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Abstract—Access control is one of the most important
security mechanisms in cloud computing. Attribute-based
access control provides a flexible approach that allows data
owners to integrate data access policies within the encrypted
data. However, little work has been done to explore temporal
attributes in specifying and enforcing the data owner’s policy
and the data user’s privileges in cloud-based environments.
In this paper, we present an efficient temporal access control
encryption scheme for cloud services with the help of crypto-
graphic integer comparisons and a proxy-based re-encryption
mechanism on the current time. We also provide a dual
comparative expression of integer ranges to extend the power
of attribute expression for implementing various temporal
constraints. We prove the security strength of the proposed
scheme and our experimental results not only validate the
effectiveness of our scheme, but also show that the proposed
integer comparison scheme performs significantly better than
previous bitwise comparison scheme.

Index Terms—Cryptography, Temporal Access Control, Re-
Encryption, Integer Comparison, Cloud Computing

I. INTRODUCTION

Cloud computing provides an extensible and powerful
environment for growing amounts of services and data by
means of on-demand self-service. It also relieves the client’s
burden from management and maintenance by provid-
ing a comparably low-cost, scalable, location-independent
platform. However, cloud computing is also facing many
challenges for data security as the users outsource their
sensitive data to clouds, which are generally beyond the
same trusted domain as data owners.

To address this problem, access control is considered as
one of critical security mechanisms for data protection in
cloud applications. Unfortunately, traditional data access
control schemes usually assume that data is stored on
trusted data servers for all users. This assumption however
no longer holds in cloud computing since the data owner
and cloud servers are very likely to be in two different
domains. Hence, attribute-based access control [1], [2] has
been introduced into cloud computing to encrypt outsourced
sensitive data in terms of access policy on attributes de-
scribing the outsourced data, and only authorized users can
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decrypt and access the data. Since the access control policy
of every object is embedded within it, the enforcement of
policy becomes an inseparable characteristic of the data
itself. This is in direct contrast to most currently available
access control systems, which rely directly upon a trusted
host to mediate access and maintain policies.

Even though there have been some previous work to
construct fine-grained access control systems in clouds [3],
[4], existing work lacks a systematic mechanism to support
a complete temporal control. Temporal dimension has gen-
erated a great amount of interest in security community as
an important property of access control for security system
management in recent years [5], [6]. However, existing
attribute-based solutions are difficult to provide full features
of temporal data access control due to following reasons:

• The system models of existing systems cannot sup-
port dual comparative expressions (DTE), in which two
range-based comparative constraints must be embedded
into the outsourced files as well as the user’s private key.

• The existing systems don’t support current time, which
is essentially an important factor for enforcing temporal
access control.

• Bethencourt et al. [1] has provided a bitwise-comparison
method (called BSW’s scheme) to realize a pretty simple
control, e.g. a < 11, but this method does not support
range expressions in user’s private key because both
“*1*” and “*0*” may appear in the same bit position.

In this paper, we address the afore-mentioned problems
by constructing a temporal access control solution along
with a proxy-based re-encryption mechanism [7] for cloud
computing. The proposed scheme is originated from the
needs of practical cloud applications, in which each out-
sourced resource can be associated with an access policy on
a set of temporal attributes, e.g., period-of-validity, opening
hours, or hours of service. Each user can also be assigned
a license with several privileges based on the comparative
attributes. To enforce the valid matches between access
policies and user’s privileges, we introduce a proxy-based
re-encryption mechanism [7] with respect to the current
time. This design brings about several efficient benefits,
such as flexibility, supervisory, and privacy protection,
compared with prior work.

Our solution also addresses another practical issue
to implement cryptographic integer comparisons and re-
encryption mechanism on the current time. We provide
a cryptographic expression of integer ranges to extend



the power of attribute expression, and propose a temporal
access control encryption (TACE) scheme to implement
various temporal constraints. This scheme provides a con-
stant size of ciphertext, private-key, and depth of policy-
tree, as well as a nearly linear-time complexity. Other
security features, such as forward and backward derivation
functions, are provided in our scheme as well. In addition,
we prove the security of these two functions under the RSA
and Co-CDH assumption [8]. To demonstrate the feasibility
of our proposed approach, we implement a prototype of
TACE system. Our experimental results not only validate
the effectiveness of our scheme and algorithms, but also
show our scheme has better performance for integer com-
parison than existing bitwise comparison scheme.

This paper is organized as follows. Section II discusses
our research goals and models. Section III shows our
framework and security requirements. Section IV provides
main techniques pertaining to our construction. In Sec-
tion V, we analyze our scheme in terms of its security and
performance, respectively. Finally, we discuss the related
work in Section VI and conclude this paper in VII.

II. PROBLEM STATEMENT

A. Design Goals

Our main design goal is to help the data owner achieve
temporal data access control on files stored in cloud servers.
Although this kind of access control is based on fine-
grained access control introduced for outsourced data ser-
vices [3], we intent to ensure that all kind of temporal
access policy can be securely and efficiently implemented
for outsourced data services. Specially, we also want to
solve the following problem: Given an access constraint
ti ≤ At ≤ tj in policy P embedded in the ciphertext C
and a privilege ta ≤ At ≤ tb in the user’s private key SK,
how to guarantee that the ciphertext can be decrypted only
at a valid current time tc? Here, the valid current time tc
means that two conditions, tc ∈ [ti, tj ] and tc ∈ [ta, tb],
must be satisfied at the same time.

B. System Model

Considering a cloud-based data storage service involving
three different entities, as illustrated in Fig. 1: data owner,
cloud server, and many data users (e.g., computers, mobile
devices, or general equipments). In addition, in order to
implement temporal access control, we require a clock
server designed to always provide exactly the same current
time by communicating with each other.
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Fig. 1. Temporal constraints on privilege-licence assignment.

To ensure the data access compliant with the assigned
policy, fine-grained access control has been introduced
into the outsourced storage service. We extend this kind
of access control mechanisms to support temporal access
control encryption (TACE) described as follows:
• First, the data owner makes use of a temporal access

policy P to encrypt data before store it to clouds.
• Second, once receiving an access request from a user,

the cloud service checks whether corresponding temporal
constraints can be satisfied in P with respect to the
current time tc, then employs a re-encryption method
to convert the encrypted data into another ciphertext Ctc

that embed current time tc and sent it the user.
• Finally, the authorized user can use her/his private key
SK with access privilege L to decrypt Ctc . In this model,
we assume the cloud service is a semi-trusted service that
can use the correct time to re-encrypt data.

C. Benefits of TACE
Flexibility: TACE-based cryptosystem can provide more
flexible access control based on temporal constraints as
follows: a) Date control on Year, Month, and Day, e.g.,
((2010 ≤ Y ear ≤ 2011) AND (4 ≤ Month ≤ 7));
and b) Periodic control on Week and Hour, e.g., ((3 ≤
Week ≤ 5) AND (8 : 00PM ≤ Hour ≤ 10 : 00PM)).
More importantly, this cryptosystem also supports all kind
of level controls and integer comparisons, e.g., ((3 ≤
Security Clearance ≤ 5) OR (2, 000 ≤ Salary ≤ 5, 000)).
Supervisory: Traditional cryptosystems, that only contains
both encryption and decryption processes, has not an effi-
cient method to monitor the usage of encrypted data. TACE-
based cryptosystem introduces a proxy-based re-encryption
mechanism that can apply the current time to determine
whether the user’s download request is reasonable, and rely
on the re-encryption technologies to produce a new version
of data under the current time. Such a proxy service can
also integrate with other rich information to determine the
legitimacy of user behaviors.
Privacy Protection: In our system model, the access poli-
cies are enforced entirely dependent upon temporal attribute
matches between ciphertexts and private keys in the client
side. In the re-encryption process, cloud servers do not
require any user information which is used to enforce access
policies. Hence, this mechanism ensures that user privacy,
including user identity and access privilege in the user’s
private key, will not be disclosed to cloud servers.

III. FRAMEWORK AND SECURITY REQUIREMENTS

A. Notations
For sake of clarity, we introduce following notations:

• A: the set of attributes A = {A1, · · · , Am};
• Ak(ti, tj): the range constraint of attribute Ak on [ti, tj ],

i.e., ti ≤ Ak ≤ tj ;
• P: the access control policy expressed as a Boolean

function on AND/OR logical operations, generated by
the grammar: P ::= Ak(ti, tj)|P AND P|P OR P;



• L: the access privilege assigned into the user’s licence,
generated by L ::= {Ak(ta, tb)}Ak∈A.

The definitions of P and C can meet the basic re-
quirements of dual temporal expressions. Given a time
assignment tc for Ak, the constraint or privilege Ak(ti, tj)
outputs true if ti ≤ tc ≤ tj , otherwise outputs false.
We call it a valid time assignment if and only if both
Ak(ti, tj) ∈ P and Ak(ta, tb) ∈ L output true.

B. TACE Framework

With focusing on temporal access control and re-
encryption mechanism in cloud computing, the TACE
scheme consists of five algorithms:

1) Setup(1κ,A): Takes a security parameter κ and a list of
attributes A as input, outputs the master key MK and
the public-key PKA;

2) GenKey(MK,uk,L): Takes the user’s ID number uk as
input, the access privilege L and MK, outputs the user’s
private key SKL;

3) Encrypt(PKA,P): Takes a temporal access policy P and
PKA as input, outputs the ciphertext header HP and a
random session key ek;

4) ReEncrypt(PKA,HP , tc): Takes a current time tc and a
ciphertext header HP and PKA as input, outputs a new
ciphertext header Htc ;

5) Decrypt(SKL,Htc ): Takes a user’s private key SKL, and
a ciphertext header Htc on the current time tc as input,
outputs a session key ek;

With the help of this framework, the workflow of TACE-
based cryptosystem is described in Fig.2. For sake of
clarity, the operations on the data are not shown in the
framework since data owner could easily employ traditional
symmetric key cryptography to encrypt and then outsource
data with the help of a random session key.
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Fig. 2. Workflow of TACE-based Cryptosystem.

This framework is based on BSW’s scheme [1], in which
both AND/OR operations and basic fine-grained access
control are not within the scope of this paper.

C. Security Models

First, given a scheme based on our TACE framework, we
must guarantee that this scheme can follow the principle in
secure temporal control: Let Ak ∈ A be a range-based
temporal attribute and (P,L) be a constraint-privilege pair
with Ak, where Ak[ti, tj ] ∈ P and Ak[ta, tb] ∈ L. Given
a current time tc, secure temporal control requires that
the access is granted if and only if tc ∈ [ti, tj ] and
tc ∈ [ta, tb]. This means that the TACE scheme can must
also obey this rule as follows: Given the above-mentioned
(P,L), we can compute (MK,PKA) ← Setup(1κ,A),
SKL ← GenKey(MK,uk,L), and (HP , ek) ←
Encrypt(PK,P). Such that, we hold

Pr

[
Hc ← ReEncrypt(PKA,HP , tc);

Decrypt(SKL,Htc) = ek

]
= 1,

if and only if the access is granted over (P,L) and tc
according to fine-grained access control model. Besides
these, we are more concerned with the security risk from
cloud servers or data users, as follows:
• Cloud servers: Similarly to [9], [3], we just consider

“Honest but Curious” cloud servers, that is, cloud servers
will follow our proposed protocol in general (especially
for a uniform Clock service), but try to find out as much
secret information as possible based on their inputs. More
specifically, we assume cloud servers are more interested
in file contents, changing time range in policy, and user
access privilege than other secret information.

• Data users: Dishonest users would try to access files
outside the scope of their access privileges. To achieve
this, unauthorized users may intent to change the tem-
poral constraints in his privilege independently or co-
operatively. In addition, each party is preloaded with a
private key and the public key can be easily obtained
when necessary.

IV. MAIN TECHNIQUES

A. Main Idea

In order to achieve temporal access control on out-
sourced data in the cloud, we present and combine the
following three advanced cryptographic techniques: integer
comparison, current-time re-encryption and attribute-based
encryption (ABE). The existing integer comparison scheme,
first introduced in BSW’s Cipher-policy ABE scheme, is a
trivial method based on bitwise comparisons and AND/OR
logical operations. Unfortunately, this method does not
support the time attribute with range Ak[ta, tb] in the
private key SK, as well as the re-encryption mechanism. To
resolve this challenging issue, we provide a new idea for
designing cryptographic “one-way” property to represent
the total ordering relation in integer. This means that given
the integer relation ti ≤ tj and two corresponding value
vti , vtj , there exists an efficient algorithm to obtain vtj from
vti , but it is hard to compute vti from vtj . Based on this
idea, we have constructed a practical one-way function to



realize the integer comparison. Also, we have demonstrated
how to incorporate these functions into the BSW’s scheme
to realize fine-grained access control in clouds [10].

B. Forward/Backward Derivation Functions
Let time be denoted as a countable set U =
{t1, t2, · · · , tT } constituted from the discrete consecutive
integers with total ordering 0 ≤ t1 ≤ t2 ≤ · · · ≤ tT ≤ Z,
where Z is the maximum integer. In order to construct a
cryptographic algorithm for integer comparison, we make
use of a cryptographic map ψ : U → V , where V =
{vt1 , · · · , vtT } is a set of cryptographic values. It is obvious
that ψ must be an order-preserving map, that is a map such
that if ti ≤ tj in U implies there exists a partial-order
relation ≼ to ensure vti ≼ vtj in V , where vti = ψ(ti)
and vtj = ψ(tj). In order to setup this kind of relation
over V , we consider the partial-order relation in V as the
“one-way” property in cryptography, as follows:

Definition 1: Given a function f : V → V based on a
set (U,≤), it is called a forward derivation function if it
satisfies the following conditions:
• Easy to compute: the function f can be computed in a

polynomial-time, if ti ≤ tj , i.e., vtj ← fti≤tj (vti);
• Hard to invert: it is infeasible for any PPT algorithm to

compute vti from vtj if ti < tj .

Similarly, we also define a function f̄ to realize the
derivation in opposite direction, which is called Backward
Derivation. In order to avoid interference between f and
f̄ , we use a different sign ψ̄ : U → V̄ , and then define the
backward derivation function f̄ : V̄ → V̄ based on the ≥
relation in (U,≤), e.g., vtj ← fti≥tj (vti).

C. Cryptographic Constructions
We propose a cryptographic construction for integer

comparisons based on the forward/backward derivation
functions. This construction is built on a special group G
of RSA-type composite order n = p′q′. First, we choose
two random secrets φ, φ̄ in a group G. Next, we choose
two different random λ and µ in Z∗

n, where the order of
λ, µ are sufficiently large in Z∗

n. Based on RSA system,
we define two mapping functions (ψ(·), ψ̄(·)) from an
integer set U = {t1, · · · , tT } into V = {vt1 , · · · , vtT } and
V̄ = {v̄t1 , · · · , v̄tT } as follows:

vti ← ψ(ti) = φλti ∈ G;

v̄ti ← ψ̄(ti) = φ̄µZ−ti ∈ G.

where, φλt

denotes φ(λt) rather than (φλ)t. Note that, the
values, wti = λti and w̄tj = uZ−tj , can only be computed
in the integer Z because n′ and n are unknown based on
the actual difficulty of factoring large numbers n. Next,
according to the definition of ψ(·) and ψ̄(·), it is easy to
define the forward derivation function f(·) and backward
derivation function f̄(·) as

vtj ← fti≤tj (vti) = (vti)
λtj−ti ∈ G,

v̄tj ← f̄ti≥tj (v̄ti) = (v̄ti)
µti−tj ∈ G.

It is easy to show that (φλti
)λ

tj−ti
= φλtj

= vtj ∈ G and
(φ̄µZ−ti

)µ
ti−tj

= φ̄µZ−tj
= v̄tj ∈ G. But it is intractable to

obtain vti from vtj for ti ≤ tj under the RSA assumption
that λ−1 and µ−1 cannot be efficiently computed.

V. SECURITY ANALYSIS AND PERFORMANCE
EVALUATION

A. Security of Forward/Backward Derivation Functions

The security of TACE scheme is based on the RSA
assumption and Gap Diffie-Hellman (GDH) assumption.
Since this scheme is constructed based on BSW’s CP-
ABE scheme, it remains the security properties of their
scheme, e.g., IND-CPA [1]. Hence, we focus on the security
analysis of the different parts between them: we introduce
the forward and backward derivation functions f(·), f̄(·)
into our scheme, so we need to assure the “one-way”
property in the forward and backward derivation processes.
This kind of “one-way” property can be guaranteed because
the inverse of λ, u cannot be computed in Z∗

n if n is
unknown. Thus, λtc−ti , utj−tc ∈ Z∗

n cannot be computed in
Z for tc < ti and tj < tc, so that ftc≤ti(vti) = (vti)

λtc−ti

and f̄tc≥tj (vtj ) = (v̄tj )
µtj−tc is intractable. Strictly, this

kind of “one-way” property can be proved under the
RSA assumption: given an RSA public key (N, e) and a
ciphertext C =Me ∈ G, it is infeasible to compute M .

Theorem 1: Given a quintuple (n, λ, ti, ψ
λti

) over the
RSA-type elliptic curve system SN , where ψ is unknown.
It is infeasible to compute (tj , ψ

λtj
) with tj < ti for all

probabilistic polynomial time (PPT) algorithms under the
RSA assumption.

Proof: Seeking a contradiction, we assume that there
exists a PPT algorithm A that can get a (tj , ψ

λtj
) under

above input, where tj < ti. This is equivalent to say that
this algorithm can solve the RSA problem over elliptic
curve for the public-key (G, N, e) and a ciphertext C, be-
cause the ciphertext can be computed by M = Reti−tj−1

∈
G if (tj , R) is a solution of A on input (n, λ = e, ti, C)

due to Rλti−tj
= C = Mλ, and ti − tj − 1 ≥ 0. This

contradicts the hypothesis.

B. Performance Evaluation

We have implemented our scheme in Qt/C++ and ex-
periments were run on an Intel Core 2 processor with
2.16 GHz and 500M of RAM on Windows Server 2003.
All disk operations were performed on a 1.82TB RAID
5 disk array. Using GMP and PBC libraries, we have
implemented a cryptographic library upon which temporal
attribute systems can be constructed.

We compare the performance of BSW’s scheme and our
scheme over integer ranges. We show the computational
overheads for BSW’s scheme and our scheme for different
sizes of U in Figure 3. It is obvious that our scheme
is more efficient than BSW’s scheme. The reason is that
the computation costs of algebraic operations and simple
modular arithmetic operations can be neglected, because



they run fast enough [11] in contrast with bilinear map
operations. Without loss of generality, the performance
of our scheme is better than that of BSW’s scheme in
[1; 10, 000, 000].
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Fig. 3. Computational overheads of BSW’s scheme (Red) and our
scheme (Black) for integer comparison operations: (a) Setup algorithm,
(b) KegGen algorithm, (c) Encrypt algorithm, and (d) Decrypt algorithm.

Next, we analyze the storage and communication over-
heads of our TACE scheme. Thanks to the use of forward
(or backward) derivation function for total ordering, TACE
scheme has O(1) size of private-key and ciphertext for
a certain integer attribute in Table I, as well as a nearly
linear-time complexity. But, for a comparison range [1, Z],
the storage and computation costs of BSW’s scheme are
nearly O(log2 Z) times than those of our scheme. Hence,
in comparison with BSW’s scheme, TACE scheme provides
a lower bound on variety of qualities, such as storage,
communication and computation overheads.

TABLE I
COMPARISON OF BSW’S SCHEME AND OUR SCHEME.

BSW’s Scheme Our Scheme
t1 ≤ t t ≤ t2 t1 ≤ t t ≤ t2

Ciphertext size log2 |U | log2 |U | 1 1
Private-key size log2 |U | log2 |U | 1 1

Depth of policy tree log2 |U | log2 |U | 1 1
Computation overhead log2 |U | log2 |U | 1 1

VI. RELATED WORK

In recent years, cryptographic access control [12], [13]
has been introduced as a new access control paradigm to
manage dynamic data sharing systems in cloud computing.
It relies exclusively on cryptography to provide confiden-
tiality of data managed by the systems, and is particularly
designed to run in an untrusted or hostile environment
which lacks of trust knowledge and global control [13].
Attribute-based encryption (ABE) is proposed to realize
a fine-grained attribute-based access control mechanism.
Since Sahai and Waters [14] introduced ABE as a new
means for encrypted access control in 2005, ABE has
received much attention and many schemes have been
proposed in recent years, such as, key-policy ABE (KP-
ABE) [4], [2] and ciphertext-policy ABE (CP-ABE) [1],

[15]. For example, the model proposed by Yu et al. [3]
introduced key-policy attribute-based encryption (KP-ABE)
to achieve secure and scalable FGAC in cloud computing.

Temporal control is of particular significance and has
been concerned in traditional access control [5], [16]. For
example, in [5] the authors gave a temporal access control
model and described applications in database systems and
secure broadcasting. However, in the context of ABE, little
work has been done on studying time control or integer
comparison mechanisms. Even though Bethencourt et al.
[1] gave a bitwise comparison method to realize integer
comparison on CP-ABE scheme, it is unfortunately not
efficient enough for practical applications.

VII. CONCLUSIONS

In this paper, we addressed the construction of tem-
poral access control in cloud computing. Based on for-
ward/backward derivation functions, we proposed a tempo-
ral access control encryption to support time range compar-
isons and re-encryption mechanism. We also discussed how
to handle current time controls and temporal constraints
with our solution.
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