
for privacy conflict resolution.

Decision =

{
Permit if αSL(i) ≥ βPR(i)
Deny if αSL(i) < βPR(i)

(3)

where, α and β are preference weights for the privacy risk
and the sharing loss, 0 ≤ α, β ≤ 1 and α+ β = 1.

III. IMPLEMENTATION AND EVALUATION

A. Prototype System Implementation

We implemented a proof-of-concept social network appli-
cation to demonstrate collaborative management of photos,
called Sigma (http://apps.facebook.com/sigma tool). The in-
tent of the application is to allow users to collaboratively
share photos in Google+ based on our approach. However,
constrained by current lack of development API for Google+,
our implementation is a Facebook application using Facebook
users’ data to simulate an environment like Google+.

Figure 2 shows the architecture of Sigma. The application is
hosted on an external web server, but uses Facebook’s graph
API and Facebook Query Language to retrieve user data. A
minimal amount of data is kept on the server itself, but our
application allows users to save their settings and check access
to their photos based on the result of the multiparty policy
evaluation.

Sigma consists of two major parts, a circle management
module and a photo management module. The circle manage-
ment module, shown in Figure 3 (c), allows users to sort their
friends into circles based on their existing Facebook friend
lists. It also allows them to set trust levels by friend or by
circle. For the performance purpose in using the application,
setting the trust level for a circle applies it to all individual

Approve PermissionsLog in Friends Circles TrustSettings
Fig. 2. System Architecture of Sigma.

users in that circle in our current implementation. In a real-
life implementation, the function of circle trust level would
depend on the type of circle. If it is a trust-based circle, trust
level may be used as an indication of which users to place in
that circle. If it is a group-based circle, it might display an
average trust level of all the users.

In the photo management module of Sigma, Figure 3 (a)
depicts the policy setting. Three options are presented and
then joined by union for the ultimate policy. The controller
indicates a set of circles and/or users who may access the
photo, a set of circles of which the intersection of users may
access the photo, and a set of circles and/or users who may not
access the photo. The controller may also optionally indicate
a minimum trust level for a “permit” policy or a maximum
trust level for a “deny” policy to additionally restrict photo
sharing. If the controller is the owner of selected photo, s/he
can adjust the weights to balance privacy protection and data
sharing of the photo. In addition, since malicious users may tag
themselves to a photo and specify privacy policies to influence
the sharing of the photo, the photo owner can verify the tagged
users and has the ability to disable fake stakeholders to control
the photo in the privacy setting. To allow the users of the
prototype application to check the impacts of collaborative
control against their privacy settings, users are able to check
friends’ access to the photo in Sigma as shown in Figure 3 (b).

B. Prototype System Evaluation

1) User Study: We conducted a user study to test the
usability of Sigma. 2 We had 42 users use the application
and answer a survey to indicate their preferences in social net-
works. We recruited through University mailing lists, Google+
and Facebook. Of our respondents, 71.4% were 18-24, 21.4%
were 25-34, and 7.1% were 35-54 years old. Some questions
were “ranking” questions, where users were asked to rank
certain things by preference. Responses were then assigned
a weight of (n-r) where n is the total number of data items to
rank and r is the rank assigned. Therefore, rating something

2http://edu.surveygizmo.com/s3/779289/Sigma-User-Study



Fig. 3. Sigma Interfaces.

3 out of 5 gives a score of 2. Responses from all users are
then totaled for comparison.
Prior to using Sigma: Part of the purpose of the user study was
to understand the demand for a collaborative data management
system that balances privacy protection with data sharing.
When asked whether privacy or sharing was more important,
half of respondents rated them as equally important (with
32.1% finding choosing privacy and 17.9% choosing sharing),
so we know both are necessary when determining an approach
to data management in OSNs.

When asked to rank preferences when tagged in a photo,
users indicated that protecting their privacy was the most
important to them (a score of 79), with sharing with friends
and protecting other users’ privacy were ranked closer to each
other (53 and 41, respectively). Asked to rank preferences
when a user owns a photo, they indicated protecting their own
privacy and sharing closely (92 and 81), with protecting tagged
users’ privacy (65) still somewhat important and allowing
tagged users to share with their friends (42) last.

When a user is tagged, we can see that protecting their
own privacy is important. Since in a normal social network a
tagged user has little protection compared to the owner, we
can interpret this as a desire for more control over tagged
photos, since the current approach allows the owner to override
control. When a user owns a photo, they consider privacy
protection and sharing loss about equal, but they consider
protecting tagged users’ privacy important as well (a score
of 65 indicates that some users ranked it as at least the 2nd
most important).
After Using Sigma: We collected some Facebook usage statis-
tics to determine the need for collaborative photo management.
We define need as the presence of more than one party

interested in a photo (the number of controllers is greater than
one). We can estimate from the data that, in owned photos,
there is on average at least two tagged users for every five
photos. More importantly, about 15% of owned photos have
at least two tagged users, and about 5% have three or more.
This means in an only-owner-control approach for privacy
management, a sizable number of users is being ignored in
determining privacy settings for those photos.

We also asked users to rank their preferences for various
parts of our system as they tried it out. For a user management
system, users ranked their preferences as shown in Table I.
Users ranked the ability to indicate trust almost as important as
simplicity, meaning they reacted very positively to this feature
of our system.

TABLE I
IMPORTANCE OF FEATURES IN USER MANAGEMENT.

Rate the features of this or a similar user Weighted Score
management system in order of importance
Simplicity 146
Ability to indicate trust 115
Automatically sorting friends 93
Visual interface 90
Recommending trust levels for friends 76
Recommending circle placement 68

We then again asked users to rank preferences in sharing,
but for three scenarios: when the user is a stakeholder, when
the user is an owner, and in general when collaboratively
controlling a photo (Table II). In all three situations, the user
ranked protecting one’s own privacy as the most important.
This may seem obvious, but it is important to note that this
suggests they find protecting one’s privacy as a stakeholder
equally important to protecting one’s privacy as an owner
(supporting the need for collaborative control). Users indicated
that when they were tagged, having an equal say to the owner
was least important, so if the owner has more control in the
system (such as setting weights in our system) it is permissible
as long as the stakeholders have a say. In general and as an
owner, users indicated that owner control was second-most
important, which further supports the need for some additional
owner controls like ours in a collaborative approach.

TABLE II
IMPORTANCE OF FEATURES IN COLLABORATIVE SHARING.

Rate the following in order of importance when Weighted Score
collaboratively sharing a photo
Tagged
Protecting my privacy 99
Ability to prevent users from viewing photo 83
Ability to allow users to view photo 76
Sharing 59
Having an equal say to the owner 58
Owned
Protecting my privacy 95
Having complete control 89
Preventing fake tagged users from controlling 72
Sharing 61
In General
Protecting privacy 80
Giving the owner control 72
Giving tagged users control 52
Allowing users to share 46

2) Effectiveness Evaluation: To evaluate the effectiveness
of our approach, we compare the outcome, on a single-
accessor basis, of a policy set in Google+ to a policy set in



Sigma. The metric we use for evaluation is the total Privacy
Risk (PR) plus the total Sharing Loss (SL) from all controllers
based on the outcome of the access attempt.

We evaluate the outcome in a few cases. The outcome is
a measurement of average expected privacy risk and sharing
loss (which uses average trust levels and average sensitivity
levels). It should be noted, however, that higher trust or lower
sensitivity would simply lower the magnitude of the final
measurements and lower trust or higher sensitivity would
simply increase the magnitude of the final measurements,
but the comparison still holds. Additionally, since we are
evaluating on a single-accessor basis, number of friends or
circles allowed or denied do not affect the results.

One case is trivial: in both Google+ and Sigma, if all users
agree on the same privacy setting, there are no conflicts to
resolve. The result is 0 PR and 0 SL in either Google+ or
Sigma. This is considered the best case. The rest of the cases
and evaluation results are shown in Figure 4.

Fig. 4. Privacy Risk and Sharing Loss in Google+ and Sigma in Six Cases.

Case 1 is in Google+ (or any owner-override situation)
where all of the stakeholders in a photo disagree with the
owner. This is a worst-case for Google+. This can be compared
with Case 6, which is the same access decision in Sigma.
In Google+ the privacy risk or sharing loss grows with each
non-owner controller, as his or her decision is being violated.
In Sigma, this is only slightly different from the best-case
scenario. In Cases 2-5, half of the stakeholders agree with the
owner. In Case 2, the owner allows in Google+ and in Case
3 the owner denies in Sigma. In Case 4 the owner denies in
Google+ and in Case 5 the owner allows in Sigma. This can be
considered an “average case”. In these cases, Sigma’s scores
increase at the same rate as Google+. This shows that Sigma
is at least as good as Google+, until one considers the fact
that this “average case” for Google+ is actually the worst case
for Sigma.

It is important to note that the rate of PR or SL as number
of controllers increases is at most 1/2 in Sigma. This is due
to the fact that the maximum proportion of controllers whose
preferences are being violated is 1/2, since (given the same
sensitivity and trust settings) more than 50% controllers in
agreement determine the decision. In Google+, this is not the

case. In fact, PR or SL will increase for every new controller
who disagrees with the owner since the decision is never
changed. This is why Cases 2 and 4 increase at the same rate
as Sigma’s maximum rate in Cases 3 and 5 – every second
controller disagrees with the owner. Thus, Sigma’s worst case
is at least as effective at giving user preference as Google+
and can only be better in other cases.

IV. CONCLUSION AND FUTURE WORK

In this paper, we have proposed a novel mechanism for
collaboratively controlling the shared data in Google+. A
multiparty access control model has been formulated. A proof-
of-concept implementation of our solution called Sigma and
the system evaluation of our approach have been discussed as
well. As part of our future work, we will implement and eval-
uate our approach in Google+ platform once Google releases
the Google+ application development API. In addition, we
would study inference-based techniques [11] for both smarter
circle management and automatic configuration of privacy
preferences in Google+. Moreover, we plan to conduct model
and policy analysis [4], [8] for multiparty access control in
OSNs.

ACKNOWLEDGMENTS

This work was partially supported by the grants from
National Science Foundation (NSF-IIS-0900970 and NSF-
CNS-0831360).

REFERENCES

[1] The first google+ privacy flaw, 2011. http://blogs.ft.com/fttechhub/2011/
06/google-plus-privacy-flaw/#axzz1cxeoa9LS.

[2] B. Carminati, E. Ferrari, and A. Perego. Enforcing access control in web-
based social networks. ACM Transactions on Information and System
Security (TISSEC), 13(1):1–38, 2009.

[3] P. Fong. Relationship-Based Access Control: Protection Model and
Policy Language. In Proceedings of the First ACM Conference on Data
and Application Security and Privacy. ACM, 2011.

[4] H. Hu and G. Ahn. Enabling verification and conformance testing for
access control model. In Proceedings of the 13th ACM symposium on
Access control models and technologies, pages 195–204. ACM, 2008.

[5] H. Hu and G. Ahn. Multiparty authorization framework for data sharing
in online social networks. In Proceedings of the 25th annual IFIP WG
11.3 conference on Data and applications security and privacy, pages
29–43. Springer-Verlag, 2011.

[6] H. Hu, G. Ahn, and J. Jorgensen. Detecting and resolving privacy
conflicts for collaborative data sharing in online social networks. In
Proceedings of the 27th Annual Computer Security Applications Con-
ference, ACSAC’11, pages 103–112. ACM, 2011.

[7] H. Hu, G. Ahn, and J. Jorgensen. Multiparty access control for
online social networks: model and mechanisms. IEEE Transactions on
Knowledge and Data Engineering, pp(99), 2012.

[8] H. Hu, G. Ahn, and K. Kulkarni. Anomaly discovery and resolution in
web access control policies. In Proceedings of the 16th ACM symposium
on Access control models and technologies, pages 165–174. ACM, 2011.

[9] S. Kairam, M. Brzozowski, D. Huffaker, and E. Chi. Talking in circles:
selective sharing in google+. In Proceedings of the 2012 ACM annual
conference on Human Factors in Computing Systems, pages 1065–1074.
ACM, 2012.

[10] Y. Liu, K. Gummadi, B. Krishnamurthy, and A. Mislove. Analyzing
Facebook Privacy Settings: User Expectations vs. Reality. In Proceed-
ings of the 2011 annual conference on Internet measurement (IMC’11).
ACM, 2011.

[11] A. Squicciarini, S. Sundareswaran, D. Lin, and J. Wede. A3p: adaptive
policy prediction for shared images over popular content sharing sites. In
Proceedings of the 22nd ACM conference on Hypertext and hypermedia,
pages 261–270. ACM, 2011.


