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Abstract—Network Function Virtualization (NFV) together
with Software Defined Networking (SDN) offers the potential
for enhancing service delivery flexibility and reducing overall
costs. Based on the capability of dynamic creation and destruc-
tion of network function (NF) instances, NFV provides great
elasticity in NF control, such as NF scaling out, scaling in, load
balancing, etc. To realize NFV elasticity control, network traffic
flows need to be redistributed across NF instances. However,
deciding which flows are suitable for migration is a critical
problem for efficient NFV elasticity control. In this paper, we
propose to build an innovative flow migration controller, OFM
Controller, to achieve optimized flow migration for NFV
elasticity control. We identify the trigger conditions and control
goals for different situations, and carefully design models and
algorithms to address three major challenges including buffer
overflow avoidance, migration cost calculation, and effective flow
selection for migration. We implement the OFM Controller on
top of NFV and SDN environments. Our evaluation results show
that OFM Controller is efficient to support optimized flow
migration in NFV elasticity control.

I. INTRODUCTION

Network Function Virtualization (NFV) [1] was recently

introduced to replace traditional dedicated hardware middle-

boxes with software based Network Functions (NFs) to offer

the potential for both enhancing service delivery flexibility

and reducing overall costs. Based on the capability of dy-

namic NF creation and destruction, NFV could support elastic

control over NF instances to adapt to frequent and substantial

dynamics of network traffic volumes [2], [3]. To realize NFV

elasticity control such as NF scaling [4], [5], [6] or NF load

balancing [5], [7], [8], flows need to be distributed across

NF instances, requiring an efficient and flexible approach to

control traffic steering. Currently, Software Defined Network-

ing (SDN) [9] is used to steer flows through NFs to enforce

network policies [4], [7]. Together, NFV and SDN can support

dynamic flow distribution across NF instances.

Furthermore, NFs typically have to maintain state informa-

tion for processed flows [10], [11]. To ensure the correctness

of packet processing after flow redistribution, some research

efforts [12], [5], [13], [14], [15] have proposed to transfer

flow states alongside the flow migration. Split/Merge [14]

and OpenNF [5] rely on a centralized controller to transfer

states between NF instances and buffer incoming packets to

realize loss-free and order-preserving migration. On the other

hand, enhanced OpenNF [12] and other recent works [13],

[15] performed migration directly among NF instances to

improve the scalability and performance of flow migration

in NFV networks. Above research efforts mainly focus on

designing mechanisms for safe migration of flow states among

NF instances.

However, selecting suitable flows to migrate is also a signif-

icant problem in NFV elasticity control. A careless selection

of flows for migration would incur three major problems:

• Buffer overflow. From the system’s perspective, flow migra-

tion requires a preallocated buffer in the destination NF [12],

[15] to store in-flight traffic. In-flight traffic refers to the

traffic that arrives at the source instance after the states have

been migrated, or the traffic that arrives at the destination

instance before corresponding states become available. A

careless selection of flows could result in migrating several

elephant flows together, which might overflow the buffer

space and incur packet loss or service degradation.

• High migration cost. From the network tenant’s perspec-

tive, NFV networks should satisfy Service Level Agree-

ments (SLAs). A breach of certain SLAs would incur

penalties. However, flow migration might bring additional

processing latency (tens of milliseconds in [15]), which

may be unacceptable for flows that demand tight latency

SLAs (such as flows of algorithmic stock trading or high

performance distributed memory caches [16]), while ac-

ceptable for flows with looser latency constraints (such as

P2P transmission flows). Thus, randomly selecting flows to

migrate may result in serious SLA violation penalties and

increase migration costs significantly.

• Ineffective migration. From the network operator’s per-

spective, realizing NFV elasticity control without a proper

flow selection mechanism may fail to achieve the control ex-

pectation. For instance, when an NF instance is overloaded,

selecting too few flows to migrate might not effectively

alleviate the hot spot, while migrating too many flows might

create new hot spots.

To address the above problems, in this paper, we propose

a novel flow migration controller, OFM Controller, for

optimized flow migration in NFV elasticity control. To the978-1-5386-2542-2/18/$31.00 c© 2018 IEEE



TABLE I: NFV elasticity control situations

Situations When to Migrate Why to Migrate Where to Migrate Which Flows to Migrate

NF Overload NF load > peak load threshold Avoid performance degrading
Newly created instances

(Scale out)
Some (Which flows?)

NF Underload NF load < bottom load threshold
Save resources for reusing and

achieve energy efficiency
Merge current instances

(Scale in)
All flows of some instances

(Which instances?)
Load Balancing NF instances have imbalanced load Prevent possible overload Among current instances Some (Which flows?)

Failure Recovery NF instance failure occurs Realize failure recovery Non-failed instances All
NF Upgrading NF features require upgrading Carry out network policies Upgraded instances All

best of our knowledge, we are the first to design such a

controller that performs optimized flow selection for NFV

elasticity control. We analyze NFV elasticity control situations

and carefully design the OFM Controller to fully achieve

control goals, minimize migration costs, and avoid buffer

overflow. We make the following contributions in this paper:

• We categorize typical NFV elasticity control situations

including NF scaling, NF load balancing, NF failure re-

covery, and NF upgrading. We analyze in detail the trigger

conditions and flow selection goals of each situation, and

present the design challenges. (§ II)

• We propose the design of OFM Controller for opti-

mized flow migration in NFV elasticity control. The OFM

Controller collects flow statistics and NF loads during

runtime, and identifies situations where flow migration is

required. By effectively modeling the buffer requirements

and migration latency, OFM could select proper flows to

achieve control goals while minimizing the migration costs

and avoiding buffer overflow. (§ III)

• We implement the OFM Controller based on Floodlight

and perform extensive evaluations. Experimental results

show that OFM could achieve optimized flow migration in

NFV elasticity control, while ensuring full achievement of

control goals. (§ IV)

II. ELASTICITY CONTROL SITUATIONS ANALYSIS

This section first summarizes the situations where flow

migration is required for NFV elasticity control. Then we

analyze the control goals and constraints of each situation as

well as the design challenges, which guide the design of OFM.

A. NFV Elasticity Control Situations

We list five typical situations of NFV elasticity control in

Table I, and analyze those situations in this section.

NF scaling out: This happens anytime when the load of an

NF instance exceeds the NF processing load threshold [5], [8],

[14], [17]. By dynamically deploying NF instances in NFV,

network operators could perform NF scaling out in the runtime

to alleviate the hot spot and avoid performance degrading

by migrating some flows from the overloaded instance to the

newly created one. However, flows on the overloaded instance

have various SLA constraints and sizes. In order to achieve

control goals, proper flows should be selected to alleviate the

hot spot and create no new hot spots while incurring minimal

SLA violations and avoiding buffer overflow.

NF scaling in: To save resources and achieve energy ef-

ficiency, when multiple NF instances are underloaded, NF

scaling in is performed by destroying some VMs and migrating

Situations Flow	Selection	Goals

- Quick hot spot alleviation

- New hot spot avoidance

- Minimal migration costs

- Buffer overflow avoidance

- Maximal revenue benefit

(minimal migration costs)

- New hot spot avoidance

- Reasonable calculation time

- Buffer overflow avoidance

- Balanced load achievement

- Minimal migration costs

- Quick balancing and

converging

- Buffer overflow avoidanceNF Load Balancing

Overload - Scale Out

Underload-Scale In

Fig. 1: Flow selection goals for different control situations

all flows on those instances to the remaining ones [5], [14],

[8], [17]. However, flow migration incurs additional latency

and could violate SLA constraints of some flows. Therefore,

we should select proper NF instances to destroy to achieve

maximum revenue benefit and minimum migration costs.

NF load balancing: NF load balancing redistributes flows

across current NF instances to prevent potential NF overload

situations. NF load balancing brings no revenue benefits since

it does not shut down VMs. However, flow migration might

bring additional forwarding latency and incur SLA violation

penalties. Thus, we should select proper flows for migration

to both balance the load and minimize migration costs.

NF failure recovery: When an instance fails, we need to

recover from the failure by rerouting all flows on the failed

instance to healthy instances or by creating new instances [5].

NF upgrading: For maximum security, a network provider

may want traffic to always be processed by the latest NF

software [5]. NFV provides the capability to dynamically and

quickly [18] launch updated NF instances. We need to migrate

all flows and states to the updated instances.

B. Flow Selection Goals for NFV Elasticity Control

From the above analysis, we observe that situations includ-

ing NF scaling out, scaling in, and load balancing require

a careful selection of flows to achieve control goals while

minimizing migration costs and avoiding buffer overflow.

Therefore, we next analyze the detailed flow selection goals

when coping with each situation, and show them in Fig. 1.

NF scaling out: When an NF is overloaded, NF scaling

out must be performed to avoid packet loss or performance

degradation. Operators expect a quick load alleviation without

creating new hot spots. Besides, minimal migration costs are

desired and buffer overflow should be avoided.



NF scaling in: As merging multiple instances into fewer ones

and destroying free Virtual Machines (VMs) could improve

energy efficiency and bring revenue benefits, we want to

minimize the number of remaining instances. However, flows

on different instances have different SLA constraints, and we

want to minimize the migration costs simultaneously. There-

fore, we need to compare SLA penalties for migrating flows on

each instance with the revenue benefit brought by destroying

the VM, and find the optimal migration plan. Besides, merging

multiple instances onto one requires a safe scaling in without

creating new hot spots. Finally, buffer overflow should be

avoided during migration.

NF load balancing: Load balancing could balance the load

among NF instances and prevent potential NF overload sit-

uations. However, NF load balancing is neither compulsory

(like scaling out) nor directly rewarding (like scaling in).

Therefore, to minimize the flow migration costs, we should

only redistribute flows with loose SLAs that would not be

violated during migration. Thus, only a limited set of flows

could be reallocated, which might not result in a completely

balanced final load. However, we could ameliorate the load

imbalance situation to some extent with no costs.

A strawman solution for NFV elasticity control proposed in

E2 [8] adopts a strategy of migration avoidance. Existing flows

are still processed by the previously assigned NF instance,

while only new flows are differentially handled. In this way, no

flow migration occurs for NFV elasticity control. For example,

for NF scaling out, we could simply instantiate a new NF

instance and redirect new flows to it. While the migration

avoidance strategy introduces no migration penalty, it may still

result in penalty during runtime. If an NF is overloaded, we

should quickly migrate flows away from the instance to avoid

performance degradation and SLA violation. We analyze the

migration avoidance strategy in detail in §V.

C. Design Challenges

To achieve above flow selection goals, we design the OFM

Controller for NFV elasticity control. We encounter three

major challenges in the design of OFM.

Buffer overflow avoidance: A safe elasticity control requires

buffering in-flight traffic in the destination instance [12], [15]

during migration. However, buffer space is not unlimited.

We observe that migration of different flows incurs different

amount of in-flight traffic. Therefore, care must be taken while

selecting flows to migrate to avoid buffer overflow. To this end,

OFM dynamically measures the size of flows on NF instances

without intrusion into NF logic, and models the buffer space

requirement for the migration of each flow. (§ III.B).

Migration cost calculation: Flow migration could bring

additional forwarding latency, violate SLA constraints, and

incur a penalty. However, the penalty depends on the extent to

which the SLA is violated, i.e. the exceeding delay time over

the SLA constraints. Therefore, OFM is challenged to precisely

estimate the migration latency, which could vary significantly

with the number of flows to migrate [5], [15]. In response,

through experiments on real world NFs, OFM builds models

OFM Controller Resources
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Optimal Migration Calculation

SLA Storage
Flow Statistics
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Control
(OpenNF, TFM) Virtualization Layer
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Provisioning

Control
Buffer Cost
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Migration Cost
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Fig. 2: OFM Controller components and workflow

for flow migration latency based on the number of flows to

migrate and use it to calculate migration costs (§ III.C).

Effective flow selection for migration: As analyzed in § II.B,

different control situations have unique control goals. There-

fore, we are challenged to design optimized flow selection

mechanisms for the three situations respectively. However,

massive parameters including NF load, flow size (elephant

or mice flows as defined in [19], [20]), migration latency of

different sized flows, VM revenue benefit, and buffer cost

should be considered to find an optimized migration plan for

each situation, making it challenging to design algorithms for

optimized flow selection. Furthermore, the calculation could

consume significant time, which may be unacceptable for

situations like NF scaling out that requires a quick hot spot

alleviation. To address the above challenges, OFM carefully

designs unique algorithms for different situations with respect

to all above parameters. (§ III.D).

III. OFM DESIGN

To address the above challenges, we design the OFM

Controller to realized optimized flow migration in NFV

elasticity control situations. Components and workflow of the

OFM Controller are shown in Fig. 2. OFM Controller

monitors the status of each NF instance and detects traffic

overload, underload, and imbalance conditions. At the same

time, the OFM Controller collects the statistics of flows

on each NF for further selection (III.A). Once a condition

is detected, based on flow SLA constraints and dynamically

gathered flow statistics, OFM Controller first performs

Buffer Cost Analysis (III.B) and Migration Cost Analysis

(III.C). The analysis results are inputted into Optimal Mi-

gration Calculation (III.D) to create the optimized migration

plan. Finally, OFM Provisioning Control and Migration Control

modules would interact with underlying resources to perform

flow migration in the same way as introduced in [12], [5],

[14], [15].

However, a natural concern would be the practicality of

calculating an optimized plan for future migration based on

the current flow statistics. Actually, as mentioned in [21],

we should be able to use routes based on historical traffic

patterns for the last 1 second for effective flow scheduling.

Furthermore, as shown in § IV-B, OFM can finish gathering

statistics and calculating within 1 second for all situations,

which demonstrates the timeliness of OFM. Next we introduce

each module of OFM in detail.
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A. NF & Flow Status Collection and Condition Detection

The OFM Controller needs to collect NF processing

load, i.e. throughput, for elasticity control condition detection,

as well as the flow sizes for flow selection. A naive approach

to obtain these statistics is to modify NF logic to maintain

flow-level packet counters. However, doing so would intrude

NF logic and increase NF development burden of statistics

gathering and communication with the controller. To precisely

collect above statistics in a light-weight manner, we exploit

the flow table entry counters of OpenFlow [22]. OpenFlow

switches maintain a byte counter for each flow table entry,

while the controller queries counters from switches during

runtime. However, flow entries in OpenFlow flow tables are

usually aggregated. Directly querying counters cannot provide

flow-level byte counters. Therefore, we utilize OpenFlow’s

multi-stage flow tables [22], assign the first flow table of an

edge switch connected with NFs as the counter table, and

issue fine-grained rules to it to maintain flow-level counters.

The action of each entry in the counter table is to directly

send packets to the next flow table. As shown in Fig. 3,

we periodically query flow counters from the counter table,

and calculate the flow size by dividing the counter difference

by the query interval. Since the OFM Controller can

acknowledge the target NF of each flow, it groups the flows

based on the target NF and adds up the sizes of flows targeting

at the same NF to get the real-time throughput of the NF.

Suppose there are n NF instances of the same type,

such as firewalls, running in the NFV network. The OFM

Controller periodically queries flow statistics from the

data plane, and calculates the load lj of instance j ∈ [1, n].
For condition detection, we define thtop as the peak process-

ing load threshold of an NF instance, and thbottom as the

bottom load threshold. We use the variance of the NF loads

var(l1, ..., ln) to quantify the load imbalance grade. We define

the maximum allowed variance of NF loads as thvar. We

define conditions for NFV elasticity control as:

• Overload: lj ≥ thtop,j for any j ∈ [1, n]
• Underload: lj ≤ thbottom,j for any j ∈ [1, n]
• Imbalance: var(l1, ..., ln) ≥ thvar

Based on above rules, NFV elasticity control conditions

can be detected, which would trigger optimal flow migration

calculation to handle the situation.

B. Buffer Cost Analysis

During the migration, in-flight traffic needs to be buffered

until the end of the state installation. Then, in-flight traffic will

be flushed to the destination NF instance for processing. The

OFM Controller adopts the distributed buffering mecha-

nism in [12] and buffers the in-flight traffic in the destination

instance. We target at avoiding buffer overflow by estimating

the in-flight traffic in the following way.

Suppose flow k of byte rate sizek needs to be migrated,

and the migration time of flow k is denoted as lamigration,k.

During flow migration, all in-flight packets of this flow

are buffered at the destination instance. Therefore, the total

buffered packet size required could be modeled as:

bufferk = sizek × lamigration,k (1)

In this way, we could calculate the buffer requirement for

migrating each flow, and select proper set of flows to avoid

buffer overflow in the destination instance. The estimation of

the flow migration time will be introduced later in this section.

C. Migration Cost Analysis

Due to the additional latency incurred by flow migration,

NFV elasticity control might break flow SLAs [23] and cause

penalty [24]. Furthermore, for NF scaling in, shutting down

underloaded VMs could bring revenue benefit and ameliorate

the migration cost. Next we introduce the SLA violation

penalties and revenue benefit estimation in detail.

1) Penalty for SLA Violations: Latency related SLAs in

cloud services regulate maximum processing latency for spe-

cific request types [24]. In comparison, the service provided

by NFV is advanced packet processing by NFs including

firewall, IDS, VPN, load balancing, etc [8], [17]. Latency

related SLAs should then regulate the maximum latency for

each flow processed by NFV networks.

Suppose there are m flows on NF instance j. The latency

SLA of a flow k is LAk. Therefore, the latency lak of this flow

should satisfy: lak ≤ LAk for k ∈ [1,m]. During runtime

without flow migration, the total latency of flow k on NF

instance j is equal to the NF processing latency, i.e. lak =
laprocessing,j for k ∈ [1,m]. However, flow migration might

introduce additional latency overhead. Therefore, in order to

meet the latency related SLA during migration, the migration

latency should satisfy:

lamigration,k ≤ LAk − laprocessing,j for k ∈ [1,m] (2)

During flow migration, the above inequality might be

breached and incur penalty. The untimely-processed traffic of

a flow k is exactly the buffered in-flight traffic, i.e. bufferk.

According to [24], we could model the SLA violation penalty

as a linear function. We denote the penalty rate as β, and the

delay time for migrating a flow as DT . We have:

Penalty = α+ β × buffer ×DT (3)

However, for a flow k, if its latency SLA is not violated,

the delay time is set to zero, and the penalty should be zero.

Otherwise, the delay time is the exceeded latency over the

SLA constraint. Therefore, we have:

DTk = max (0, lamigration,k + laprocessing,k − LAk) (4)

The migration penalty of flow k could be modeled as:

Penaltyk =

{

α+ β × bufferk ×DTk DTk > 0
0 DTk = 0

(5)
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Next, we need to estimate the migration time of a flow to

calculate the SLA violation penalty. Fig. 4 shows the workflow

of state migration in [12] with four major time usages.

• t1: the time of the controller informing the destination

instance to accept state.

• t2: the time of the controller informing the source in-

stance to transfer state.

• tsk: the state transfer time for the flow k
• tu: the flow rule update time.

The total migration time for flow k could be represented as:

lamigration,k = t1 + t2 + tsk + tu (6)

Among them, t1, t2, and tu are not related to the specific

flow to migrate. We could easily measure them in NFV net-

works and consider them as constants. However, as illustrated

in [12], the state transfer time depends on the number of

flows to migrate, regardless of flow sizes. Our evaluation in

Section IV demonstrates a linear relationship between state

transfer time of a flow (tsk) and the total number of flows

(fn) to migrate. We describe their relationship as:

tsk = γ + η × fn (7)

γ and η are two constants and could vary for different NF

types. In this way, we could estimate the migration time of

the selected flows and calculate the penalty. When migrating

fn flows, for an individual flow k, the delayed time, buffer

requirement, and migration cost are modeled as:

DTk = (t1+ t2+ tu+γ+η ∗fn)+ laprocessing,k−LAk (8)

bufferk = sizek × (t1 + t2 + tu+ γ + η × fn) (9)

costk = Penaltyk =

{

α+ β × bufferk ×DTk DTk > 0
0 DTk = 0

(10)

2) Revenue Benefit Estimation: For NF scaling in situa-

tions, shutting down VMs could bring revenue benefit and

neutralize the migration cost. We denote the price (i.e. the

cost of the VM per time slot [24]) of the VM j as PriVMj .

Furthermore, we need to estimate the VM runtime saved by

VM scaling in. Suppose we always destruct a VM when it is

underloaded. The running time saved in this approach is the

time when VM load is under thbottom. Therefore, we collect

the historical data and calculate the average time interval

TINTavg when an VM is underloaded, and take it as the

estimated saved time. Therefore, we model the revenue benefit

and the total migration cost of destructing VM j as:

benefitj = PriVMj × TINTavg for j ∈ [1,m] (11)

costj =

n
∑

k=1

Penaltyk − benefitj (12)

D. Optimal Flow Migration Calculation

In this section, we present algorithms used by the OFM

Controller to achieve optimized NFV elasticity control.

As analyzed in §II, the three NFV elasticity control situations

have unique flow selection goals, which motivates us to design

different mechanisms for these three situations respectively.

NF scaling out requires quick hot spot alleviation with minimal

migration costs. Therefore, we design a greedy algorithm

for NF scaling-out that could quickly generate an optimized

migration plan. NF scaling-in pursues maximal revenue benefit

within a reasonable calculation time. In response, we propose

an Integer Linear Programming (ILP) algorithm to bring the

maximum benefit. Finally, NF load balancing aims to achieve

relatively balanced load and minimal migration costs. For

these purposes, we design a three-step heuristic for NF load

balancing to effectively mitigate the load imbalance situation.

1) NF Scaling Out: When an NF instance is overloaded,

OFM Controller performs NF scaling out by creating a

new instance and migrating some flows to it. A strawman

solution for NF scaling out is to migrate half of the traffic

load to the newly created instance, in order to achieve a

balanced load while alleviating the hot spot. However, flows

on the overloaded instance may have tight latency SLAs, and

migrating half of these flows will incur large SLA violation

penalties.

Actually, the basic control goal of NF scaling out is to

migrate some flows away to drop the NF load below the peak

threshold. To achieve this control goal, we introduce the peak

safe threshold thsafe,j for NF instance j, which regulates

the peak load of the overloaded instance after scaling out.

For example, suppose the peak threshold thpeak,j = 80% of

the total capacity while thsafe,j = 60%. Suppose there is an

overloaded (80%) instance. Instead of having to migrate half

(40%) load, we could simply ensure that 20% is migrated away

for effective overload mitigation. Note that the actual threshold

values could be dynamically configured by network operators

based on network traffic statistics. The determination of the

threshold values is out of the scope of this paper. Therefore,

we formulate the ILP algorithm for NF scaling out as follows.

Suppose NF instance j1 with load lj1 is overloaded and

some of its flows will be migrated to a new instance j2
with buffer size Bufferj2. Suppose there are mj1 flows on

instance j1, namely f1, ..., fmj1
. xk ∈ {0, 1} is an indicator

of whether flow k is selected. ILP formulation to solve x is:

min

mj1
∑

k=1

xk × Penaltyk (13)

s.t.

(1) xk ∈ {0, 1} for all j ∈ [1,mj1]
(2)

∑mj1

k=1
xk × bufferk ≤ Bufferj2



Algorithm 1: Penalty Greedy Algorithm for Scaling Out

Input: Flow Parameters: size, SFMT , LA, laprocessing

Input: NF Parameters: load, thsafe, thtop, Bufferdst.
Output: Flows to Migrate: fm.
sizefm = 0 ;1

foreach k ∈ mj1 do2

// Calculate migration penalty for each flow3

Penalty[k] = size[k]× (laprocessing [k] + SFMT − LA[k]) ;4

while true do5

// Find the flow with the minimum penalty6

index = find min index(Penalty) ;7

Penalty[index] = MAX V ALUE ;8

sizefm = sizefm + size[index] ;9

if sizefm > Bufferdst then10

// Buffer in the dst NF is overloaded11

break ;12

if sizefm > load− thsafe & find min(Penalty) > 0 then13

// Enough flows are selected. Selecting14

one more flow introduces extra penalty

break ;15

if sizefm > load/2 then16

// Half load has been selected17

break ;18

fm.append(index);19

(3) (loadk−thsafe,k)×capacity <
∑mj1

k=1
sizek < loadk/2

Constraint (1) regulates that A flow is either migrated or

not migrated. Constraint (2) avoids buffer overflow in the

destination instance. Constraint (3) ensures that enough flows

are selected with minimum penalty.

However, we observe from Eq. 5 that Penaltyk is a piece-

wise function depending on DTk, making the ILP problem

unsolvable in a short time of a few milliseconds [25]. However,

according to the control goals of NF scaling out in Section II,

efficient calculation is required to quickly alleviate the hot

spot. Therefore, we exploit the penalty greedy algorithm to

accelerate the calculation, as shown in Algorithm 1. Since

we cannot pre-acknowledge the total number of flows to

migrate, we assume that each flow is migrated individually and

consumes a Single Flow Migrate Time (SFMT). The SFMT

can be measured and calculated for different NF types, which

will be introduced in Section IV. We use the migration penalty

(line 4) as the greedy variable. We greedily pick flows with

small penalties, and accumulate the total size of selected flows

until constraints are violated (lines 10, 13, and 16). Finally,

we select a optimized set of flows for NF scaling out.

2) NF Scaling in: Suppose there are n (n > 1) underloaded

NF instances of the same type. OFM Controller would

perform NF scaling in by merging some instances onto one

and shutting down the free VMs. OFM Controller applies

an ILP algorithm to minimize the migration cost. Suppose

NF instances j1, ..., jn with load l1, ..., ln are underloaded.

Instance jh(1 ≤ h ≤ n) carries mh flows. xsd is an

indicator of migrating all flows on instance js to instance xd

and destroying instance js. Instance jh has a buffer size of

bufferjh . The ILP formulation to solve x is presented below.

min

n
∑

s=1

n
∑

d=1

xsd × (

mjs
∑

k=1

Penaltyk − benefits) (14)

s.t.

(1) xsd ∈ {0, 1} for s ∈ [1, n], d ∈ [i, n]
(2) xss = 0 for s ∈ [1, n]
(3)

∑n

s=1
xsd +

∑n

s=1
xds ≤ 1

(4) ld +
∑n

s=1
xsd × ls < thsafe,d, d ∈ [1, n]

(5)
∑n

s=1
xsd × (

∑ms

k=1
bufferk) < bufferjd , d ∈ [1, n]

Constraint (1) regulates that instance s is either merged onto

instance d or not. Constraint (2) ensures that an instance cannot

be merged to itself. Constraint (3) ensures that an instance

can either be merged onto the other one, or accommodate

the other instance, or neither happens. Constraint (4) ensures

that remaining NF instances after merging are not overloaded.

The final constraint ensures that the buffer of each remaining

instance is not overflowed.

By solving the above ILP formulation, we could calculate

the optimal flow selection for NF scaling in within acceptable

time. We evaluate this algorithm in Section IV.

3) NF Load Balancing: Despite that NF load balancing

could prevent potential NF overload situations, it is neither

compulsive (like NF scaling out to alleviate the hot spot)

nor immediately rewarding (like NF scaling in which brings

revenue benefit). Therefore, we migrate flows on NF instances

with heavier load, i.e. greater than the average load, to NF

instances with lighter load under the condition that no SLA

violations occur, incurring zero migration costs. Note that

flows that are migrated away from one instance might be

placed onto different NFs. OFM Controller is challenged

to avoid generating hot spots and achieve a relatively balanced

load. A straightforward solution is to divide flows into several

groups of equal size, and redistribute all flows to all instances

according to the division. However, this may lead to the

migration of massive flows and incur large penalty. Thus, our

intuition is to fetch flows from instances whose loads are above

average and relocate the extra flows to instances with lower

loads. We design the following three-step heuristic.

Step 1: Instance classification. We calculate the average load

lavg of NF instances and put the NF instances whose load is

greater than lavg (heavily loaded instances) into NFListheavy
and the others (lightly loaded instances) into NFListlight.
Step 2: Flow selection. For each heavily loaded instance j,

we calculate the extra NF load above average as lextra,j . We

select flows on instance j whose SLA would not be violated

during migration. Considering the fact that flows migrated

away from one instance might be placed on multiple other

instances, we assume that each flow is migrated individually

and consumes a SFMT. We store the qualified flows into the

FlowListj , and sort the flows with a descending order by

flow sizes. Then we select flows one by one for migration,

and stop when adding one more flow would overflow the extra

load lextra,j . The intuition here is to quickly reduce the load

of the overloaded instance, since network traffic could vary

significantly, and a fast load balancing is desired to avoid

potential hot spots. Migrating large flows would reduce the

total number of flows to migrate and accelerate the balancing.

Step 3: Destination NF selection. In this step, we mix up

selected flows of all heavily loaded instances from Step 2 into
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Fig. 5: LBNL/ICSI trace statistics (broken down by

srcIP-dstIP pairs)

the final FlowList and split them onto light-loaded instances

to achieve a balanced load. We fill up the processing load

below average lbelow,j of each lightly loaded instance with

selected flows in FlowList using the bin-packing algorithm.

Finally, some flows in FlowList might not be assigned to any

destination instance. In this situation, these flows are placed

back to the original NF instances.

Based on our evaluation in Section IV, the above three-step

algorithm could quickly generate a migration plan to achieve

relatively balanced load among NF instances.

IV. IMPLEMENTATION AND EVALUATION

A. Implementation

We implemented the OFM Controller on top of the

Floodlight [26] controller. Specifically, we maintain flow SLAs

in a simple key-value storage data structure, and expose

REST interfaces which can be used to dynamically append,

modify, and delete SLAs. The NF Status Collection and

Flow Statistics Collection modules collect NF loads and flow

statistics through OpenFlow interfaces during runtime, which

are utilized by the Condition Detection module to detect

situations for NFV elasticity control. The Buffer Cost Analysis

module calculates required buffer costs, and the Migration

Cost Analysis module calculates migration costs for different

situations. Then, the Optimal Migration Calculation module

would calculate the optimized set of flows using algorithms

presented in Section III. To solve the ILP formulation for

NF scaling in situations, we use lpsolve, a Java based mixed

integer linear programming (MILP) solver [27].

B. Evaluation

We evaluate OFM based on a testbed with several servers,

each of which is equipped with two Intel(R) Xeon(R) E5-

2690 v2 CPUs (3.00GHz, 10 physical cores), 256G RAM

and two 10G NICs. The servers run Linux kernel 4.4.0-31.

The topology for evaluation is depicted in Fig. 4. We use

a server to run the OFM Controller, a server for Open

vSwitch (OVS) [28], and the rest eight servers that are directly

connected to the OVS server for eight NF instances of the same

type. To avoid affecting performance, each software NF runs

on bare metal without VM or Docker encapsulation.

For test traffic, we use a DPDK based packet generator

that runs on the fifth server and is directly connected to

the server carrying OVS. The generator sends and receives

traffic to measure the forwarding latency. We use two types

of traffic patterns including (1) Real-world traffic trace: we
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use the LBNL/ICSI enterprise trace [29], a typical traffic trace

collected from real-world enterprise networks, whose flow size

distribution and flow duration distribution are shown as Fig.

5, and (2) Randomly generated traffic trace, in which we

create flows with random source and destination addresses.

We configure the generator to create traffic according to the

pattern type, flow number, and flow size.

We evaluate OFM with the following goals.

• Demonstrate the relationship between flow migration time

and the number of flows to migrate. This justifies OFM’s

estimation of flow migration latency.

• Demonstrate that the OFM scaling out algorithm can find

an optimized migration plan that effectively alleviates the

hot spot within limited calculation time.

• Demonstrate that the OFM scaling in algorithm can find

an optimal migration plan that brings the maximum

migration benefit within acceptable calculation time.

• Demonstrate OFM load balancing algorithm’s capability

to effectively mitigate the load imbalance situation within

limited calculation time.

1) Flow Migration Time: In this experiment, we examine

the relationship between the flow migration time, lamigration

and the number of flows to migrate, n. We start two NFs

instances of the same type on two servers. We randomly

generate and send a different number of flows into one of

the NF instances to create initial flow states in it. Then

we configure the OFM Controller to perform flow and

state migration of all flows on this instance to the other free

instance, and measure the migration time. We have tested three

types of NFs including Prads [30], Bro [31], and IPtables [32].

Prads maintains the state of flow meta data, end-host operating

system and service details. Bro maintains the connection

information of TCP, UDP, and ICMP. IPtables tracks the 5-

tuple, TCP state, security marks, etc. for all active flows.

For each NF type, we vary the number of flows to migrate

from 10 to 100, and randomly vary the flow rate. Evaluation
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Fig. 8: Evaluation of the OFM NF scaling out algorithm

results are presented in Fig. 6, which reveals a linear positive

correlation between the migration time and the number of

flows to migration, regardless of the flow rate. Furthermore,

we present the result of linear regression for each NF type.

• Prads: lamigration = 86.982 + 5.7892× n, R2 = 0.998
• Bro: lamigration = 39.205 + 2.9545× n, R2 = 0.997
• IPtables: lamigration = 32.595+4.5222×n, R2 = 0.998

R2 is a measure of accuracy of fit with a value of 1 denoting

a perfect fit. Above regression expressions demonstrate a

strong linear correlation between the migration time and the

number of flows to migrate and can be utilized to estimate

the migration latency. Especially, we could use the regression

expression to estimate the SFMT (by assigning n = 1), which

can be used for the scaling in and load balancing algorithms.

2) Timeliness of OFM: OFM collects flow statistics and

calculates a migration plan during runtime. To ensure timeli-

ness, statistics have to be gathered quickly and the algorithms

should run efficiently. We enable the OFM Controller to

query different numbers of flow counters from one underlying

switch. As shown in Fig. 7, the OFM Controller could

fetch 100 counters within 1.5 ms. Furthermore, as shown in

the rest of this section, the entire control loop of statistics

gathering and calculation could finish within 1 second, which

demonstrates the timeliness and practicality of OFM.

3) NF Scaling out Algorithm: We evaluate the optimization

effect and computation time of the NF scaling out algorithm

using the Prads NF. We vary the number of flows from 10 to

100 and place them on one NF instance. In order to simulate

NF overload situations and evaluate the optimization effect, we

assume that the NF load l reaches 80% of the entire capacity,

and set the thsafe as 75%, 70%, 65%, and 60%, respectively,

indicating that 5%, 10%, 15%, and 20% flows (size-wise)

need to be migrated to alleviate the NF overload situation.

In order to quantify the migration cost, due to the lack of

real world SLA settings for NFV networks, we set the SLAs

of the flows by following the uniform random distribution in

[0.5×(SFMT+laprocessing), 1.5×(SFMT+laprocessing)].
Above SLA configuration could ensure that some flow SLAs

are violated during migration, and some are not.

We compare the OFM scaling out algorithm with three

strawman solutions, including a random algorithm, a size-

greedy algorithm, and an optimal solution. The random al-

gorithm randomly picks flows one by one until the total

size of selected flows reaches the migration percentage. The

size-greedy solution always picks the flow with the largest

size and checks if both constraints (2) and (3) in Eq.13 are

satisfied. If constraint (3) is satisfied (source instance is no

longer overloaded) but constraint (2) is not (migration creates

a new hotspot), it abandons the current selected flow and

picks the next largest flow. The optimal solution exhaustively

calculates the total size and migration cost of all possible flow

combinations, and finds the combination, which covers enough

flow size for migration with the minimal cost.

As shown in Fig. 8(a), the OFM scaling out algorithm could

reduce the migration cost to a large extent compared with

random and size-greedy algorithms, while suffering slightly

higher cost compared with the optimal solution. However,

Fig. 8(b) shows that the OFM algorithm consumes less than

0.1 ms computation time, while the optimal solution could

run for around 10 seconds for 100 flows. The flow selection

in OFM occupies only a tiny portion of the entire migration

time, which demonstrates the efficiency of the algorithm. Note

that the random algorithm takes a longer calculation time than

the OFM algorithm, as we run the random algorithm 10 times

and select the result with the minimum migration cost.

4) NF Scaling in Algorithm: OFM exploits ILP to calculate

an optimal solution that could minimize the migration cost for

NF scaling in situations. In order to evaluate the optimization

effect, we set thbottom as 10%, 15%, 20%, 25% and thsafe

as 40%, 50%, 60%. Above thresholds could be dynamically

configured by the operator during the runtime. We scatter flows

from the LBNL/ICSI enterprise trace to NF instances to ensure

that a certain number of NF instances are underloaded. We

configure the SLA of the flows following the same uniform

random distribution as in the NF scaling out experiment.

The performance of this approach depends almost fully on

the ILP formulation and solving. The ILP performance is

mainly influenced by the number of underloaded NF instances

of the same type. We use the Prads NF to perform the

evaluation. We compare NF scaling in algorithm in OFM with a

random solution that randomly picks NF pairs to merge while

assuring that the total NF load after merging does not exceed

the thsafe. We present the results in Fig. 9 and 10. As shown in

Fig. 9, the OFM solution could achieve a linear increase in the
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migration benefit with the increase of the underloaded instance

number and always outperforms the random solution largely

in different cases. According to Fig. 10, the computation time

of the OFM NF scaling in the algorithm is below 200 ms when

handling 10 to 50 underloaded instances, which is acceptable

for real-world networks.

5) NF Load Balancing Algorithm: NF load balancing in

OFM targets on reducing the load variance of NF instances

belonging to the same NF type. Therefore, we vary the number

of NF instances from 10 to 50, calculate the load variance

of NF instances before (varbefore) and after (varafter) the

load balancing algorithm, and calculate the variance reduction

ratio = varbefore/varafter. We randomly arrange flows from

the LBNL/ICSI enterprise trace on NF instances to ensure that

no overload or underload situations happen.

We compare the NF load balancing algorithm in OFM

with a pairwise solution that greedily pairs the overloaded

and underloaded NF instances by sorting the load of NF

instances and iteratively picking instances with the lowest

and highest loads as pairs. It then redistributes flows between

the two instances in each pair for load balancing. As shown

in Fig. 11(a), the load variance of NF instances could be

reduced by a factor of 1.5 to 2.5 by the OFM load balancing

algorithm, which is 20% to 60% better than the pairwise

solution. Besides, as illustrated in Fig. 11(b), the computation

time of the OFM algorithm is well below 100 µs for balancing

50 NF instances, which could quickly balance NF loads.

V. RELATED WORK

Some research efforts [5], [12], [13], [14], [15] have

addressed the necessity of state migration to support NFV
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Fig. 11: Evaluation of OFM NF load balancing algorithm

elasticity control. Split/Merge [14] and OpenNF [5] rely on

a centralized control plane to buffer states during migration,

while enhanced OpenNF [12] and other efforts [13], [15]

perform state and packet transfer directly among NF instances

to improve scalability and performance. Above efforts mainly

focus on safe state migration in NFV. In contrast, OFM

addresses the challenge of optimized flow migration for NFV

elasticity control. Murad et al. [33] proposed to extract state

from NFs and store state in a data store layer, thus eliminating

the necessity to migrate flows for NFV elasticity control.

However, such a design could add to the NF processing

latency by a maximum of 500 µs, which might be unbearable

for latency sensitive applications [16]. In comparison, OFM

carefully considers the SLA requirements of flows and selects

appropriate flows to migrate to reduce costs, which could

support optimized NFV elasticity control.

A strawman solution for NFV elasticity control proposed in

E2 [8] adopts a strategy of migration avoidance. Existing flows

are still processed by the previously assigned NF instance,

while new flows are differentially handled. In this way, no flow

migration occurs for NFV elasticity control. For NF scaling

out, we could simply instantiate a new NF instance and redirect

new flows to it. For NF scaling in, we coalesce new flows on a

few selected NFs and terminate other servers after all of their

residual flows are served. For NF load balancing, we exploit

consistent hashing to balance new flows. While the migration

avoidance strategy introduces no migration penalty, it may still

result in penalty during runtime. For NF scaling out, flows on

existing NF instances may grow larger, which increases NF

loads, degrades NF performance, and incurs SLA violations.



For NF scaling in, many flows in data centers are long-lived

flows that could last for minutes to hours [2]. The migration

avoidance strategy prevents timely destruction of underloaded

instances and therefore cannot bring as high revenue benefit

as OFM. For NF load balancing, as flows on existing NF

instances grow in sizes, NF instances may become overloaded

and trigger NF scaling out, which would also introduce SLA

violation penalty without careful flow selection.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have proposed the design of OFM

Controller to realize optimized flow migration for NFV

elasticity control. We have analyzed different NFV elasticity

control situations including NF scaling out, scaling in, and

load balancing in detail, identified control goals and challenges

for different situations, and carefully designed algorithms

to address each situation. We have implemented the OFM

Controller on top of NFV and SDN environments and

evaluated its effectiveness and efficiency. As our future work,

we will implement more NFs in OFM and integrate OFM into

popular open-source NFV platforms to further demonstrate its

effectiveness and efficiency. Furthermore, we will evaluate the

optimality of the algorithms from a theoretical point of view.
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