
Model-based Conformance Testing for Android

Yiming Jing1, Gail-Joon Ahn1, and Hongxin Hu2

1 Laboratory of Security Engineering for Future Computing (SEFCOM)
Arizona State University, Tempe, AZ85281, USA

{ymjing,gahn}@asu.edu
2 Delaware State University, Dover, DE19901, USA

{hxhu@asu.edu}

Abstract. With the surging computing power and network connectivity
of smartphones, more third-party applications and services are deployed
on these platforms and enable users to customize their mobile devices.
Due to the lack of rigorous security analysis, fast evolving smartphone
platforms, however, have suffered from a large number of system vulner-
abilities and security flaws. In this paper, we present a model-based con-
formance testing framework for mobile platforms, focused on Android
platform. Our framework systematically generates test cases from the
formal specification of the mobile platform and performs conformance
testing with the generated test cases. We also demonstrate the feasibil-
ity and effectiveness of our framework through case studies on Android
Inter-Component Communication module.

1 Introduction

According to a recent report from research firm [5], the worldwide smartphone
market ballooned 65.4% year over year in the second quarter of 2011, indicating
the total shipments of 100 million units. In addition, with the surging computing
power and network connectivity of smartphones, more third-party applications
and services are deployed on these platforms and enable users to customize
their devices. Many legitimate applications tend to manipulate users’ sensitive
information such as contact list, locale information, and other credentials [14].
To protect such sensitive attributes, it is necessary to ensure that smartphones
are properly configured and rigorously validated.

Fast evolving smartphone platforms, however, have raised considerable secu-
rity concerns due to the lack of rigorous security analysis. At the same time, a
large number of system vulnerabilities and security flaws on smartphone plat-
forms have continuously been reported. For instance, an unprotected component
was discovered in the phone application of Android version 1.1 [15]. This flaw
allowed any malicious application to make phone calls without the permission
it ought to have. Another recent work [10] indicated that the message passing
system in Android can be a target for denial-of-service and hijacking if used
incorrectly.

Software developers often utilize conformance testing as an indispensable step
to check errors and flaws in both developing and maintaining software systems.



Conformance testing attempts to bridge the gap between system implementa-
tion and design requirements. It compares the expected behaviors described
by the system requirements with the observed behaviors of an actual imple-
mentation. The observed results reflecting the conformance of implementation
strongly depends on the adopted test cases [12]. In addition, test automation [17]
has recently become quite common for reducing the cost of software testing
procedures. A typical automated testing harness mainly offers automation in
managing, executing and evaluating tests. However, such an approach cannot
effectively support automated test generation. Manually creating test cases is
tedious, error-prone, and often insufficient for proving the conformance of sys-
tem implementation [19]. Such a problem exists in the widely used test harness
for Android, Google’s Android testing framework [3] [1]. Android testing frame-
work only adopts hand-crafted test cases for conformance testing and fails to
provide a comprehensive set of test cases.

Model-based testing involves developing a data model to generate tests. The
model is developed based on the design requirements, and reflects the expected
features of the System Under Test (SUT) [7]. Unlike hand-crafted tests, model-
based approach helps reuse the generated test cases and improves the efficiency
of testing procedures. If any requirement changes, a tester only needs to update
the model and get a new suite of test cases, avoiding the tedious work of changing
hand-crafted test cases.

In this paper, we present a model-based conformance testing framework for
evaluating Android platforms. Our framework automatically generates and ex-
ecutes test cases. Moreover, we demonstrate the feasibility and practicality of
our approach through case studies on Android Inter-Component Communica-
tion (ICC) module. We chose ICC for several reasons: (1) ICC is one of the core
modules of Android as it supports collective interactions of applications; (2) the
requirements of ICC are publicly available. To conduct conformance testing in
our framework, we first derive the formal models and properties for Android ICC
from design requirements. The formal specifications of models and properties are
fed into an analysis module to automatically generate test cases, which systemat-
ically enable the rigorous conformance testing for the Android platform. MCTF
checks whether the SUT’s behaviors conform to functional and non-functional
requirements. For example, the requirements specify a set of desired behaviors.
Therefore, it is necessary to discover invalid and malformed inputs that may
violate those requirements and should be caught and handled properly. Having
comprehensive conformance testing would ensure the correctness and assurance
of ICC in Android.

The remainder of this paper is organized as follows. Section 2 gives an
overview of Android ICC. Section 3 discusses our framework and demonstrates
how our framework can be applied to examine the conformance of Android ICC.
Section 4 presents a tool chain designed with our framework followed by the dis-
cussion on performance analysis. Section 5 describes the related work. Section 6
concludes this paper and elaborates the future directions.



2 Overview of Android ICC

Smartphone applications inherently tend to communicate with each other. An-
droid ICC is a sophisticated messaging system designed to support such inter-
actions. In this section, we give a brief overview of Android ICC as described in
Android documentation for SDK (SDKD) [2] and Android Compatibility Defi-
nition Document (CDD) [1].

2.1 Components

The basic unit in Android application communication is component. Each com-
ponent is a logical building block that could support each other. Four types of
components are defined with various requirements.

– Activities are components that provide graphic user interface (GUI). The
Android GUI is implemented as a stack of activities starting one after an-
other, where each activity is presented as a window on the screen.

– Services are components that run in the background to perform long-running
operations. Unlike activities, a service does not have any graphic interface.
Instead, services provide Remote Procedure Call (RPC) interfaces.

– Broadcast Receivers are asynchronous components that receive and reply to
system-wide broadcasts from other components.

– Content Providers are components that provide public data interfaces to
other components. A content provider provides common database commands
such as query, insert, update and delete, through which other components
can retrieve and store data.

2.2 Intents and Intent Filters

Intents play a leading role in connecting the components of applications. An
intent object is a data structure carrying information about its desired recipients
and optional data. Applications communicate with each other by sending and
receiving intents. All intents are processed and delivered by a centralized “post
office”, the intent resolver.

Like a post office processing parcels in the real world, the intent resolver finds
qualifying recipients by checking the attributes of an intent object.

Primary intent attributes include action and data:

– Action is a string naming the general action to be performed. An intent can
contain at most one action.

– Data is a tuple consisting of both the URI of the data to be acted on and
its MIME media type. This attribute indicates the data to be processed by
the action.

Secondary attributes include component, category, extras and flags.

– Component Name is a string naming the component that should handle the
intent.



– Category is a string containing additional information about the kind of
component that should handle the intent.

– Extras is a key-value pair of additional information to be delivered to the
recipient component.

– Flags is a set of strings that instruct the Android system to launch an ac-
tivity.

Each component can be bound to one or more intent filters, which declare
capabilities of the components. An intent filter includes three attributes describ-
ing the intents it would accept, including action, category and data. Intents and
components are correlated via intent filters. Android maintains a map between
public components and intent filters. The intent resolver finds the matching
intent filters for a given intent, then delivers the intent to the corresponding
components based on the map.

3 Model-based Conformance Testing Framework
(MCTF)

In this section, we present our conformance testing framework, called model-
based conformance testing framework (MCTF), which is depicted in Figure 1.
Our framework is designed for generating test cases and facilitating rigorous
conformance testing with the generated test cases. We divide the framework
into four steps as follows:

1. System Modeling: Android Modeling.
First, all parameters and properties of Android are derived from Android
CDD and Android SDKD. Based on the identified parameters and proper-
ties, a model is defined. Parameters describe data objects and attributes of
the system. Properties lay out rules regulating interactions of parameters.
Android parameters and properties are then formally represented.

2. Test Case Generation.
The most significant recent development in testing is the application of for-
mal reasoning techniques, such as model checking [11], theorem proving [24]
and SAT solving [23], to generate test cases from the formal specification. In
this step, the formal model is utilized to automatically derive abstract test
cases, leveraging a formal reasoning technique.

3. Test Case Translation.
The generated test cases from the previous step are not suitable for direct
execution, since they are generated in an abstraction level. Therefore, it is
crucial to bridge the gap between abstract test cases and executable test
cases. The translation is performed to extract necessary information from
abstract test cases and construct executable test cases.

4. Test Case Execution.
In this step, executable test packages are generated by compiling executable
test cases. With the executable test packages, an Android device or emulator
is tested. For each test case, the results are monitored and recorded. Finally,



Translator

Abstraction

Formal Verifier

Compiler

Android 

Modeling

Test Case 

Generation

Test Case 

Translation

Test Case 

Execution

Android CDD + SDK Document

Parameter Specification Property Specification

Abstract Test Cases

Executable Test Cases

Test Runner

Result Report

Fig. 1. Model-based Conformance Testing Framework

a human readable report is generated once all the tests are executed. The
generated test report may contain supplemental information, such as screen-
shots, to further examine other functional and non-functional components.

In order to conduct model-based conformance testing, it is crucial to have a
well-designed and general purpose language to represent the model. Alloy [20] is
a structural modeling language based on first order logic, and has been widely
used in the modeling community. The usage of Alloy for the representation of
models is an attractive aim. Our framework adopts Alloy to formally represent
an Android model. As we discussed earlier, the formal model is in turn utilized
by formal reasoning tools such as Alloy Analyzer, to generate abstract test cases,
which are then translated into executable test cases.

We now demonstrate how Android ICC can be rigorously tested through the
four steps shown in Figure 1, identifying specific mechanisms for each MCTF
task.

3.1 System Modeling: Android Modeling

A model for a specific software system is an abstract specification of the sys-
tem’s behaviors. Parameters and properties comprise a typical model for cap-
turing such behaviors. The parameters are attributes or variables that appear
in a piece of requirements. After parameters are identified, their types and valid



Intent

Action

Category

Data

Intent Resolver

IntentFilter1

Action

Category

DataURI

IntentFilter2

Action

Category

DataURI

Component

Activity1

Component

Activity2

Fig. 2. Implicit Intent Resolution

value ranges should be identified as well. For example, if an input variable ac-
cepts integers in the range of 1 to 12, the identified parameters should use the
same valid range. Properties are identified from the information about the rela-
tionships among parameters.

Android modeling procedure consists of three steps: model construction from
requirements, specification of model parameters, and specification of model prop-
erties.

Model Construction from Android ICC Requirements For testing An-
droid systems and applications, testers derive parameters and properties from
Android SDKD and Android CDD. Android SDKD defines the requirements of
Android system, including objects and logics of Android functions and packages.
Android CDD complements Android SDKD by providing additional technical
details of various versions of Android platform.

For example, a technical section in Android SDKD says that “there are three
Intent characteristics that can be filtered on: actions, data and categories”. From
this, testers identify three parameters: action, category and data. The definition
of these three attributes also shows the data type of each parameter. That is,
action is any string, category is any string set and data is a pair (2-tuple) of
strings.

Android SDKD and Android CDD describe Android ICC in two categories:
Explicit Intent Resolution and Implicit Intent Resolution, depending on the tar-
get attributes for the resolution process. If the component name of an intent is a
non-empty set, this intent is an explicit intent because the recipient component
is given explicitly. The intent resolver delivers explicit intents to the recipients
designated by the ComponentName attribute, regardless of other attributes in the
intent. Such process is called Explicit Intent Resolution. Actually, no resolution
process is occurred because the recipient is already specified by the sender.



Thus, intent, component and intent resolver are identified as parameters
of explicit intent resolution. The attribute ComponentName is consulted. The
property of explicit intent resolution is trivial, as abstracted below:

– Property 1 : The intent should be delivered to the recipient designated by
the component name attribute of the intent.

Implicit intents do not specify any recipient component but wait for the
intent resolver to determine which component they should be resolved to, based
on the action, data and category attributes specified in the intent. This process
is called Implicit Intent Resolution.

The parameters of implicit intent resolution include intent, intent filter, com-
ponent, and intent resolver. Action, category and data are attributes that are
consulted during the resolution process. Each attribute corresponds to a test,
in which the attribute of the intent is matched against that of the intent filter.
To be delivered to the component, an implicit intent must pass all the three
tests on the intent filters bound with the component. Since a component can be
bound with multiple intent filters, an intent that does not pass through one of
a component’s intent filters may pass another.

In the action test, the Android Intent Resolver tests both the action of the
intent object and the action set of the intent filter. An intent names a single
action while the intent filter specifies one or more actions. To pass the action
test, the action specified in the intent object must match at least one of the
actions specified in the intent filter. The action set of the intent filter object
must not be empty. A special case is an intent without actions, which passes all
action tests. The properties of action test can be summarized as follows:

– Property 2 : The action specified in the Intent object must match one of
the actions listed in the filter.

– Property 3 : An Intent object that does not specify an action automatically
passes the test as long as the filter contains at least one action.

The category fields in both the intent and intent filter are a set of category
strings. To pass the category test, the category set of the intent should be the
subset of the category set of the intent filter. The filter can list additional cate-
gories, but it cannot omit any in the intent. An intent without category passes
all category tests by default. The properties of category test can be summarized
as follows:

– Property 4 : Every category in the Intent object must match a category in
the filter. The filter can list additional categories, but it cannot omit any in
the intent.

– Property 5 : An Intent object with no category should always pass this test,
regardless of the attributes in the filter.

Data contains URI and type. The URI specifies the location of the data in
three sub-attributes: scheme, authority and path. The data type specifies the
MIME type of the data. Android also allows wildcards when specifying data
subtype in both the intent and intent filter.



– Property 6 : An Intent object that contains neither a URI nor a data type
passes the test only if the filter likewise does not specify any URIs or data
types.

– Property 7 : An Intent object that contains a URI but no data type passes
the test only if its URI matches a URI in the filter and the filter likewise
does not specify a type.

– Property 8 : An Intent object that contains a data type but no URI passes
the test only if the filter lists the same data types and similarly does not
specify a URI.

– Property 9 : An Intent object that contains both a URI and a data type
passes the data type part of the test only if its type matches a type listed in
the filter.

Figure 2 shows an example of implicit intent resolution. In this example, a
public component is bound with two intent filters. An intent resolver attempts
to resolve the intent shown on the left. If all of the tests pass for both intent
filters, the intent is delivered to the two components on the right.

Specification of Model Parameters Based on Android SDKD and Android
CDD, we formulate the identified parameters. We first define Component as
follows:

Definition 1. A component is represented with a (τ), where τ is a unique name
of the component;

Intent can be defined as follows:

Definition 2. An intent is represented with a 5-tuple (τ, α, Γ, σ), where τ is
the name of the recipient component; α is an action string that describes the
action to be performed; Γ is a set of category strings that represent the type
of components which should handle the intent; and σ is a 2-tuple (uri, type)
consisting of data URI and data type.

Intents can be classified into two categories: explicit intent and implicit in-
tent, as we discussed earlier. We formally define them as follows:

Definition 3. Explicit intents designate the target component by its component
name field. The set of explicit intents is denoted as EI. EI={i | i ∈ I∧i.τ ̸= null}

Definition 4. Implicit intents do not specify a target. The set of implicit intents
is denoted as II. II={i | i ∈ I ∧ i.τ = null}

Then, the intent filter can be defined as:

Definition 5. An intent filter is represented with a 3-tuple (Λ, Γ, σ), where Λ
is a set of action strings; Γ is a set of category strings; and σ is is a set of
(uri, type) tuples consisting of data URI and data type.

We now formally define the intent resolver with sets and relations as:



– C is a set of components, {c1, · · · , cp};
– I is a set of intents, {i1, · · · , im};
– F is a set of intent filters, {f1, · · · , fq};
– FC ⊆ F × C, a many-to-many filter-to-component assignment relation;

– EIC, a one-to-one explicit intent-to-component assignment relation;

– IIF , a one-to-many implicit intent-to-filter assignment relation;

Based on the above-defined model, we now give the formal specification of
identified parameters with Alloy as follows:

module android/ICC
abstract sig Str {}
sig actionStr extends Str{}
sig categoryStr extends Str{}
sig uriStr extends Str{}
sig typeStr extends Str{}
sig dataTuple {

uri: lone uriStr,
type: lone typeStr }

abstract sig Object {}
sig Component extends Object {

componentName: lone componentStr }

sig Intent extends Object {
componentName: lone componentStr,
action: lone actionStr,
category: set categoryStr,
data: lone dataTuple }

sig Filter extends Object {
action: set actionStr,
category: set categoryStr,
data: set dataTuple }

sig Resolver {
IIF: Intent -> set Filter,
IIF_A: Intent -> set Filter,
IIF_C: Intent -> set Filter,
IIF_D: Intent -> set Filter,
FC: Filter -> set Component,
EIC: Intent -> lone Component }

The first sig statement declares Str, which represents a string that can be
assigned to other objects. Then, we define component, intent and intent filter
which have all the necessary attributes for intent resolution. We then declare
a resolver, which defines several relations which map intents to sets of intent
filters. The value ranges of all the parameters are strings.

Specification of Model Properties Based on Android SDKD and Android
CDD, we now formulate and specify properties of Android ICC. A fact state-
ment in Alloy puts an explicit constraint on the model. In our cases, we need
to represent the identified properties of intent resolution with facts. According
to the properties identified from the requirements, we then give their formal
specifications.

The formal specification of Property 1, which covers Explicit Intent Resolu-
tion, is shown below:

fact explicitIntentResolution {
all r: Resolver, i: Intent, c:Component |
i.componentName = c.componentName
<=> i->f in r.EIC }

The following shows formal specifications of Property 2-9, which cover Im-
plicit Intent Resolution:



fact implicitIntentResolutuion {
all r: Resolver, i: Intent, f:Filter |
i->f in r.IIF_A
and i->f in r.IIF_C
and i->f in r.IIF_D

<=> i->f in r.IIF }

fact actionTest {
all r:Resolver| all i:Intent |all f:Filter |
(f.action!=none and i.action!=none
and i.action in f.action)
or (f.action!=none and i.action = none)
<=> i->f in r.IIF_A }

fact categoryTest {
all r:Resolver| all i:Intent |all f:Filter |
(i.category!=none and i.category in f.category)
or (f.category!=none and i.category = none)
<=> i->f in r.IIF_C }

fact dataTest {
all r:Resolver| all i:Intent |all f:Filter |
(i.data.uri=none and i.data.type=none
and f.data.uri=none and f.data.type=none)
or (i.data.uri in f.data.uri
and i.data.type = none and f.data.type=none)
or (i.data.type in f.data.type
and i.data.uri = none and i.data.uri=none)
or (i.data.uri in f.data.uri
and i.data.type in f.data.type)
<=> i->f in r.IIF_D }

3.2 Test Case Generation

In conformance testing, testers need to generate positive and negative test cases
to examine the implementation thoroughly. Positive test cases test whether the
system behaves exactly as the specified properties when inputs are valid. Neg-
ative test cases test whether the system violates the properties when inputs
are invalid. Formal reasoning tools can generate abstract test cases accordingly.
They translate the model notations into boolean formulas. Then, the formulas
are analyzed to find bindings of the parameters and their values that make the
formulas true or false. Such true and false bindings are positive and negative test
cases, respectively. To generate abstract test cases, we employ Alloy Analyzer to
generate instances that satisfy both facts and predicates.

Positive test cases for a given property are derived from the formal model
representation, in which the property specification serves as a predicate for gen-
erating instances that conform to the very property. Similarly, negative test
cases are generated from the formal model representation, if we consider it as
a predicate to identify counterexamples, which satisfy the negated property. As
a model-based testing framework, MCTF can assist test activities at property
and behavior levels [13].

Property Testing We take Property 2 as an example to demonstrate the
process of automated test generation for testing a given property from positive
and negative aspects. To simplify the test case generation process, we remove the
parameters and properties that are not related with action test. The following
predicate is defined to derive the positive test cases for the corresponding facts
in the formal property specification.

pred P2_pos(r: Resolver, i:Intent) {
all r: Resolver, i: Intent, f:Filter |
one i.action and i.action in f.action

<=> i->f in r.IIF_A}

This predicate checks Property 2 against the model representation of Android
ICC, then instances are generated. The generated instances are used to construct



positive test cases to ensure that the system should always permit a matched
pair of intent object and intent filter object.

The corresponding negative test cases for negated Property 2 are generated
to ensure the system never denies a matching pair or accepts a mismatching
pair. In order to derive negative test cases, we specify the negative property
with Alloy as follows:

pred P2_negDeny(r:Resolver, i:Intent,
f:Filter)

{i->f not in r.IIF_A
and i.action in f.action
and i.action!=none

}

pred P2_negAccept(r:Resolver, i:Intent,
f:Filter

){i->f in r.IIF_A
and i.action not in f.action
and i.action!=none
}

Alloy Analyzer requires a bounded input domain, specified by the number
of intents, intent filters, resolvers, action strings in our example, to generate
instances and counterexamples. The size of input domain determines the total
number of generated test cases. Then, we come up with the question of choosing
an appropriate size for generating test cases that achieve reasonable coverage.
Although testers can specify a large input domain and get millions of test cases
for a trivial property with respect to the coverage, it is not always the case. The
testers need to specify the input size based on practical test requirements 3.

For example, we specify the following input domain to test Property 2.
run P2_pos for

exactly 1 Resolver, exactly 2 actionStr,
exactly 2 Str, exactly 2 Intent,
exactly 2 Filter

run P2_negDeny for
exactly 1 Resolver, exactly 2 actionStr,
exactly 2 Str, exactly 2 Intent,
exactly 2 Filter

run P2_negAccept for
exactly 1 Resolver, exactly 2 actionStr,
exactly 2 Str, exactly 2 Intent,
exactly 2 Filter

Figure 3 depicts a positive test case generated by Alloy Analyzer for Prop-
erty 2. Both Intent and Filter0 have the same action. Thus, Resolver allows
the interaction between them. Figure 4 and Figure 5 depict two negative test
cases. In Figure 4, Resolver unexpectedly denies Intent from accessing Filter1
(marked by (f) and (i)). In Figure 5, Resolver unexpectedly accepts Intent
and Filter1 (marked by (f) and (i)), which have different actions.

Behavior Testing After each property has been tested independently, we can
further check behaviors of the intent resolution module. Here, we give a more
complex scenario to test all modeled intent filter properties. Based on the afore-
mentioned properties, we instruct Alloy Analyzer to enumerate all assignments,
simulating inter-component communications.

To test if a system always properly delivers the intent to correct recipients,
we need positive test cases that are composed of matched pairs of intents and
intent filters. In our model, it implies the set of iif relation should not be empty.
Therefore, we have the following specification:

3 The testers should balance the coverage and the input size, which are normally
obtained from subject matter experts and prior testing results.



Filter0

actionStr1

action

Filter1

actionStr0

action

Intent

action

Resolver
(r)

IIF [Intent] IIF_A [Intent]

Fig. 3. Abstract Test Cases for Property Testing: Positive

Filter0

actionStr0

action

actionStr1

action

Filter1
(f)

action

Intent
(i)

action

Resolver
(r)

IIF [Intent]IIF_A [Intent]

Fig. 4. Abstract Test Cases for Property Testing: Negative Deny

pred Positive(r: Resolver){
#r.IIF>0 }

On the contrary, negative test cases are those without paired intents and
intent filters. We simply set the size of iif to zero.

pred Negative(r: Resolver){
#r.IIF=0 }

Figure 6 depicts a positive test case for behavioral testing. In this example,
two successful intent deliveries can be identified from the arrows labeled with
“IIF[Intent]”: Intent0→Filter0, Intent1→Filter1.

In addition, the test case generation can be optimized to avoid generating
isomorphic test cases by adopting the approach proposed in [8]. Finally, each
abstract test case is exported to an independent file which contains the test
conditions and variables for further processing. Because we are using Alloy An-
alyzer, one of the available choices is to export test cases to DOT files, which
store test cases as hierarchical drawings of direct graphs. This is a perfect choice
for visualizing abstract test cases. Another choice is to export test cases into



Filter0

actionStr1

action

Filter1
(f)

actionStr0

action

Intent
(i)

action

Resolver
(r)

IIF [Intent]IIF_A [Intent]

Fig. 5. Abstract Test Cases for Property Testing: Negative Accept

Filter0

actionStr1

action

categoryStr1

category

dataTuple1

data

Filter1

actionStr0

action

categoryStr0

category

dataTuple0

data

Intent0

action category data

Intent1

action category data

typeStr0

type

uriStr0

uri

typeStr1

type

uriStr1

uri

Resolver
(r)

IIF [Intent0] IIF_A [Intent0] IIF_C [Intent0] IIF_D [Intent0] IIF [Intent1] IIF_A [Intent1] IIF_C [Intent1] IIF_D [Intent1]

Fig. 6. A Positive Test Case for Behavior Testing

lightweight XML files, which are easy to parse with existing tools. We adopt the
latter for generating executable test cases.

3.3 Test Case Translation

Except for requirements, Android SDKD also provides guidelines of Android
testing framework and testing Android applications. Android CDD and Com-
patibility Test Suite (CTS) [1] provides additional guidelines for testing Android.
Android test suites are based on JUnit [18] and Android’s JUnit extensions. The
extensions provide component-specific test classes and helper methods to help
creating mock objects and controlling lifecycle of a component. In addition, CTS
is shipped with an automated test harness. Testers can choose to use the test
harness of Android CTS, use a third-party test harness, or write their own test
runner based on the APIs provided by Android testing framework.



Abstract test cases generated by Alloy Analyzer in our approach cannot be
directly integrated into test suites for execution as they are at different abstrac-
tion levels. Thus, an additional step is required to translate abstract test cases
encoded in XML to executable test cases, involving information extraction and
source code construction.

Extraction We employ a Python script to parse XML and regroup essential
information fields with cElementTree [4]. cElementTree is a Python package for
efficiently managing XML files.

In order to construct an executable test case for testing intent resolution, we
need to know all the variables, attributes and their assigned values. In our case,
the variables are intents and intent filters, and the attributes are component
name, action, category, data, URI and type. An XML-encoded abstract test
case is composed of several fields and tuples. Each field stands for an attribute.
And each field consists of some tuples, which store a variable and the value of
the attribute of that variable. Hence, information extraction can be achieved by
enumerating tuples and fields and reorganizing them.

Suppose we have a fragment of an XML-encoded abstract test case as shown
below:

<field label="action" ID="13" parentID="11">
<tuple> <atom label="Intent$2"/>

<atom label="actionStr$0"/> </tuple>
</field>
<field label="category" ID="14" parentID="11">

<tuple> <atom label="Intent$2"/>
<atom label="categoryStr$0"/> </tuple>

<tuple> <atom label="Intent$2"/>
<atom label="categoryStr$1"/> </tuple>

</field>

From this fragment we can identify an Intent object Intent2. Its action is as-
signed to actionStr0, its category is assigned to {categoryStr0, categoryStr1}.

Code Construction The extracted information fields are utilized for a test
case template and Java code fragments for Android Compatibility Test Suite
(CTS). Our template is strictly complied with the format and syntax of test
cases defined in Android CTS.

The sample code shipped with Android CTS offers practical examples of how
to write executable test cases. We give a code template for testing Android ICC.

IntentFilter filter = new Match(
String[] actions, String[] categories,
String[] dataTypes, String[] uriSchemes,
String[] uriAuthoroties, String[] uriPorts);

checkMatches(filter, new MatchCondition[] {
new MatchCondition(
int expectedResult,
String action, String[] categories,
String dataType, String dataURI); }

With the extracted information in the template, we get several Java code
fragments at the end of this step.

3.4 Test Case Execution

After integrating the code fragments into existing test suites or a new test suite,
executable test cases are derived by compiling fragments. Such test suites are
run by a test runner that loads the test cases, runs and tears down each test.
We use Android’s Instrumentation Test Runner [3], which is a set of control



methods and hooks in Android platform, to run our generated test cases. For
each executable test case, the results are generated accordingly as we discussed
in our framework. Finally, a report is presented in an HTML page including test
results.

4 Implementation and Evaluation

In this section, we give a brief introduction of our tool set, which constitutes a
tool chain for model-based conformance testing. As depicted in Figure 7, our tool
chain consists of three tools: Alloy Analyzer, the Translator and the Android In-
strumentation Test Runner. The formal representation of models and properties
are fed into Alloy Analyzer for automatically generating test cases. Alloy Ana-
lyzer exports the generated abstract test cases to intermediate XML files. Then,
our translator parses XML and constructs Java code fragments. The output of
test case translation is an Android application package containing compiled JU-
nit test cases. Finally, Android Instrumentation Test Runner executes test suite
and generates the test report.

Translator

Android 

Instrumentation 

Test Runner

Test Result 

Report

Abstract 

Test Cases
Alloy Analyzer

Property 

Specification

Parameter 

Specification

Executable 

Test Cases

Fig. 7. A tool chain that supports MCTF

We provide a contrastive analysis between Android CTS and our generated
test cases to demonstrate effectiveness of our framework in this section. For
property testing, every property of the three tests need to be rigorously checked.
We identified that Android CTS fails to check some properties from positive or
negative aspects. Table 1 shows a comparison between Android CTS and the
test cases generated by our approach. The table shows that Android CTS test
suites are not offering sufficient test coverage. And our approach could achieve
better coverage than that of Android CTS.

To evaluate the efficiency of our approach, we also examined two core pro-
cesses, test case generation and test case translation, in our implementation.

Figure 8(a) shows that the increase of the total number of generated test
cases is proportional to the number of intents and intent filters. Figure 8(b)
shows that the processing time taken for test case generation and translation
increases linearly with the increase of the number of the test cases, indicating



(a) Amount of Generated Test Cases (b) Processing Time

Fig. 8. Performance Evaluation

that our approach provides a feasible and promising solution to facilitate and
enhance conformance testing for Android platform.

Table 1. Conformance testing achieved by Android CTS and our approach

Property Positive/Negative
Android CTS MCTF

Covered #Test cases Covered #Test cases

Property 1
Positive × 0

√
16

Negative × 0
√

18

Property 2
Positive

√
3

√
24

Negative
√

2
√

14

Property 3
Positive

√
2

√
24

Negative × 0
√

10

Property 4
Positive

√
4

√
26

Negative
√

4
√

10

Property 5
Positive

√
2

√
26

Negative × 0
√

12

Property 6
Positive

√
2

√
31

Negative
√

2
√

18

Property 7
Positive

√
1

√
31

Negative
√

3
√

20

Property 8
Positive

√
1

√
31

Negative × 0
√

20

Property 9
Positive × 0

√
31

Negative
√

2
√

26

5 Related Work

Most recent work related to software testing in Android addresses automated
GUI testing for Android applications. Amalfitano et al. [6] proposed a crawling-
based approach to generate GUI test cases. They designed a tool to simulate
events on the user interfaces, generate event transition tree by capturing appli-
cation responses, and predict future events at runtime. In contrast, our approach
is the first attempt to explore rigorous conformance testing for Android. In par-
ticular, we adopt a model-based approach to automatically generate test cases.



Model-based approaches have been widely used for testing in various fields.
Several researchers proposed automated frameworks for testing Java programs,
such as Korat [8] and TestEra [21]. Korat constructs Java predicates and gener-
ates all non-isomorphic inputs for which the predicates return true, by searching
and enumerating a given bounded input space. TestEra works in a similar way
as Korat, but using a first-order relational language and existing SAT solvers.
Both approaches use structural invariants on the input data to automatically
generate test cases and then test the output against a set of predicates. How-
ever, the generated test cases are abstract and need to perform the translation
task to generate the actual code. In our work, we attempt to extend model-based
approaches to testing Android platforms. We also demonstrate how test cases
can be integrated to perform conformance testing effectively.

Security for mobile devices and applications is a growing concern recently.
TaintDroid [14] monitors and controls access to sensitive data by dynamic taint-
based information flow tracking. Stowaway [16] identifies vulnerabilities in ap-
plications by static analysis on application packages, manifests and bytecodes.
Chaudhuri [9] proposed a formal language to describe applications and reason
about information flows and the consistency of security specifications.

6 Conclusion

While several automated testing frameworks have been proposed and developed
for smartphone platforms, developers still need systematic approaches and cor-
responding tools to generate test cases for conformance testing efficiently and
effectively. To address this issue, we have proposed a novel framework to enable
rigorous conformance testing for the Android platform. Our framework adopted
a model-based approach which utilizes formal verification techniques to auto-
matically generate test cases. In addition, we have demonstrated the feasibility
of our approach with Android ICC.

In our current framework, testers need to manually derive the model from
requirements. As part of our future work, we would explore an approach for
directly constructing model from the requirements, leveraging the capability of
NLP techniques [22]. Moreover, we would apply our approach to other Android
modules, such as Activity Manager and Package Manager.

References

1. Android compatibility. http://source.android.com/compatibility/.

2. Android sdk cocument. http://developer.android.com/reference/android/

package-summary.html/.

3. Android testing fundamentals. http://developer.android.com/guide/topics/

testing/testing_android.html#Instrumentation.

4. The elementtree xml api. http://docs.python.org/library/xml.etree.

elementtree.html.



5. Apple rises to the top as worldwide smartphone market grows 65.4% in the sec-
ond quarter of 2011, idc finds, August 2011. http://www.idc.com/getdoc.jsp?

containerId=prUS22974611.
6. D. Amalfitano, A. Fasolino, and P. Tramontana. A gui crawling-based technique

for android mobile application testing. In IEEE Fourth International Conference
on Software Testing, Verification and Validation Workshops (ICSTW), pages 252–
261. IEEE, 2011.

7. B. Beizer. Software testing techniques. Dreamtech Press, 2002.
8. C. Boyapati, S. Khurshid, and D. Marinov. Korat: Automated testing based on java

predicates. In Proceedings of the 2002 ACM SIGSOFT international symposium
on Software testing and analysis, pages 123–133. ACM, 2002.

9. A. Chaudhuri. Language-based security on android. In Proceedings of the ACM
SIGPLAN Fourth Workshop on Programming Languages and Analysis for Security,
pages 1–7. ACM, 2009.

10. E. Chin, A. P. Felt, K. Greenwood, and D. Wagner. Analyzing inter-application
communication in android. In MobiSys, pages 239–252, 2011.

11. E. Clarke, O. Grumberg, and D. Peled. Model checking. 2000.
12. C. Constant, T. Jéron, H. Marchand, and V. Rusu. Integrating formal verification

and conformance testing for reactive systems. IEEE Transactions on Software
Engineering, 33(8):558–574, 2007.

13. S. Dalal, A. Jain, N. Karunanithi, J. Leaton, C. Lott, G. Patton, and B. Horowitz.
Model-based testing in practice. In Proceedings of the 1999 International Confer-
ence on Software Engineering, pages 285–294. IEEE, 1999.

14. W. Enck, P. Gilbert, B. Chun, L. Cox, J. Jung, P. McDaniel, and A. Sheth. Taint-
droid: An information-flow tracking system for realtime privacy monitoring on
smartphones. In Proceedings of OSDI, 2010.

15. W. Enck, M. Ongtang, and P. McDaniel. On lightweight mobile phone applica-
tion certification. In Proceedings of the 16th ACM conference on Computer and
communications security, pages 235–245. ACM, 2009.

16. A. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner. Android permissions demys-
tified. Technical report, 2011.

17. M. Fewster and D. Graham. Software test automation: effective use of test execu-
tion tools. ACM Press/Addison-Wesley Publishing Co., 1999.

18. E. Gamma and K. Beck. Junit: A cooks tour. Java Report, 4(5):27–38, 1999.
19. H. Hu and G. Ahn. Enabling verification and conformance testing for access control

model. In Proceedings of the 13th ACM Symposium on Access control Models and
Technologies, pages 195–204. ACM, 2008.

20. D. Jackson. Alloy: a lightweight object modelling notation. ACM Transactions on
Software Engineering and Methodology (TOSEM), 11(2):256–290, 2002.

21. S. Khurshid and D. Marinov. Testera: Specification-based testing of java programs
using sat. Automated Software Engineering, 11(4):403–434, 2004.

22. D. Lewis and K. Jones. Natural language processing for information retrieval.
Communications of the ACM, 39(1):92–101, 1996.

23. D. Mitchell. A sat solver primer. Bulletin of the European Association for Theo-
retical Computer Science, 85(112-133):12, 2005.

24. J. Robinson and A. Voronkov. Handbook of automated reasoning, volume 1. North
Holland, 2001.


