
Grus: Enabling Latency SLOs for GPU-Accelerated
NFV Systems

Zhilong Zheng†, Jun Bi†, Haiping Wang†, Chen Sun†, Heng Yu†, Hongxin Hu§, Kai Gao†, Jianping Wu†
†Institute for Network Sciences and Cyberspace, Tsinghua University

†Department of Computer Science, Tsinghua University
†Beijing National Research Center for Information Science and Technology (BNRist)

§School of Computing, Clemson University

Abstract—Graphics Processing Unit (GPU) has been recently
exploited as a hardware accelerator to improve the performance
of Network Function Virtualization (NFV). However, GPU-
accelerated NFV systems suffer from significant latency variation
when multiple network functions (NFs) are co-located in the
same machine, which prevents operators from supporting latency
Service Level Objectives (SLOs). Existing research efforts to
address this problem can only guarantee a limited number of
SLOs with very low resource utilization efficiency. In this paper,
we present the Grus framework to support latency SLOs in GPU-
accelerated NFV systems. Grus thoroughly analyzes the sources
of latency variation and proposes three design principles: (1)
dynamic batch size setting is needed to bound packet batching
latency in CPU; (2) a reordering mechanism for data transfer
over PCI-E is required to guarantee the stalling time; and
(3) maximizing concurrency in GPU is necessary to avoid NF
execution waiting time. Guided by the principles, Grus consists
of two logical layers including an infrastructure layer and a
scheduling layer. The infrastructure layer is equipped with an
in-CPU Reorder-able Worker Pool that could adjust batch size
and packet transfer order, and in-GPU Controllable Concurrent
Executors to provide maximized concurrency. The scheduling
layer runs a heuristic algorithm to perform accurate and fast
scheduling to guarantee SLOs based on our prediction models.
We have implemented a prototype of Grus. Extensive evaluations
demonstrate that Grus can significantly reduce latency variation
and satisfy 4.5 × more SLO terms than state-of-the-art solutions.

I. INTRODUCTION

Network Function Virtualization (NFV) was recently in-
troduced to address the limitations of traditional dedicated
middleboxes. NFV implements network functions (NFs) on
commodity hardware to improve service delivery flexibility
and reduce overall costs. However, due to the adoption of
virtualization techniques, software-based NFs suffer from low
performance with respect to both latency and throughput [1],
[2]. In response, recent research efforts have proposed to
introduce Graphics Processing Units (GPUs) with massive
computing cores [3] as hardware accelerators to enhance the
performance of a wide range of NFs, such as routing [4],
NIDS [5], and IPSec [6], [7]. The high performance brought
by GPU enables operators to provide performance Service
Level Objectives (SLOs) [8] of latency and throughput when
processing multiple flows in NFV [8], [9].

However, when consolidating multiple NFs in one host,
current GPU-accelerated NFV systems suffer from significant
latency variation for each NF, making it challenging to effec-

tively guarantee latency SLOs [8]. According to our evaluation
in §II-A, the latency of a firewall increases as much as 2.1×
after starting nine other NFs in the same GPU. Such high
latency variation prevents operators from guaranteeing latency
SLOs for latency sensitive applications, such as web search,
online retail, and algorithmic stock trading [2].

Some research efforts have been devoted to guaranteeing
latency in GPU-accelerated NFV systems. A typical packet
processing pipeline of GPU-accelerated NFV systems is as
follows. CPU first collects packets from network interface
cards (NICs) and then delivers them to GPU through Periph-
eral Component Interconnect Express (PCI-E). GPU executes
NF logic on packets, after which CPU copies packets back and
sends them out. Existing researches focus solely on guarantee-
ing latency of one stage of the above pipeline. ResQ [8] pro-
visioned latency guarantee for NFs in CPU. Silo [10] ensured
latency during packet transmission between network devices.
Baymax [11] provided QoS in latency inside GPU. However,
above solutions fail to support effective and efficient SLO
guarantee in GPU-accelerated NFV context in two aspects.
First, solutions that guarantee latency in GPU [11], [12] could
only support a limited number of concurrent tasks, resulting in
very a low GPU utilization efficiency [12]. We will illustrate
in §II-A that current solutions can only support a small set
of SLOs with near up to 75% of GPU resources left vacant.
Second, there is no coordinated scheduling solutions to jointly
enforce latency guarantee in CPU, PCI-E, and GPU, which
makes it challenging to guarantee end-to-end latency of the
entire pipeline in GPU-accelerated NFV systems.

To address the above problems, we construct a latency
model by performing a thorough analysis of each step in the
packet processing pipeline to understand which steps may in-
troduce latency and why latency variation occurs. We observe
that the sources of latency variation are mainly threefold.
• CPU collects packets as batches. Currently the batch size

is statically configured regardless of incoming packet rate.
However, as packet rate drops, it takes longer time to collect
a full batch of packets, causing latency variation.

• CPU transmits prepared packet batches to GPU over PCI-
E. Due to the serial nature of PCI-E [13], concurrent NFs
have to contend to monopolize PCI-E. Therefore, the unpre-
dictable stalling time due to contention adds to variation.

• The current task scheduler in GPU provides limited con-

currency. Multiple NFs have to wait for free task executors.
Such unpredictable waiting time also incurs variation.
According to latency variation sources, we propose three

design principles to guarantee latency. First, dynamic batch
size setting is necessary to bound the time of batching incom-
ing packets to adapt to dynamically changing traffic. Second,
a reordering mechanism for data transfer is required to
achieve predictable stalling time on PCI-E. Third, maximizing
concurrency and minimizing interference for task execution
are essential to avoid waiting time in GPU.

Guided by the above design principles, in this paper, we
present Grus, a framework to enforce latency SLOs in GPU-
accelerated NFV systems. Grus consists of two logical layers
including an infrastructure layer and a scheduling layer. We
introduce three core components in the infrastructure layer.
First, we design an in-CPU Reorder-able Worker Pool that
could enable workers to adjust batch size and transfer data
in a specific order according to scheduling policy to bound
latency for packet batching in CPU and data transfer over PCI-
E. Second, the default hardware scheduler in GPU is a black
box that cannot be customized to provide maximum execution
concurrency. In response, we design an in-GPU Controllable
Concurrent Executor that circumvents the default GPU sched-
uler and provides maximum concurrent execution units for
NFs. Third, we propose an in-GPU NF Assignment Table that
enables launching NF kernels on a specific set of executors to
make NF waiting time short and predictable. In the scheduling
layer, Grus introduces a Latency SLO-aware Scheduler that
jointly manages all resources and makes scheduling decisions
to meet latency SLOs based on our Prediction Models. To
make scheduling fast, we propose a heuristic algorithm to
quickly find a feasible scheduling solution for all SLOs. In
summary, Grus makes the following contributions:
• We identify the latency variation in GPU-accelerated NFV

systems (§II), create a latency model by thoroughly analyz-
ing each step of the processing pipeline, and present three
design principles to guarantee latency (§III).

• We propose Grus, a GPU-accelerated NFV system, which
enables latency SLOs for multiple co-located NFs. Grus
introduces a new infrastructure design (§IV) and scheduler
design (§V) to effectively enforce latency SLOs.

• We implement a prototype of the Grus system and perform
extensive experiments. Evaluation results demonstrate that
Grus can effectively guarantee latency and satisfy 4.5 ×
more SLO terms than state-of-the-art solutions. (§VII).
We discuss the design limitations of Grus in §VI. Specif-

ically, Grus does not handle PCI-E contention during data
transfer from GPU to CPU after packet processing in GPU.
Moreover, Grus focuses on enabling latency SLOs for a single
NF, which is the first step towards guaranteeing the latency of
an entire chain.

II. MOTIVATION AND CHALLENGES

A. Background and Motivation

Background. A modern programmable GPU acts as a co-
processor that receives the code (called “kernels”) and data

0% 0% 0% 0% 0% 0% 1% 2% 2%

2 3 4 5 6 7 8 9 10
0

50

100

150

200

Pe
rf

or
m

an
ce

D
eg

ra
da

tio
n

(%
)

Number of Co-located NFs

 Throughput Drop Latency Increase

Fig. 1: Average latency increase of a firewall when starting
other NFs in the GPU-accelerated NFV system

from the host CPU. GPUs have on-board device memory,
so data must be copied in from the server’s main memory
(“host memory”) over the PCI-E bus after the workers in CPU
prepare enough data (e.g., a batch of packets). Then GPU will
process the data and inform CPU to copy processed data back
to host memory.

Adopting GPU as an accelerator has been shown to enable
high-performance NFs by many existing research works [3]–
[5], [7], [12], [14]–[16]. For example, PacketShader [4] pre-
sented a high-performance router by offloading workloads
to GPUs. MIDeA [14] and Kargus [5] introduced a high-
performance NIDS based on GPU. NBA [3] and GASPP [7]
presented a general GPU-based framework to boost the per-
formance of a wide range of NFs. G-NET [12] is the state-
of-the-art work that aims to improve the utilization while
achieving predictable latency for one solely running NF in
GPU. However, according to our experiments, above efforts
cannot guarantee end-to-end latency in GPU-accelerated NFV
networks. Next, we will introduce the significant latency
variation without effective guarantee methods. Then we reveal
the insufficiency of existing techniques to provide latency
guarantees in GPU-accelerated NFV.
Latency variation in GPU-accelerated NFV systems. To
illustrate the performance variation of co-located NFs in GPU-
accelerated NFV systems, we build a system based on the
architecture and design from NBA [3]. We use a testbed with
a server equipped with an NVIDIA Titan Xp GPU and a server
as the traffic generator that generates a modest traffic rate of
2 Gbps of each flow, with the packet size distribution derived
from [17] (more details are stated in §VII). We use the firewall
NF in this experiment and measure the latency variation of the
initial firewall instance when starting zero to nine new firewall
instances (each processes different flows) in the same server.

Fig. 1 shows the latency variation of the initial firewall
instance. We observe that as more NFs run concurrently, the
average latency of the initial firewall increases significantly.
Two more co-located NFs increases the latency of the initial
firewall by 0.19×. When we start nine other NFs, the initial
firewall suffers from a 2.1× latency increase. We also notice
that there is no obvious throughput drop when starting one to
nine co-located NFs. The above observations motivate us to
guarantee latency for NFs in GPU-accelerated NFV systems..
Insufficiency of existing solutions. Many prior efforts have
proposed solutions to provide guaranteed performance on one
of the shared resources in GPU-accelerated NFV pipeline [8],
[10], [11], [18]–[20]. A strawman approach is to naively com-

bine solutions for CPU, data transfer, and GPU to guarantee
latency of the entire pipeline. However, as mentioned above,
we identify two major shortcomings of this approach.

First, current solutions that guarantee latency in GPU [11],
[12] provisions very limited concurrency. The default GPU
task scheduler provides a limited number of concurrent ex-
ecutors named Streaming Multiprocessors (SMs) that could
execute tasks in parallel [11]. Threads in GPU are equally
divided to each SM in the granularity of Warp. Warp is the
basic scheduling unit in a GPU, which contains 32 threads.
Each SM may contain 64 or more warps according to the
GPU model. For mainstream GPU applications such as big-
data analytics [21] and machine learning [22], one application
could fully occupy the resource of one or multiple SMs, which
could achieve a high utilization efficiency of GPU. However,
NFs in NFV are typical narrow tasks that usually occupies
less than 16 warps in an SM [23]. Allocating an entire SM to
an NF significantly compromises thread utilization efficiency.
If we assign multiple NFs to an SM, NFs have to wait in line
for execution, adding to unpredictable waiting time that may
violate SLOs. Therefore, current solutions can only satisfy a
limited number of SLOs. Suppose an NF consumes 16 warps
in an SM equipped with 64 warps. We can only support a
limited set of latency SLOs with 75% GPU resource vacant.

Second, existing solutions that enable guaranteed latency fo-
cus on either CPU [8], packet transmission [10], or GPU [11],
[20], [24] individually, but not together. There is no coordi-
nated scheduling solutions to jointly enforce latency guarantee
in CPU, PCI-E, and GPU. However, in GPU-accelerated NFV,
latency SLOs regulate the end-to-end latency [10] of packets
across the entire processing pipeline. Without coordinated
scheduling, we cannot decide how much latency budget can
be allocated to each resource type, making it unavailing to
guarantee latency in each resource respectively.
Grus. Based on above motivations, we propose a novel
framework, Grus, to guarantee latency in GPU-accelerated
NFV networks. With coordinated scheduling, Grus targets at
reducing NF latency variation and supporting the maximum
number of latency SLOs in GPU-accelerated NFV systems.

B. Design Challenges

We encounter three major challenges in the design of Grus.
Identifying the sources of latency variation. A GPU-
accelerated NFV system is a heterogeneous platform with
multiple types of resources, which introduces many potential
causes of latency variation. Thus it is challenging to identify
variation sources and build the latency model for scheduling.
In response, Grus thoroughly analyzes the packet processing
pipeline and presents our latency model (§III).
Infrastructure design to support latency SLOs. Enforcing
latency SLOs in GPU-based NFV incurs several concerns on
the infrastructure design. First, current infrastructure in CPU
does not allow changing batch sizes or assigning transmission
orders of packets over PCI-E. To address this challenge,
we design a Reorder-able Worker Pool in CPU to support
dynamic batching and transfer ordering. Second, the default

GPUPCI-ECPU

Packet
Batching

Processing

Pre-processing

Post-processing

Transfer

CPU to GPU

GPU to CPU

NF Kernel
Execution

Fig. 2: A typical GPU-accelerated NF processing pipeline

GPU scheduler cannot be customized to provide adequate
concurrency, making it challenging to effectively guarantee
latency SLOs in GPU. In response, Grus circumvents the
default GPU scheduler and designs Controllable Concurrent
Executors to execute NFs with maximal concurrency (§IV).
Scheduler design to ensure accurate and fast scheduling.
Finally, we are challenged to design a coordinated, accurate,
and efficient scheduler across heterogeneous resources to
guarantee latency SLOs of multiple NFs. Due to resource
constraints, not all SLOs can be satisfied (or admitted [10])
and we are challenged to find the maximal set of SLOs that
can be supported by the system. In response, we propose the
Grus scheduler that targets at maximizing the admitted SLOs
in an accurate and fast fashion (§V).

III. LATENCY ANALYSIS AND DESIGN OVERVIEW

In this section, we first identify the sources of latency
variation in a GPU-accelerated NFV systems. Based on our
analysis, we propose three design principles to guarantee
latency. Finally, we present the design overview of Grus.

A. Understanding Latency Variation of GPU-accelerated NFs

Fig. 2 shows a typical GPU-accelerated NF processing
pipeline, where a packet travels through multiple types of
resources (e.g., CPUs, PCI-E and GPUs). We identify four
major components that introduces latency in the pipeline:
(1) a worker thread in CPU first fetches packets from NICs
and batches them together; (2) according to NF specification,
the worker thread would pre-process packets before sending
packets into GPU, and post-process them after retrieving from
GPU; (3) the worker thread transfers the packet batch from
host memory to GPU memory via PCI-E; and (4) the worker
thread launches NF kernels to process packets in GPU.

When multiple NFs are competing for resources in a con-
solidated system, each component may suffer latency variation
and cause SLO violations. Next we discuss how they can vary
when co-locating with other NFs and how to bound them to
achieve guaranteed latency.
Packet batching: variation due to traffic dynamics. Traffic of
NFs could be dynamically changed due to diverse SLO spec-
ifications for throughput. Intuitively we know that different
traffic rates could vary the time of packet batching with a fixed
batch size (i.e., the number of packets in a batch). To study
the impact of traffic dynamics over packet batching latency,
we measure how the batching time changes when we vary the
traffic rate. As shown in Fig. 3(a), we observe that the batching
time is varied a lot for a fixed size with different traffic rates.
Moreover, the traffic of an NF is also dynamically changed
at runtime when dynamic-SLOs are required [8]. Hence, if

128 256 384 512 640 768 896 1024
0

500
1000
1500
2000
2500
3000

T
im

e
(u

s)

Batch Size

 1Gbps 2Gbps 3Gbps

(a) Average batching time with dif-
ferent batch sizes and packet rates

10
20
30
40

T
im

e
(u

s)

IPv4router Firewall NIDS IPSec0
25
50
75
100

H
it

R
at

io
 (%

)

 1MB 16MB 32MB

NF Type

(b) Average CPU processing time and
LLC hit ratio with different LLC sizes

2 4 6 8 10 12

40

80

120

160

 T
im

e
(u

s)

Number of Co-located NFs

(c) Average data transfer time with
different number of co-located NFs

2 4 6 8 10 121

500

1000

1500

2000

2500

T
im

e
(u

s)

Number of Co-executing Kernels

 Temporal sharing
 Spatial sharing

(d) Average kernel execution time with
different number of co-located NFs

Fig. 3: Latency of an NF for packet batching, CPU
processing, PCI-E transferring, and GPU execution

the batch size is not adjusted according to the traffic rate,
the batching time can vary significantly. A naive approach is
to adopt a small batch size so that the batching time tops at
an endurable level when traffic rate drops. However, it would
sacrifice throughput when packet rate increases [3], [16], [25].

Pre-/post-processing: near zero variation. Normally, appli-
cations running in a CPU may contend computing resources,
such as CPU cycles and caches. However, existing NFV
solutions [1]–[3], [26] demonstrate that a today’s NF usually
runs on a dedicated CPU core, which eliminates contention
over CPU cycles among NFs. Therefore, as mentioned in
recent work [8], [27], we consider the contention over last-
level cache (LLC) as the potential cause of time variation.
To study its impact in GPU-accelerated NFV context, we
isolate different sizes of LLC to different NFs and measure the
processing time. We use Intel Cache Allocation Technology
(CAT) [28] to isolate LLC to a dedicated core (i.e., an NF).
As the upper half of Fig. 3(b) shows, we discover that there
is almost no variation of the pre-/post-processing time in all
four NFs we measured when allocating different amounts of
LLC. For example, this time of an NIDS is 31µs, 31 µs and
32 µs with 32 MB, 16 MB, and 1 MB LLC respectively.
To understand the results, we use Intel Performance Counter
Monitor (PCM) [29] to monitor the cache hit ratio of LLC. The
lower half of Fig. 3(b) shows that for an NF with different LLC
allocations, the cache hit ratio almost never changes. This is
because most compute-intensive instructions are relieved from
CPU to GPU. Thus, we conclude that the time of pre-/post-
processing suffers from near zero variation.

PCI-E transfer: variation due to contention. Prior
works [11], [12] have revealed that the time of transferring on
PCI-E is only relevant to the size of transferred data. However,
transferring over PCI-E is serial [13]. When multiple packet
batches belonging to different NFs contend for PCI-E, the
transfer time of a packet batch can be varied out of control

due to uncertain queuing and waiting. Fig. 3(c) shows that the
transfer time of a packet batch (batch size is 256) of a firewall
increases significantly when more NFs contending to PCI-E.
Kernel execution: variation due to task waiting. For an
NF kernel that executes on GPU solely, its execution time
is relevant to kernel’s complexity and data size (i.e., batch
size) [11], [12]. State-of-the-art GPUs [12], [30] support
sharing a GPU via two ways, temporal sharing and spatial
sharing. However, even if the above two sharing approaches
are enforced, the execution time still increases as shown
in Fig. 3(d). We observe that temporal sharing increases
the execution time significantly. This is because temporal
sharing delays executions until another NF yields the whole
GPU. Hence, waiting for execution significantly increases the
overall latency. Meanwhile, spatial sharing supports concurrent
executions and could potentially eliminate waiting. However, it
still introduces significant latency variation once the number of
NFs increases, which happens due to the limited concurrency
(we will provide more details in §IV). It exposes the need for a
highly concurrent spatial sharing mechanism to GPU resource
to serve more kernels at the same time.

B. Latency Model and Design Principles

Based on above analysis, in a GPU-accelerated NFV system
with multiple co-located NFs, the end-to-end latency of an
NF includes: the time of packet batching Tbatching , pre-/post-
processing Tpre post, PCI-E transfer waiting Tw transfer, data
transfer over PCI-E Ttransfer, NF kernel execution waiting
Tw execution, and NF kernel execution in GPU Texecution. We
model the latency Tnf as follows.

Tnf = Tbatching + Tpre post

+ (Tw transfer + Ttransfer)

+ (Tw execution + Texecution)

(1)

Among them, Ttransfer, Tpre post and Texecution are predi-
cable, while others may introduce unexpected variation. Thus,
we present three design principles to enable latency SLOs.
First, an adaptive batch size setting is necessary to bound
Tbatching with the requirement of dynamically changeable
traffics. Second, a reordering mechanism for data transfer
is required to achieve predictable stalling for Tw transfer on
PCI-E. Third, maximizing concurrency and minimizing inter-
ference for task execution are essential to eliminate waiting
time on GPU, i.e., Tw execution.

C. Grus Design Overview

Guided by the above design principles, we introduce Grus
with an infrastructure layer and a scheduling layer to provide
guaranteed latency for co-located NFs in GPU-accelerated
NFV. Fig. 4 presents the Grus system overview. In the infras-
tructure layer, we first introduce a Reorder-able Woker Pool
that performs concurrently requested data transfer over PCI-E
in a configurable order. Additionally, we design Controllable
Concurrent Executors that could maximize NF execution
concurrency. Finally, we introduce an NF Assignment Table

Reorder-able	Worker	Pool

Latency	SLO-aware	Scheduler

Worker

…

Prediction
Models

Timeslot
based	runtime

Dynamic	
batcher

PCI-E

Controllable	Concurrent	 Executor

SM	#n
Dispatcher

Executor…Executor

Execution	Table

NF	Assignment	Table

CPU

Timeslot	allocator

Infrastructure	Layer
Scheduling	Layer

Control
Data

Executor

SLOs

…

GPU

N
etw

ork	Interface	Card	(N
IC)

Fig. 4: Grus design overview
that maintains information about pending NFs as well as com-
pleted NF tasks. The scheduling layer is equipped with two
logical components including Latency Prediction Models and
a Latency SLO-aware Scheduler. We maintain a set of latency
prediction models to predict the processing time of packet
batching, data transfer, and NF kernel execution. The scheduler
takes the prediction models and requested SLOs as input to
accurately and quickly produce an optimal batch size and order
for each SLO term. We present detailed infrastructure design
in §IV, and scheduling layer design in §V.

IV. INFRASTRUCTURE LAYER DESIGN

In this section, we introduce detailed design of three com-
ponents in Grus’s infrastructure: Reorder-able Worker Pool,
Controllable Concurrent Executors, and NF Assignment Table.

A. Data Transfer in Order: Reorder-able Worker Pool

Each NF has its own corresponding worker, which is run
in dedicated CPU cores. When multiple workers request data
transfer over PCI-E simultaneously, a specific order should
be assigned to guarantee data transfer latency. A strawman
mechanism is to design a centralized data transfer engine that
handles data transfer for all workers [11]. Workers delegate
data transfer tasks to the engine, which assigns orders to each
task and performs transfer accordingly. However, this solution
has two major shortcomings. First, now that the centralized
engine has to receive all transfer requests and enforce the
transfer tasks, it may be heavily burdened and become the
performance bottleneck. Second, a worker has to ensure that
the data transfer is finished, after which it can launch the
NF kernel in GPU. Thus, the worker must stall and perform
synchronization with this engine to check transferring status,
which fully occupies the CPU in the worker, delays packet
batching, and seriously compromises performance.

To provide an effective reordering mechanism with low
overhead, we design a Reorder-able Worker Pool in CPU. The
key idea is to decouple order assignment and data transfer
by enabling workers to obtain orders from the centralized
engine and transfer data via themselves. However, after an
order is assigned to a worker, it has to synchronize with other
workers to wait until workers with frontier orders finish data
transfer, which still introduces performance overhead. Inspired
by [31], we enable allocating timeslot for each worker as an
indicator of the order. A timeslot directly regulates when the

SM	#0

Thread	#0

Thread	#1

Thread	#m

Entry	#0

Entry	#1

Entry	#m

Executor	#0

128	threads	
per	executor

� Task
polling

Executor	#1

Executor	#m

� Task	
assignment

NF	tasks	
for	

SM	#0

…

NF	tasks	
for	

SM	#n Dispatcher Execution	Table	
(Local	Memory)

Concurrent	
Executors

SM	#n

� Task	
fetching

NF	Assignment	
Table

(Global	Memory)

. . .

Thread	#0
Thread	#1

…
Thread	#127.

Fig. 6: Task scheduling in GPU based on NF Assignment
Table and Controllable Concurrent Executors in SMs

2). Next the runtime enters a loop. It first checks whether a
batch of packets is prepared. If so, it sends a request to the
allocator (line 4-5). Afterwards, it attempts to get a timeslot
from timeslot buffer (line 11). If no timeslot is available, it
goes back to check packet batches (line 7-8). Otherwise, if
the current time reaches the acquired timeslot, it submits the
data transfer task to PCI-E (line 10-13).

B. Maximal Concurrency: Controllable Concurrent Executors

The default task scheduler in GPU uses Streaming Mul-
tiprocessors (SMs) as basic concurrent execution units to
execute multiple kernels in parallel. The number of SMs is
often limited. The latest NVIDIA TITAN Xp GPU contains
merely 30 SMs, meaning that only 30 tasks can be executed
in parallel. Moreover, an NF task may use a set of SMs to
reduce processing latency meanwhile meanwhile maintaining
system utilization [3], [13]. This lack of available concurrent
execution units for multiple co-executing NF kernels could re-
sult in task queuing and waiting, which leads to unpredictable
processing latency. Furthermore, an SM is a coarse-grained
resource block that contains thousands of threads. However,
the default task scheduler may allocate an entire SM to a task
even if the task only needs 10s of threads. This results in a very
low thread utilization efficiency and may reduce the number
of SLOs supported. Finally, the behaviour of the default task
scheduler in GPU cannot be customized, making it challenging
to control the scheduling and resource allocation policy.

In response, we design Controllable Concurrent Executors
which enable controllable task scheduling with maximal con-
currency by slicing an SM into fine-grained execution units
named executors. Next we introduce our scheduling mecha-
nism that circumvents the default scheduler, and how we slice
coarse-grained SMs into executors. Note that due to hardware
limitations, threads in different SMs cannot be allocated to the
same task. Therefore, scheduling related modules are inserted
into each SM to control executors in the same SM.
Task scheduling mechanism. To circumvent the default GPU
task scheduler and own control over underlying executors,
we adopt the persistent threads technique proposed by [20],
[25], [34]. A persistent thread indicates a thread that sinks
into a loop and will never be torn down. As shown in Fig 4,
we configure a small fraction of persistent threads in an SM
named Dispatcher and enable them to fetch and assign tasks.
This is possible because a kernel in GPU can not only be

Algorithm 1: Scheduling algorithm

0 Runtime(worker id)
1 request buffer requests buffers[worker id]
2 timeslot buffer timeslot buffers[worker id]

3 while true do
4 if batch prepared() == true then
5 Send a request via request buffer

6 timeslot Get from timeslot buffer
7 if timeslot == NULL then
8 continue
9 while true do

10 cur time Get system clock
11 if cur time � timeslot then
12 Start data transfer
13 break

STATUSP_OUT_RETSP_IN_PKTSNF_ID

NB_PKTS

STATUSP_OUT_RETSP_IN_PKTSNF_ID

Thread	ID	in	
Dispatcher

WORKER_ID P_OUT_RETSP_IN_PKTSNB_EXES NF_ID

NB_PKTS

(a) Execution Table

STATUSP_OUT_RETSP_IN_PKTSNF_ID

NB_PKTS

STATUSP_OUT_RETSP_IN_PKTSNF_ID

Thread	ID	in	
Dispatcher

WORKER_ID P_OUT_RETSP_IN_PKTSNB_EXES NF_ID

NB_PKTS(b) NF Assignment Table

Fig. 7: Data structures of the two tables in GPU

started by in-CPU workers, which will then be scheduled by
the default GPU scheduler, but also by another thread in GPU
and controlled by that thread. Thanks to the sustained lifecycle
of persistent threads, we are able to use dispatchers as our
scheduler to control underlying executors.
Fine-grained concurrent executors. Our intuition behind
increasing concurrency is the observation that NFs are typical
narrow tasks that usually occupies less that 16 warps in
an SM [23]. Allocating an entire SM to a NF significantly
compromises thread utilization efficiency. Therefore, inspired
by [23], [35], we adopt a novel intra-SM slicing mechanism
to achieve higher concurrency.

As shown in Fig. 6, a Concurrent Executor includes 128
threads, which is fine-grained enough compared with the entire
SM. State-of-the-art GPU has at most 2048 threads in an SM,
meaning that we have 16 executors inside an SM that could
run in parallel. The reason why we do not use the most fine-
grained execution units, i.e. Warps in [23], as the concurrent
executors is to avoid performance degradation due to frequent
dispatching. Suppose an NF needs 16 warps. If we use 128
threads as an execution unit, the Dispatcher only needs to
dispatch 4 times, instead of 16. Dispatching is expensive since
it has to guarantee atomic write. Moreover, as reported in [3]–
[5], [13], an NF often adopts a large set of threads in an
SM to achieve better system efficiency. Therefore, we pack
128 threads in an executor to provide high concurrency while
maintaining performance.
Task scheduling workflow in an SM. Based on the

Fig. 5: Pseudo code of Timeslot based runtime
worker submits data transfer task on PCI-E. Note that as PCI-
E handles tasks in serial, a worker may need to wait for its
turn to transfer the data after submitting the task. However,
this mechanism ensures that data transfers of multiple workers
could happen in a configurable order. To achieve this goal,
as shown in Figure 4, we design two components including
(1) a Timeslot allocator that receives transfer requests from
workers and calculates timeslots for workers according to their
orders, and (2) a Timeslot based runtime in each worker that
receives timeslot from the allocator and enforces data transfer
accordingly. Next we introduce the two components in detail.
Timeslot allocator. The Timeslot allocator maintains the
orders of all workers, which can be dynamically configured
by the global scheduler, and use the orders to calculate the
right timeslots for the data transfer requests from workers.
First, the allocator selects a pending request according to the
configured order of each worker. Then it calculates a timeslot
for the selected request using its order o and system time t:
timeslot = t + α ∗ o. Here, we adopt a small α to slightly
differ the task submission time of workers from each other.
Finally, it sends the timeslot information back to the worker.

Note that using system time t is accurate enough for reorder-
ing mechanism since the local clock system of all workers
and the allocator are the same clock system of the host. The
Timeslot allocator is lightweight enough as it performs simple
calculation without the burden of actual data transfer, which
minimizes its performance overhead.
Timeslot based runtime. We design a Timeslot based runtime
in each worker to interact with the Timeslot allocator and
enforce data transfer according to the allocated timeslot. A
naive scheme for the interaction between the runtime and
the allocator is request-wait-response, i.e. a synchronized ap-
proach where the worker’s CPU has to busily wait for timeslot
allocation, which introduces serious performance degradation.
Instead, we introduce a request buffer and timeslot buffer for
each worker to make all interactions asynchronous. Fig. 5
presents the pseudo code. When initializing the runtime, every
worker gets its individual buffers (lines 1-2). Next the runtime
enters a loop. It first checks whether a batch of packets
has been prepared. If so, it sends a request to the allocator

SM	#0

Thread	#0

Thread	#1

Thread	#m

Entry	#0

Entry	#1

Entry	#m

Executor	#0

128	threads	
per	executor

� Task
polling

Executor	#1

Executor	#m

� Task	
assignment

NF	tasks	
for	

SM	#0

…

NF	tasks	
for	

SM	#n Dispatcher Execution	Table	
(Local	Memory)

Concurrent	
Executors

SM	#n

� Task	
fetching

NF	Assignment	
Table

(Global	Memory)

. . .

Thread	#0
Thread	#1

…
Thread	#127.

Fig. 6: Task scheduling in GPU based on NF Assignment
Table and Controllable Concurrent Executors in SMs

(lines 4-5). Afterwards, it attempts to get a timeslot from
timeslot buffer (line 11). If no timeslot is available, it goes
back checking packet batch (lines 7-8), which prevents waiting
for the timeslot allocation. Otherwise, it enters a loop and
keeps checking the clock, if current time reaches the acquired
timeslot, it starts data transfer on PCI-E (lines 10-13).
B. Maximal Concurrency: Controllable Concurrent Executors

The default task scheduler in GPU uses Streaming Multipro-
cessors (SMs) as basic concurrent execution units for parallel
execution. The number of SMs is often limited. The latest
NVIDIA TITAN Xp GPU contains merely 30 SMs. Moreover,
an NF task may use a set of SMs to reduce processing
latency meanwhile maintaining resource efficiency [3], [12],
which implies that only a small fractions of NF kernel can
execute concurrently. This lack of available concurrency for
multiple co-executing NF kernels could result in task queuing
and waiting, which leads to unpredictable processing latency.
Furthermore, an SM is a coarse-grained resource block that
contains thousands of threads. However, the default hardware
scheduler in GPU might allocate an entire SM to a task even
if the task only needs 10s of threads. This results in a very
low thread utilization and may reduce the number of supported
SLOs. Finally, the behaviour of the default scheduler cannot
be customized, making it challenging to control the scheduling
and resource allocation policy.

In response, we design Controllable Concurrent Execu-
tors, which enable controllable task scheduling with maximal
concurrency by slicing an SM into fine-grained execution
units named executors. Next we introduce our scheduling
mechanism that circumvents the default scheduler, and how we
slice coarse-grained SMs into executors. Note that threads in
different SMs cannot be allocated to the same task. Therefore,
scheduling related modules are inserted into each SM to
control executors in the same SM.
Task scheduling mechanism. To circumvent the default GPU
scheduler and own control over underlying executors, we adopt
the persistent threads technique proposed by [16], [20], [32].
A persistent thread indicates it sinks into a loop and will never
be torn down. As shown in Fig 4, we configure a small fraction
of persistent threads in an SM named Dispatcher and enable
them to fetch and assign tasks. This is possible because a
kernel in GPU can not only be started by in-CPU workers,
which will then be scheduled by the default GPU scheduler,
but also by other threads in GPU. Thanks to the sustained
lifecycle of persistent threads, we are able to use dispatchers
as our scheduler to control underlying executors.

STATUSP_OUT_RETSP_IN_PKTSNF_ID

NB_PKTS

STATUSP_OUT_RETSP_IN_PKTSNF_ID

Thread	ID	in	
Dispatcher

WORKER_ID P_OUT_RETSP_IN_PKTSNB_EXES NF_ID

NB_PKTS

(a) Execution Table

STATUSP_OUT_RETSP_IN_PKTSNF_ID

NB_PKTS

STATUSP_OUT_RETSP_IN_PKTSNF_ID

Thread	ID	in	
Dispatcher

WORKER_ID P_OUT_RETSP_IN_PKTSNB_EXES NF_ID

NB_PKTS(b) NF Assignment Table

Fig. 7: Data structures of the two tables in GPU

Fine-grained concurrent executors. Our intuition behind
increasing concurrency is the observation that NFs are typical
narrow tasks which usually occupies less than 16 warps in
an SM [23]. Allocating an entire SM to them significantly
compromises thread utilization. Therefore, inspired by [23],
[33], we adopt a novel intra-SM slicing mechanism to achieve
higher concurrency. As shown in Fig. 6, a Concurrent Executor
includes 128 threads, which is fine-grained enough compared
with an entire SM. State-of-the-art GPU contains at most 2048
threads in an SM, meaning that we could have 16 executors
that could run in parallel. The reason why we do not use
the most fine-grained execution units, i.e. Warps in [23],
as the executor is to avoid performance degradation due to
frequent dispatching. Suppose an NF needs 16 warps. If we
use 128 threads as an execution unit, the Dispatcher only needs
to dispatch 4 times, instead of 16. Dispatching is expensive
since it has to guarantee atomic write. Moreover, as reported
in [3]–[5], [12], an NF often adopts a large set of threads in
an SM to achieve better system efficiency. Therefore, we pack
128 threads in an executor to provide high concurrency while
maintaining utilization.
Task scheduling workflow in an SM. Based on the
Dispatcher and Concurrent Executors, we present the task
scheduling workflow inside an SM. As shown in gray blocks
in Fig. 6, inside an SM we present the Dispatcher that runs
as multiple persistent threads to fetch tasks and assign them
to executors. We design an Execution Table which records
necessary parameters for executing a task and the status of
the current task. As shown in Fig. 7(a), the STATUS field
records the status of a current task. STATUS = 0 indicates
that the task has finished, while STATUS = 1 shows
that the task with the ID NF ID is being executed on
packets P IN PKTS and will generate the output packets at
P OUT RETS. Each thread in the Dispatcher assigns a task to
an executor by configuring its corresponding entry in this table.
The Dispatcher keeps visiting the STATUS field in the entry
and safely assigns a new task by configuring NF parameters
in the entry if STATUS turns into 0. Finally, assigned tasks
are executed on Concurrent Executors.

An intuitive approach for executors to receive tasks is letting
them contend over all assigned tasks recorded in the Execution
Table. In this way, the task fetched by a dispatcher can be
finally executed on any executor. However, this full-mapping
scheme could seriously degrade performance, as distributed
task polling requires expensive synchronization and locking
mechanisms. In contrast, as shown in Fig. 6, we maintain a 1:1
mapping between the Execution Table entry and the Executor.
Thus, a thread in Dispatcher can only assign a task to its
corresponding Executor to avoid contention. After finishing a

task, the executor informs its Execution Table entry. Then it
keeps querying the STATUS field of the entry until it turns into
1, which indicates that a new task is assigned. The executor
then polls the task and performs execution.

C. Safe NF Task Assignment: NF Assignment Table

Before scheduling a task inside an SM, a thread in the
Dispatcher has to fetch a task from workers in CPU. The
number of workers is equal to the number of NFs, which
might be large, while the number of threads in the Dispatcher
is equal to the number of Executors, which is rather limited.
A straightforward design is for workers to contend over the
limited Dispatcher threads to assign tasks. However, such
contention needs synchronization and may be expensive. To
address the above challenges, Grus introduces NF Assignment
Table, a data structure that works as the task queue, to enable
safe task assignment. Fig. 7(b) depicts the table structures.
When a worker attempts to launch an NF kernel with m
executors, it first inserts an entry with WORKER ID (its
id), NB EXES (m executors), NF ID (which NF to execute),
NB PKTS (how many packets), P IN PKTS (the pointer to
packets), and P OUT RETS (the pointer to output results).
Then, it copies this entry to overwrite the corresponding slot
in this table. As shown in Fig. 6, threads in the dispatcher
fetch tasks from the NF Assignment Table and schedule them.

V. SCHEDULING LAYER DESIGN

In this section, we describe how Grus makes scheduling
decisions in the scheduling layer to achieve latency SLOs
for co-located NFs. We first build prediction models for
processing time on different components. Next, we propose
a heuristic scheduling algorithm to produce fast schedules.

A. Latency Prediction Modeling

Packet batching. As introduced in §III, the time for forming
packet batches follows a near-linear relationship with batch
size. Thus, we use a linear function to model the relationship
between batch size and batching time. According to our
evaluation in Fig. 3(a), as traffic rate changes, the linear
function of batching time and batch size has different slope
af and intercept bf . Hence, our latency prediction model for
packet batching is modeled as Tbatching = af ·batch size+bf .
To obtain the value of af and bf , we generate a wide range
of traffic workloads, of which the rate is from 0.1 Gbps to 10
Gbps and increased by 0.1 Gbps. Under different traffic rate,
we measure the batching time under different batch sizes and
establish the latency model for packet batching.
Data transfer on PCI-E. Previous works [11], [12] have
demonstrated that the time of data transfer on PCI-E can
be modeled as a linear function with batch size. However,
according to our evaluation in Fig. 3(c), the parameters of the
linear model may vary significantly with data characteristics,
such as the data size. To build a more accurate prediction
model, we measure the latency under NF context in Grus.
According to the data required for processing, we classify
NFs into three categories including NFs that need (1) only

1 2 3 4 5 6 7 8
0

200

400

600

800

E
xe

cu
tio

n
T

im
e

(u
s)

Number of Executors

 Router Firewall
 NIDS IPSec

(a) On a dedicated SM

CDE
CD- Router Firewall NIDS IPSec

Router 4 12 17 20
Firewall 1 16 26 35
NIDS 0 1 113 158
IPSec 0 2 14 257

(b) Penalty (µs) on a shared SM (all NFs
use 4 executors)

Fig. 8: Profiling result examples of kernel execution time

header, (2) only payload, and (3) header and payload. For each
category, we train a different slope dclass and intercept eclass,
which is presented as Ttransfer = dclass ·batch size+eclass.
Kernel execution on GPU. Suppose an NF task in GPU
occupies one or more executors on a specific SM for execution.
We refer to existing research [11], [12] and use a linear
function to model the execution time of an NF kernel with
the number of executors for this NF. We adopt performance
profiling [8], [12] to get the parameters of this model. We
profile the kernel execution time when using different numbers
of executors for each NF. An example is shown in Fig. 8(a).

However, sometimes ensuring the throughput SLO of an
NF requires massive concurrency, which exceeds the number
of threads that one SM can provide. In this case, we have to
divide a large batch of packets into multiple smaller batches
(i.e. minibatches) and process them on different SMs. Mini-
batches make it more complex to predict the kernel execution
time since minibatches from different NFs may share one SM
and therefore may suffer from latency overhead. To understand
its effect, we profile the execution time of an NF kernel under
all possible sharing cases with other NFs. Fig. 8(b) shows that
the increased execution time due to SM can be easily profiled.
Therefore, we introduce penalty (denoted as βij) to indicate
the overhead incurred by SM sharing and model the kernel
execution time as Tkernel = (g · executors+ h) + βij . Note
that the execution time of an NF should be calculated as the
longest processing time among all minibatches.

B. Scheduling Decision

Problem description. Given a set of SLOs S = {1, 2, ..., N}
where each term is associated with target latency Li and
expected throughput Ti, we need to decide which SLOs can be
admitted on available resources. Moreover, we should generate
the batch size, data transfer order, and executors for each NF.
For each NF i ∈ S in SLOi, let bi denote the batch size used
for packet batching and data transfer, bim denotes the size of
the mth minibatch. We denote the time of packet batching
as t1i, the time of data transfer on PCI-E as t2i, the kernel
execution time as t3i, the time of waiting on PCI-E as t4i, and
pre-/post-processing time on CPU as tPP . For the scheduling
problem, there are two binary decision variables,

yni =

{
1, if NF i admitted with order n to transfer data
0, otherwise

xkim=

{
1, if the mth minibatch of NF i assigned on SM k

0, otherwise

Suppose SMs are numbered from 0 to K, each with E
executors. One executor can process c packets. We use a step
function U(x) as the utility function. U(x) = 1 if x > 0,
otherwise U(x) = 0. The objective is to maximize the number
of admitted latency SLOs with respect to resource constraints.
If required latency SLO is larger than our predicated latency,
the latency SLO is considered to be admitted. We formulate
the problem as:

max
∑
i∈S

U(Li − t1i − t2i − t3i − t4i − tPP) (2)

s.t.
(1)

∑
m∈[1,Mi]

bim = bi
(2) 1 ≤Mi ≤ bi

c
(3)

∑
m,k x

k
im =

∑
n y

n
i ·Mi

(4)
∑

i∈S y
n
i ≤ 1,

∑
n∈S y

n
i ≤ 1,

∑
k x

k
im ≤ 1,∑

m xkim ≤ 1,∀n, i ∈ S, k ∈ [0,K]
(5) bi

Li
≥ Ti

(6)
∑

i,m xkim · bim ≤ E · c, ∀k ∈ [0,K]
where
t1i = af · bi + bf , t2i = dclass · bi + eclass
t3i = max{g · bimc + h+ βij · I{xk

im>0} · I{xk
jt>0},

∀k ∈ [0,K] , j ∈ S, t ∈ [1,Mj]},∀m ∈ [1,Mi]
t4i =

∑
p(j)<p(i) t2j ,∀j ∈ S

Constraint (1) shows the relationship between the size of
minibatches and required batch size. Constraints (2) ∼ (4)
represent the scheduling requirements where Mi denotes the
amount of minibatches of NF i. Constraint (5) satisfies the
throughput requirement. Constraint (6) ensures that allocated
executors of each SM does not exceed physical limit.

Scheduling decision should quickly identify SLOs that
cannot be supported and respond the operators. However, the
optimization objective is a piece-wise function, which makes
it hard to find a solution within limited time [34]. In response,
we propose an online heuristic algorithm for fast scheduling.

This algorithm exploits three major intuitions:
1) Minimal batch size. From Constraint (5), we can calculate

a minimal batch size to satisfy the throughput SLOs.
Minimizing batch size also helps reduce latency.

2) Shortest headroom first. Headroom [11] is the maximal
waiting time that can be added to an NF without latency
SLO violation. We first allocate transfer order and GPU
executor for those SLOs with the shortest headroom.

3) Penalty avoidance. We prefer assigning an NF to one SM
to avoid SM sharing penalty. If an NF is too large to be
supported by any single SM, we split the NF to multiple
SMs with the lowest penalty according to our modeling.

We show the online scheduling algorithm in Algorithm 1.
The notations are the same as before and the headroom is
denoted as Thdr. For each SLO, we first calculate an optimal
batch size (line 2) and calculate the headroom by subtracting
the time of packet batching and pre-/post-processing from the
latency SLO (line 3). Then, we consider SLOs in an increasing
order of headroom (line 5) and refer to the penalty avoidance
intuition when allocating executors for them (line 7). Finally
we subtracts execution time in GPU from headrooms and
decide the data transfer order of NFs (lines 8-21).

Algorithm 1: Scheduling algorithm
input : (L, T), (ft1, ft2, ftPP , profiles) - SLO terms, prediction

models and profiling results.
output : (Saccepted, Sbatch, Sorder, SSM , Sexes) - Whether to

accept, batch size, order, assigned SMs and executors
1 foreach i ∈ SLOs do
2 Sbatch[i] = Ti ∗ Li; // An minimal batch size
3 Thdr[i] = Li − ft1(Ti, Sbatch[i])− ftPP (i);

4 // Shortest headroom first
5 foreach i ∈ Thdr, in increasing order of hdr value do
6 // Penalty avoidance
7 (SSM [i], Sexes[i], tkernel)← selecting SMs and executors,

meanwhile getting the kernel execution time from profiles
8 Thdr[i] − = tkernel;
9 for order = i to 0 do

10 t2 = ft2(Sbatch[i]);
11 t2w ←

∑order−1
k=0 ft2(Sbatch[k]);

12 hdr = Thdr[i]− t2− t2w;
13 if hdr >= 0 and NoViolations(order, i, t2) then
14 accepted = true;
15 break;

16 if accepted == true then
17 Saccepted[i]← true;
18 Sorder[i]← order;
19 for j = order + 1 to i do
20 Sorder[j] + +;
21 Thdr[j] − = t2;

22 function NoViolations (start, end, t2 w)
23 for i = start to end do
24 hdr = Thdr[i]− t2 w;
25 if hdr < 0 then
26 return false

27 return true

VI. DISCUSSION OF Grus LIMITATIONS

In this section, we discuss two major limitations of Grus.
Grus does not handle PCI-E contention during data
transfer from GPU to CPU. After GPU processing, data are
copied from GPU to CPU over PCI-E for further processing
or transmission through the NIC. If multiple tasks finish
execution in GPU at roughly the same time, data transfer may
suffer from PCI-E contention and latency variation.

To handle this contention, an intuitive approach is to sched-
ule the transfer order of in-GPU tasks according to the time
when they finish execution (denoted as Tfinish). Theoretically,
Tfinish is the sum of (i) the start time of data transfer from
CPU to GPU, (ii) data transfer time from CPU to GPU,
and (iii) task execution time in GPU. Therefore, estimating
Tfinish suffers from accumulated estimation inaccuracy of
these three latency components. Using this inaccurate Tfinish
for scheduling may result in a bad scheduling plan that
brings even larger latency variation than the situation without
scheduling. For example, suppose the CPU schedules data
transfer of kernel A before kernel B, but kernel B still finishes
first. Kernel B will need to wait for kernel A to finish and
transfer data before it initiates data transfer, which introduces
larger latency variation. Therefore, current Grus design does
not handle PCI-E contention from GPU to CPU. We will
carefully handle this contention in future work.
Grus focuses on guaranteeing latency for single NFs. Grus

2 3 4 5 6 7 8 9 1 0

5 0
1 0 0
1 5 0
2 0 0

1 0

La
ten

cy
Inc

rea
se

(%
)

N u m b e r o f C o - l o c a t e d N F s

 N o G u a r a n t e e G u a r a n t e e i n G r u s

Fig. 9: Average latency increase of the baseline firewall
focuses on providing latency SLOs for a single NF but, in its
present form, it will not enable latency SLOs for entire service
chains that may span multiple NFs. We consider Grus only as
a first step towards a fully fledged system for guaranteeing
SLOs for service chains. Conceptually, this may be solved
by incorporating the NF-to-NF packet forwarding time in our
latency model (Eqn. 1); we leave this as future work herein.

VII. IMPLEMENTATION AND EVALUATION

We have implemented a prototype of Grus. The infrastruc-
ture layer uses DPDK for networking I/O and CUDA as the
programming toolkit for GPU. The scheduler is written in the
C language. We implement the scheduler on the same server
as the infrastructure. It is easy to migrate this scheduler to
other servers that can communicate with the infrastructure
server. We have implemented four NFs including IPv4Router,
Firewall, NIDS, and IPSec. Key logics of these NFs are five-
tuple hash value matching, trie-based pattern search, Aho-
Corasick search, and HMAC-SHA1 & AES-128, respectively.
Experimental setup. Currently we run Grus and NFs on one
server equipped with two Intel Xeon E5-2650 v4 CPUs (2.20
GHz, 12 physical cores), 128GB total memory (DDR4 2400
MHz 16GB x8), two dual-port 10G NICs (Intel X520-DA2),
and an NVIDIA TITAN Xp (30SMs, 3840 cores, 12GB G5X
memory). For test traffic, we implement a traffic generator on
a separate server, which sends and receives packets that follow
the flow size distribution of data center traffics [17]. The server
for the generator has the same configurations as the previous
one. Both servers run Ubuntu 14.04 (with kernel 3.16.0-30),
DPDK version 17.11, and CUDA version 8.0.
SLO generation. SLOs are defined in different styles across
different service providers, making it hard to decide univer-
sally recognized SLOs for evaluation. As mentioned in § I,
the key to an SLO is guaranteeing performance variation.
Therefore, similar to ResQ [8], we generate the target latency
of each SLO term as a tolerated increase (denoted by toler-
ance) of the baseline latency of a target NF in our evaluation.
i.e., target latency = baseline latency * (1 + tolerance). The
baseline latency is the latency of when an NF runs solely.
Evaluation goals. We evaluate Grus with the following goals:
(1) the effectiveness to stabilize the latency of multiple co-
located NFs (§VII-A); the accuracy of latency prediction mod-
els (§VII-B); and (3) the improvement of resource efficiency
and fast scheduling (§VII-C).

A. Effect on Reducing Latency Variation

We first evaluate that Grus can reduce latency variation of an
NF when other NFs co-locate in the same machine. We use the

same setup and traffic workloads as §II-A. We run the initial
firewall with order 0 running on two executors in SM#0. Fig. 9
shows the increase in average latency with different numbers
of co-located NFs. We observe that the latency variation is
significantly reduced in Grus. We observe that even if 9 other
NFs are running together with the initial firewall, its average
latency increase is below 10%. In comparison, when there is no
latency guarantee, introducing two additional NFs can increase
the latency of the initial firewall by 19%. This demonstrates
the effectiveness of Grus to guarantee latency.

Note that even though we try to reduce the latency variation
as thorough as possible, there still exists slight variation as
more NFs co-locate. This is because the reordering engine
is non-preemptive, which implies that even an NF with the
first order submits a data transfer task over PCI-E, it cannot
directly capture the PCI-E. Instead, it still has to wait for the
completion of previous tasks.

B. Latency Prediction Accuracy

Latency prediction accuracy is critical for generating ac-
curate scheduling decisions. We evaluate the accuracy of the
latency model for packet batching and data transfer, respec-
tively. Evaluation for kernel execution accuracy is presented
in Fig. 8. Furthermore, we evaluate the prediction accuracy of
overall end-to-end latency when multiple NFs co-locate.
Packet batching latency predication. We evaluate the
predication accuracy using three sets of real-world traces.
Traffic-A is the trace from CAIDA recorded in 2016 from an
ISP backbone link [35]. Traffic-B is sampled from a Facebook
open-source Hadoop cluster data [36]. Traffic-C is a private
trace collected from the gateway in a large enterprise data
center. We vary the batch size and predict the batching latency.
We input the three traces into Grus infrastructure to measure
real batching time as the baseline. As shown in Fig. 10(a), we
observe a reasonable average predication errors of 1.2%, 1.6%
and 1.3% in average for the three traces. The accuracy varies
modestly (e.g., from 0.2% to 4.7% for Traffic-A) due to flaws
in the data traces (e.g., badly-distributed samples).
Data transfer latency predication. As mentioned above,
Grus classifies NFs into three types according to the packet
fields they process (headers, payloads, and headers+payloads),
and build three predication models for them respectively.
Therefore, we evaluate the data transfer (two directions)
predication accuracy by using three representative NFs: Fire-
wall for header-only, NIDS for payload-only, and IPSec
for header+payload. We use Traffic-A as the input traffic.
Fig. 10(b) presents the average prediction error when con-
figuring different batch sizes for the three NFs. We observe
that our models are able to accurately predict the time of data
transfer across three NFs with a deviation of 2.2%, 3.5%, and
4.1% in average compared with the real transfer time.
End-to-end latency predication. Prediction accuracy for
end-to-end latency is critical to avoid SLO violations when
consolidating multiple SLO terms. To evaluate its accuracy,
we generate four sets of latency SLOs each with 10 terms.
For each term, we randomly select a target NF, and randomly

1 2 8 2 5 6 3 8 4 5 1 2 6 4 0 7 6 8 8 9 6 1 0 2 40
2
4
6
8

1 0
Er

ror
 (%

)

B a t c h S i z e

 T r a f f i c - A T r a f f i c - B T r a f f i c - C

(a) Average prediction error of packet batching

1 2 8 2 5 6 3 8 4 5 1 2 6 4 0 7 6 8 8 9 6 1 0 2 40
2
4
6
8

1 0

Er
ror

 (%
)

B a t c h S i z e

 F i r e w a l l N I D S I P S e c

(b) Average prediction error of PCI-E data transfer

1 2 3 4
0

20

40

60

80

100

Pe
rc

en
t (

%
)

SLOs Set#

 Error 0~5%
 Error 5~10%
 Error 10~20%

(c) Average prediction error of end-to-end latency

Fig. 10: Average prediction error of packet batching, data transfer on PCI-E and end-to-end latency

5 % 1 5 % 3 0 %0
2
4
6
8

1 0

Nu
mb

er
of

Sa
tisf

ied
 SL

Os

S e t t i n g o f t o l e r a n c e

S t r a t e g y (1) S t r a t e g y (2) G r u s

Fig. 11: Maximal satisfied SLOs

1 2 3 4 5 6 7 8 9
2 0
4 0
6 0
8 0

1 0 0

Ad
mi

tte
d

SL
Os

 (%
)

S L O s S e t #

 G r u s - N S G r u s

Fig. 12: Number of admitted SLOs

2 0 4 0 6 0 8 0 1 0 00
5 0

1 0 0
1 5 0
2 0 0
2 5 0
3 0 0

Co
mp

uta
tio

n
Tim

e (
us)

N u m b e r o f S L O s
Fig. 13: Average calculation time

set target latency by setting tolerance from 5% to 15%. The
baseline latency is measured when these NFs run with batch
size 256 on Traffic-A. Fig. 10(c) shows the average prediction
errors in four SLOs sets. We observe that Grus suffers from
very low prediction error for end-to-end latency. For example,
in SLOs Set#1, only 20% SLO terms (i.e., two terms) have
10-20% deviation from the real end-to-end latency. Note that
although deviation exists, it does not imply that Grus cannot
provide guaranteed end-to-end latency. The Grus scheduler
adds these deviations to corresponding SLO terms.

C. Efficiency of Grus to Support Latency SLOs

Grus can support more SLOs than existing solutions. With
different latency targets (i.e., differentiated service levels), two
alternative strategies have the potential to enable latency SLOs:
(1) reordering kernel executions to satisfy the performance
requirement of QoS-required applications (i.e., solution from
Baymax [11]), and (2) spatially sharing a GPU and allocating
SMs to multiple NFs to achieve predictable performance (i.e.,
solution from G-NET [12]). To demonstrate the efficiency in
Grus as opposed to them, we implemented both strategies in
the system we used in §II-A. we randomly generate 9 sets
of SLOs, and mark them from number 2 to 10. We vary
the tolerance value of all SLOs. We measure the number of
maximal satisfied SLOs in each setting. Fig. 11 shows that
Grus can support more SLOs than both strategies. Even with
tolerance 30%, it is able to support 4.5× more SLOs than
Strategy (1) and >2× than Strategy (2). Note that for Strategy
(2),when the number of SLOs is larger than 7 in all settings,
all SLOs suffer violations due to the lack of scheduling for
multiple NFs (not shown in the figure).

The improved efficiency in Grus is by enabling slicing GPU
resources into fine-grained executors to improve concurrency
and resource utilization efficiency. To demonstrate this, we
randomly generate 9 sets of SLOs. We use a different number
of SLOs in each set, i.e., 8 terms for SLOs set 1-3, 9 terms for
SLOs set 4-6, 10 terms for SLOs set 7-9. Fig. 12 shows the
ratio of admitted SLOs. We denote the traditional no-slicing

solution as Grus-NS. In all SLOs sets, Grus-NS only admits
a small fraction of them, i.e. less than 50% in all cases. In
comparison, Grus admits over 90% of these terms. The reason
for such a gap is that Grus utilizes all available resources in
an SM and carefully places different NFs in one SM to avoid
SLO violations with improved resource utilization efficiency.
Grus can quickly generate scheduling plans. To perform
fast scheduling, we propose a heuristic algorithm for Grus
scheduling. Fig. 13 shows that the average computation time
of this algorithm is below 300 µs when handling 10 to 100
SLO terms (100 is large enough as the number of NFs that
can be supported in one server [1]), which demonstrates that
the Grus scheduler can perform fast SLO admission control.

VIII. RELATED WORK

Guaranteeing end-to-end latency. Many efforts focused on
providing latency guarantee, such as Internet QoS [37], per-
formance isolation in datacenter and cloud [10], [18], [38]–
[40]. They worked well in the context where applications share
network, CPU and storage resources. However, they cannot be
directly applied to the context GPU-accelerated NFV. A few
works [8], [19], [27] proposed solutions to enable performance
isolation for packet processing in NFV. But they become
ineffective when introducing GPUs into NFV. G-NET [12]
presented a model to achieve predictable latency for single
GPU-based NFs. However, it can not guarantee latency when
multiple NFs co-locate on the same server.
Predictable latency on GPUs. To reduce the response latency
of real-time or user-facing applications, the GPU community
has proposed abundant works to enable QoS support for these
applications. They enabled this by introducing preemption
primitives via new hardware design [41]–[44], software frame-
work [11], [20], [45], or scheduling [24], [46], [47]. However,
as illustrated in §II-A, these solutions are not suitable for NFs
due to a much finer granularity at latency target. Furthermore,
previous works did not jointly consider all latency components
including CPU, PCI-E, and GPU.
Predication of in-CPU processing time and data transfer
time. ResQ [8] and Dobrescu et al. [27] have proposed using

predicted LLC allocation to predict latency of CPU-driven
NFs. However, our experiments show that the contention
in LLC has slight impact on GPU-accelerated NFs. Some
works [11], [20] used a linear model to predict the duration
of data transfer on PCI-E and kernel execution for general-
purpose applications. Grus also uses a linear model to predict
them; nevertheless, we specify these models in NFV context
to improve accuracy. G-NET [12] also provided performance
models for data transfer and kernel execution. However, it
could not predict latency when multiple NF kernels co-locate
in the same GPU and the latency for of packet batching.

IX. CONCLUSION

We have presented Grus, a GPU-accelerated NFV system
that enables latency SLOs for multiple co-located NFs. We
present the infrastructure design of Grus to support control-
lable concurrent executors for the NF kernel and reorder data
transfer over PCI-E . Moreover, Grus introduces a Latency
SLO-aware scheduler, which takes our latency prediction mod-
els and SLO terms as input to accurately and quickly maximize
the admitted SLOs. Our evaluations have demonstrated the
effectively and efficiently of Grus to support latency SLOs.

X. ACKNOWLEDGEMENT

We thank our shepherd Gabor Retvari and anonymous
reviewers for their thoughtful feedback. This work is sup-
ported by the National Key R&D Program of China
(2017YFB0801701), and the National Science Foundation of
China (No.61472213). Jun Bi (junbi@tsinghua.edu.cn) is the
corresponding author.

REFERENCES

[1] A. Panda, S. Han, K. Jang, M. Walls, S. Ratnasamy, and S. Shenker,
“Netbricks: Taking the v out of nfv.” in OSDI, 2016.

[2] C. Sun, J. Bi, Z. Zheng, H. Yu, and H. Hu, “Nfp: Enabling network
function parallelism in nfv,” in SIGCOMM, 2017.

[3] J. Kim, K. Jang, K. Lee, S. Ma, J. Shim, and S. Moon, “Nba (network
balancing act): a high-performance packet processing framework for
heterogeneous processors,” in EuroSys, 2015.

[4] S. Han, K. Jang, K. Park, and S. Moon, “Packetshader: a gpu-accelerated
software router,” in SIGCOMM, 2010.

[5] M. A. Jamshed, J. Lee, S. Moon, I. Yun, D. Kim, S. Lee, Y. Yi, and
K. Park, “Kargus: a highly-scalable software-based intrusion detection
system,” in CCS, 2012.

[6] J. Park, W. Jung, G. Jo, I. Lee, and J. Lee, “Pipsea: A practical ipsec
gateway on embedded apus,” in CCS, 2016.

[7] G. Vasiliadis, L. Koromilas, M. Polychronakis, and S. Ioannidis, “Gaspp:
A gpu-accelerated stateful packet processing framework.” in ATC, 2014.

[8] A. Tootoonchian, A. Panda, C. Lan, M. Walls, K. Argyraki, S. Rat-
nasamy, and S. Shenker, “Resq: Enabling slos in network function
virtualization,” in NSDI, 2018.

[9] S. Palkar, C. Lan, S. Han, K. Jang, A. Panda, S. Ratnasamy, L. Rizzo,
and S. Shenker, “E2: a framework for nfv applications,” in SOSP, 2015.

[10] K. Jang, J. Sherry, H. Ballani, and T. Moncaster, “Silo: Predictable
message latency in the cloud,” in SIGCOMM, 2015.

[11] Q. Chen, H. Yang, J. Mars, and L. Tang, “Baymax: Qos awareness and
increased utilization for non-preemptive accelerators in warehouse scale
computers,” ASPLOS, 2016.

[12] K. Zhang, B. He, J. Hu, Z. Wang, B. Hua, J. Meng, and L. Yang, “G-net:
Effective gpu sharing in nfv systems,” in NSDI, 2018.

[13] Wikipedia, “Pci express,” 2014. [Online]. Available: https://en.
wikipedia.org/wiki/PCI Express

[14] G. Vasiliadis, M. Polychronakis, and S. Ioannidis, “Midea: a multi-
parallel intrusion detection architecture,” in CCS, 2011.

[15] A. Kalia, D. Zhou, M. Kaminsky, and D. G. Andersen, “Raising the bar
for using gpus in software packet processing.” in NSDI, 2015.

[16] Y. Go, M. A. Jamshed, Y. Moon, C. Hwang, and K. Park, “Apunet:
Revitalizing gpu as packet processing accelerator.” in NSDI, 2017.

[17] T. Benson, A. Akella, and D. A. Maltz, “Network traffic characteristics
of data centers in the wild,” in IMC, 2010.

[18] M. P. Grosvenor, M. Schwarzkopf, I. Gog, R. N. Watson, A. W. Moore,
S. Hand, and J. Crowcroft, “Queues don’t matter when you can jump
them!” in NSDI, 2015.

[19] A. Ghodsi, V. Sekar, M. Zaharia, and I. Stoica, “Multi-resource fair
queueing for packet processing,” SIGCOMM, 2012.

[20] B. Wu, X. Liu, X. Zhou, and C. Jiang, “Flep: Enabling flexible and
efficient preemption on gpus,” in ASPLOS, 2017.

[21] D. Singh and C. K. Reddy, “A survey on platforms for big data
analytics,” Journal of Big Data, 2015.

[22] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard et al., “Tensorflow: A system for
large-scale machine learning.” in OSDI, 2016.

[23] T. T. Yeh, A. Sabne, P. Sakdhnagool, R. Eigenmann, and T. G. Rogers,
“Pagoda: Fine-grained gpu resource virtualization for narrow tasks,” in
PPoPP, 2017.

[24] S. Kato, K. Lakshmanan, R. Rajkumar, and Y. Ishikawa, “Timegraph:
Gpu scheduling for real-time multi-tasking environments,” in ATC, 2011.

[25] K. Yasukata, M. Honda, D. Santry, and L. Eggert, “Stackmap: Low-
latency networking with the os stack and dedicated nics.” in ATC, 2016.

[26] J. Hwang, K. K. Ramakrishnan, and T. Wood, “Netvm: high performance
and flexible networking using virtualization on commodity platforms,”
in TNSM, 2015.

[27] M. Dobrescu, K. Argyraki, and S. Ratnasamy, “Toward predictable
performance in software packet-processing platforms,” Tech. Rep., 2012.

[28] Intel, “Cat,” 2016. [Online]. Available: https://software.intel.com/en-us/
articles/introduction-to-cache-allocation-technology

[29] PCM, “Pcm,” 2017. [Online]. Available: https://software.intel.com/
en-us/articles/intel-performance-counter-monitor

[30] R. Ausavarungnirun, V. Miller, J. Landgraf, S. Ghose, J. Gandhi, A. Jog,
C. J. Rossbach, and O. Mutlu, “Mask: Redesigning the gpu memory
hierarchy to support multi-application concurrency,” in ASPLOS, 2018.

[31] J. Perry, A. Ousterhout, H. Balakrishnan, D. Shah, and H. Fugal,
“Fastpass: A centralized zero-queue datacenter network,” in SIGCOMM.

[32] K. Gupta, J. A. Stuart, and J. D. Owens, “A study of persistent threads
style gpu programming for gpgpu workloads,” in Innovative Parallel
Computing (InPar), 2012.

[33] Q. Xu, H. Jeon, K. Kim, W. W. Ro, and M. Annavaram, “Warped-slicer:
efficient intra-sm slicing through dynamic resource partitioning for gpu
multiprogramming,” ISCA, 2016.

[34] C. Sun, J. Bi, Z. Meng, X. Zhang, and H. Hu, “Ofm: Optimized flow
migration for nfv elasticity control,” in IWQoS, 2018.

[35] CAIDA, “The caida ucsd anonymized internet traces 2016,” 2016.
[Online]. Available: http://www.caida.org/home/

[36] A. Roy, H. Zeng, J. Bagga, G. Porter, and A. C. Snoeren, “Inside the
social network’s (datacenter) network,” in SIGCOMM, 2015.

[37] D. D. Clark, S. Shenker, and L. Zhang, “Supporting real-time ap-
plications in an integrated services packet network: Architecture and
mechanism,” in SIGCOMM, 1992.

[38] S. Angel, H. Ballani, T. Karagiannis, G. O’Shea, and E. Thereska, “End-
to-end performance isolation through virtual datacenters.” in OSDI.

[39] A. D. Ferguson, P. Bodik, S. Kandula, E. Boutin, and R. Fonseca,
“Jockey: guaranteed job latency in data parallel clusters,” in EuroSys.

[40] P. L. Suresh, M. Canini, S. Schmid, and A. Feldmann, “C3: Cutting tail
latency in cloud data stores via adaptive replica selection.” in NSDI.

[41] NVIDIA, “Cuda compute preemption,” 2018. [Online]. Available: https:
//docs.nvidia.com/cuda/pascal-tuning-guide/index.html#preemption

[42] I. Tanasic, I. Gelado, J. Cabezas, A. Ramirez, N. Navarro, and M. Valero,
“Enabling preemptive multiprogramming on gpus,” in ISCA, 2014.

[43] J. J. K. Park, Y. Park, and S. Mahlke, “Chimera: Collaborative preemp-
tion for multitasking on a shared gpu,” ASPLOS, 2015.

[44] Z. Lin, L. Nyland, and H. Zhou, “Enabling efficient preemption for simt
architectures with lightweight context switching,” in SC, 2016.

[45] G. Chen, Y. Zhao, X. Shen, and H. Zhou, “Effisha: A software frame-
work for enabling effficient preemptive scheduling of gpu,” in PPoPP.

[46] G. A. Elliott, B. C. Ward, and J. H. Anderson, “Gpusync: A framework
for real-time gpu management,” in RTSS, 2013.

[47] Z. Wang, J. Yang, R. Melhem, B. Childers, Y. Zhang, and M. Guo,
“Quality of service support for fine-grained sharing on gpus,” in ISCA.

