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Abstract

Network scanning has been a standard measurement tech-

nique to understand a network’s security situations, e.g., re-

vealing security vulnerabilities, monitoring service deploy-

ments. However, probing a large-scale scanning space with

existing network scanners is both difficult and slow, since

they are all implemented on commodity servers and deployed

at the network edge. To address this, we introduce IMap, a

fast and scalable in-network scanner based on programmable

switches. In designing IMap, we overcome key restrictions

posed by computation models and memory resources of pro-

grammable switches, and devise numerous techniques and

optimizations, including an address-random and rate-adaptive

probe packet generation mechanism, and a correct and effi-

cient response packet processing scheme, to turn a switch

into a practical high-speed network scanner. We implement

an open-source prototype of IMap, and evaluate it with exten-

sive testbed experiments and real-world deployments in our

campus network. Evaluation results show that even with one

switch port enabled, IMap can survey all ports of our campus

network (i.e., a total of up to 25 billion scanning space) in 8

minutes. This demonstrates a nearly 4 times faster scanning

speed and 1.5 times higher scanning accuracy than the state of

the art, which shows that IMap has great potentials to be the

next-generation terabit network scanner with all switch ports

enabled. Leveraging IMap, we also discover several potential

security threats in our campus network, and report them to

our network administrators responsibly.

1 Introduction

Network scanning is a typical procedure to discover active

hosts, ports and services in a network, which is mainly used

by network operators/researchers for security assessment and

system maintenance of the network. Enabled by tools such as

Nmap [39], ZMap [14] and Masscan [33], network scanning

has become a standard measurement technique to understand

host behaviors in the target network, even the entire Internet.

Recent studies have demonstrated that network scanning can

help reveal new security vulnerabilities [3, 6, 10], monitor

service deployments [2, 13, 20, 42] and shed light on previ-

ously opaque distributed systems [19], which are essential for

people to understand the network’s security situations.

Today’s network scanners, however, cannot keep pace with

today’s soaring scanning space and provide a timely secu-

rity snapshot. Recently IPv6 has proceeded to the stage of

large-scale deployment, and reports show that IPv6 is used by

18.7% of all the websites [47]. Along with the adoption of 5G

networks, more and more Internet-of-Things (IoT) devices

and mobile devices are connecting online [4]. The increased

address space and the numerous online devices mean that

the network scanner should be scalable to this much larger

scanning space easily. Moreover, since these IoT and mobile

devices go online and offline frequently, it is necessary for net-

work scanners to conduct a comprehensive scanning quickly.

Otherwise, a large number of security snapshots cannot be cap-

tured, potentially missing numerous security incidents [46].

This raises the requirement that the network scanner should

complete a comprehensive scanning as fast as possible.

However, a closer look into today’s network scanners shows

that they are far from being fast and scalable due to their im-

plementation targets and deployment locations. First, in terms

of implementation targets, current network scanners are all

implemented on commodity servers. As CPUs on servers are

not specialized for high-speed packet processing, the scanning

speed of these CPU-based network scanners is intrinsically

limited. Second, in terms of the deployment locations, state-

of-the-art network scanners are all located at the network

edge. Scanning from the edge is usually limited by the up-

stream bandwidth of the end host, which inevitably constrains

the utmost scanning speed for network scanning tasks. Be-

sides, the end-to-end scanning paths indicate more bandwidth

waste for edge networks and larger possibilities of dropping

probe/response packets.

In this paper, we propose IMap, a fast and scalable

in-network scanner to address the aforementioned issues.

The technology enabler for IMap is the emergence of pro-
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grammable switches [9], which offer unprecedented pro-

grammability and flexibility without sacrificing performance.

Generally speaking, one single programmable switch could

provide a packet processing capability as high as multi-

ple Tbps, which is several orders of magnitude higher than

highly-optimized servers. Besides, such switches support

stateful packet processing with domain-specific languages

(e.g., P4 [8]), which allows programmers to enforce user-

defined packet processing logics in the switch pipeline di-

rectly. Moreover, switches (especially core switches) provide

a unique vantage point for network scanning, which is no

longer constrained by the upstream bandwidth of the end host

or plagued by the bandwidth waste of the end-to-end scan-

ning paths. These unique characteristics of programmable

switches are incredibly valuable for the next-generation fast

and scalable network scanners.

Nevertheless, designing IMap is a non-trivial effort. As

an in-network scanner, when sending probe packets, IMap

must cover the scanning space completely, and also be aware

of network conditions to avoid affecting the normal packet

routing functionality. Besides, once response packets arrive,

IMap should distinguish normal packets and response packets

correctly, and also process the response packets efficiently to

avoid saturating the storage server. However, switches only

have constrained computational models and limited memory

resources, which cannot satisfy these requirements easily.

To meet these requirements, IMap designs a set of tech-

niques and optimizations, i.e., an address-random and rate-

adaptive probe packet generation mechanism, and a correct

and efficient response packet processing scheme, to turn a

switch into a high-speed network scanner. We implement a

prototype of IMap in an Intel Tofino switch [23], and make

the source code publicly available [22]. Testbed experiments

and real-world deployments show that even with one switch

port enabled, IMap can survey all ports of our campus net-

work (i.e., 6 Class B IP Addresses), a total of up to 25 billion

scanning space, in 8 minutes, achieving a nearly 4 times faster

scanning speed and 1.5 times higher scanning accuracy than

state-of-the-art network scanners. IMap also discovers several

potential security threats in our campus network. To the best

of our knowledge, IMap is the first network scanner that can

potentially reach multiple Tbps scanning speed, benefiting

from its implementation targets and deployment locations. We

hope IMap can serve as the foundation for next-generation

terabit network scanners.

In summary, we make following contributions in this paper:

• We analyze the limitations of current network scanners,

and identify the opportunities brought by programmable

switches (§2).

• We propose IMap, a fast and scalable in-network scanner

with programmable switches. IMap consists of a probe

packet generation module to generate high-speed probe

packets with random address and adaptive rate, and a

response packet processing module to process response

packets correctly and efficiently (§3, §4).

• We implement an open-source prototype of IMap, and

conduct extensive testbed experiments and campus net-

work deployments to show advantages of IMap (§5, §6).

Finally, we make some discussions in §7, describe related

works in §8, and conclude this paper in §9.

2 Motivation and Observation

2.1 Limitations of Current Network Scanners

With the rapid growth of scanning spaces and security inci-

dents recently, today’s network scanners are falling behind the

times, especially in terms of scanning scalability and scanning

speed. First, network scanners should be able to scale to large

scanning spaces easily. Recently IPv6 has been in the stage

of large-scale adoption, for instance, Google’s statistics show

that around 35% of its users access Google via IPv6 [24].

Since IPv6 has a much larger address space than IPv4, the

scanning space increases drastically. Besides, along with the

deployment of 5G networks, more and more IoT/mobile de-

vices are connecting online [4]. All these require that network

scanners should be able to cover a large scanning space easily.

Second, network scanners should be fast enough to provide

timely security snapshots. Today’s networks become more

and more dynamic, and IoT/mobile devices switch between

online and offline frequently. Meanwhile, we have also wit-

nessed that security incidents occur more and more frequently,

and some of them occur in a very small time scale (e.g., from

tens of seconds to several minutes). For example, according to

Cybint’s monthly newsletter, since COVID-19, the frequency

of cybercrimes increases 300%, and hackers attempt to at-

tack vulnerable home networks as people are working from

home [46]. As a consequence, network scanners should be

able to complete a comprehensive scanning as fast as possible.

Otherwise, some security snapshots cannot be captured and

important security incidents may be missed.

However, today’s network scanners are intrinsically slow,

which are far from being fast and scalable to satisfy the

aforementioned new requirements. For example, with Zip-

pier ZMap [1], one of the most powerful network scanners

today, the scanning capability only reaches a throughput of

10 Gbps and a rate of 14.2 Mpps [45]. The capability of

today’s network scanners is limited by two key factors fun-

damentally. First, in terms of implementation targets, current

network scanners are all implemented on commodity servers.

Packet processing on commodity servers is intrinsically slow,

since CPUs are not specialized for high-speed packet process-

ing. Even with software optimizations like DPDK [12], the

throughput cannot reach more than 40 Gbps easily [25,41,50].

Second, in terms of deployment locations, today’s network

scanners are all located at the edge of the network. Scanning
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from the edge is not only limited by the upstream bandwidth

of the end host, but also incurs longer scanning paths and

non-negligible bandwidth waste because of end-to-end scan-

ning paths. As a result, even the scanners are capable of

scanning at higher rate (e.g., 40 Gbps), the scanning results

(e.g., hit rate, active/inactive rate) may suffer from low ac-

curacy because of undesirable probe/response packet drops

on the end-to-end scanning paths (§6.2). Not surprisingly,

because of these fundamental limitations, since the publica-

tion of Zipper ZMap [1], the network scanning tools have

not experienced any progress, and researchers have turned

to improve the scanning accuracy with the help of various

algorithmic techniques [7, 15, 16, 21, 36].

2.2 Opportunities by Programmable Switches

Programmable switches [8, 9] bring unprecedented oppor-

tunities to address the limitations of current network scanners.

High packet processing capability. Switching ASICs are

specialized for high-speed line-rate packet processing, which

can provide several orders of magnitude higher throughput

than highly-optimized servers [25]. Specifically, today’s latest

CPU-based network scanner, Zipper ZMap [1], could only pro-

vide a scanning rate of 14.2 Mpps and a scanning throughput

of 10 Gbps. In contrast, switching ASICs can easily process a

few billion packets per second, which shows great potentials

to be a terabit network scanner. Other hardware alternatives,

such as FPGA and NPU, cannot match the performance of

switching ASICs [25], thus not promising for a high-speed

network scanner.

Flexibility to support scanning tasks. The most prominent

characteristic of the new-generation switching ASICs is pro-

grammability. Such switching ASICs can be programmed

with domain-specific languages like P4 [8], and also support

stateful packet processing with user-defined logics. Besides,

programs can run collaboratively between the data plane

switching ASICs and the control plane switch CPUs, enabling

advanced and flexible packet processing. As a result, diverse

scanning tasks can be implemented in the programmable

switch, which would potentially be the foundation of next-

generation high-speed network scanners.

Vantage points to conduct network scanning. Existing net-

work scanners are all located at network edges and imple-

mented in end hosts, where the utmost scanning rate is usu-

ally constrained by the bandwidth of the end hosts. Worse yet,

scanning from the end host requires an end-to-end scanning

path, which inevitably results in the waste of bandwidth re-

sources and the degradation of scanning accuracy. In contrast,

switches provide a unique vantage point for network scanning

tasks. Core switches usually have huge spare bandwidths (i.e.,

more than 50% spare bandwidth [11]), which shows substan-

tial potentials for network scanners to tap. Moreover, scanning

from a core switch is no longer plagued by the bandwidth

waste or the scanning accuracy degradation resulted from
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Figure 1: The workflow of IMap.

the end-to-end scanning path. This scanning vantage point is

particularly valuable for high-speed network scanners.

3 IMap Overview

3.1 Deployment Scenario

Our scenario focuses on a network-centric deployment

model, where the administrators of an ISP or a cloud network

deploy IMap to understand their own network’s security situ-

ations. IMap could also be used for Internet-wide scanning,

but this should avoid causing any ethical concerns, as pointed

out in ZMap [14]. Ideally, IMap should be built on a core

switch, which provides both routing services and scanning

functionality simultaneously. In other words, the IMap switch

should first preserve the functionality of packet switching,

and then behave as a high-speed network scanner when there

is spare bandwidth (e.g., reports show that bandwidth occu-

pation ratio for core switches is usually less than 50% [11]).

Note that the deployment of programmable switches is not a

new requirement; several ISPs/cloud networks have already

replaced their legacy switches with programmable switches in

their networks, which we believe is an irresistible trend in the

foreseeable future [40, 43, 44]. Besides, an in-core-network

scanner also raises the bar for attackers to take advantage of

this powerful network scanner, as it is difficult for normal

attackers to obtain such a deployment location.

3.2 Workflow and Design Requirements

IMap is designed to be a high-speed, easy-to-use network

scanner, so the usage of IMap is similar to traditional network

scanners, such as ZMap [14] and Masscan [33]. As shown in

Figure 1, operators should first specify the scanning address

spaces and scanning port ranges beforehand. Then IMap con-

trol plane programs parse these configurations and issue the

parsed parameters into the IMap packet processing logic. Af-

ter that, IMap data plane programs generate high-speed probe

packets and process response packets accordingly. Finally, the
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scanning results, i.e., the information extracted from the re-

sponse packets, are written into a persistent database, such as

a Redis in-memory data store [29]. In the design, implemen-

tation and deployment of IMap, we identify several different

design requirements that must be satisfied to make IMap a

practical high-speed network scanner, especially in terms of

probing packet generation and response packet processing:

Space-complete and rate-adaptive probe packet genera-

tion(§4.1). In terms of probe packet generation, there are two

key requirements in switch-based high-speed scanning. First,

IMap should be able to cover the desired scanning space (i.e.,

|address space| × |port space|) completely, without duplica-

tions and omissions. This is a basic functional requirement

for a network scanner. Second, packet switching is the first-

class citizen of the switch, therefore, IMap should be able

to conduct network scanning tasks without affecting normal

network routing functionality. As the spare bandwidth of the

network is dynamic, we need a network-aware method to

generate high-speed probe packets with adaptive rate.

Correct and efficient response packet processing(§4.2).

With regards to response packet processing, we also have

to fulfill two requirements. First, switches are also responsi-

ble for normal packet forwarding, therefore, the input packets

for the switch-based scanner have both normal packets and

response packets. As a result, the scanner should be able

to distinguish normal packets and response packets correctly.

Second, response packets cannot be steered to servers directly,

as it may saturate the bandwidth of the storage servers and

overwhelm the writing capability of the database. The scanner

should have an efficient response packet processing approach

to reduce the server-side pressure.

4 IMap Design

4.1 Probe Packet Generation

Switch is designed to be a packet forwarding device, not

a packet generation device, thus cannot generate probe pack-

ets without ground. Inspired by HyperTester [49], we also

leverage the template-based packet generation mechanism to

generate high-speed probe packets. As shown in Figure 2, the

switch CPU first prepares a set of template packets with ini-

tialized headers, and injects them into switching ASICs. Our

tests manifest 50k template packets are enough for line-rate

scanning and the injection takes 15 ms, causing negligible

loads on the switch CPU. After receiving these template pack-

ets, switching ASICs keep looping these packets in the switch

pipeline, where each packet experiences three sequential steps:

an accelerator to accelerate the template packets to 100 Gbps

line rate, a replicator to replicate the template packets into

several switch ports, and an editor to edit the headers of repli-

cated template packets into desired probe packets.

(1) Accelerator. The accelerator is located at the ingress

pipeline, and it keeps looping the template packets by inject-

Traffic 

Manager
Egress PipelineIngress Pipeline

Rec.

Replicator
Editor

Random

Probing

Adaptive

Probing

Rec.

Tx.

Tx.
CPU.

Accelerator

Figure 2: Probe packet generation of IMap.

ing these packets into the recirculate port. The recirculate

port is a special port in the switch pipeline, where the injected

packets are sent back to the ingress pipeline immediately.

Therefore, after injecting a set of template packets to fill the

switch pipeline, we get a 100 Gbps line-rate stable packet

source for the replicator.

(2) Replicator. The replicator is located at the traffic man-

ager, which mainly takes the template packets from the ac-

celerator as input and replicates these packets into a given

port set with the packet replication engine. The packet repli-

cation engine is a hardware component in the traffic manager,

which is widely supported by today’s programmable switches.

By configuring a set of ports for multicast from the control

plane, incoming packets will be replicated and forwarded to

the given port set in parallel. The original template packets

from the accelerator will continue to be recirculated across

the switch pipeline, to ensure line-rate stable packet source

for the replicator, and the replicated template packets would

go through the editor for further processing.

(3) Editor. The editor resides in the egress pipeline, and

it is responsible to modify the replicated template packets

into the desired probe packets. As long as the packet headers

can be parsed by programmable switches, the headers can be

set to given values, e.g., constants, or values from registers.

To turn replicated template packets into probe packets, some

header fields (e.g., destination IP address, destination port)

need modification via the editor, while other fields (e.g., pro-

tocol type, source IP address) are inherited from the template

packets which are created by the switch CPU initially.

With the steps above, we obtain continuous probe packets

at line rate in multiple egress ports. Nevertheless, to be a

practical high-speed network scanner, IMap should be able

to generate probe packets to cover the scanning space (i.e.,

|address space| × |port space|) completely, and adapt the

scanning rate according to the network conditions.

4.1.1 Random probe address

To cover the scanning address space completely, an intu-

itive way is to scan from the start IP address to the end IP

address one by one. Nevertheless, simply probing IP addresses

in numerical order would overwhelm the target networks with

the scanning traffic, which may produce inconsistent probing

results and incur complaints from the target networks. To

avoid this, IMap should be able to scan the addresses accord-
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ing to a permutation of the address space, without duplications

and omissions. However, the switching ASICs only have lim-

ited programmability and memory resources, which cannot

support complex calculations or maintain massive states. The

address generation approach in ZMap [14] requires calcula-

tions such as multiplication and modulo, thus is not feasible

in the switching ASICs.

To address this problem, we leverage the flexibility of the

switch CPU to supplement the switching ASICs to generate

line-rate address-random probe packets. In the editor of the

switching ASICs, we design a Probe IP Range (PIPR) table

based on register arrays. In the switch CPUs, we have a PIPR

Entry Producer module. Using the address generation method

similar to ZMap [14], the PIPR Entry Producer module can

generate a random permutation of the probe IP ranges for a

given address space. After the PIPR Entry Producer module

fills part of the generated probe ip ranges into the PIPR table,

probe packets can iterate through the PIPR table to obtain the

random destination IP addresses. As the data plane scanning

is pretty fast, a PIPR table with entry size of 1 will be scanned

quickly, so we store a probe ip range in each entry of the PIPR

table. To implement this, our PIPR table consists of two reg-

ister arrays: one is named as PIPR_Start array, which is used

to store the start of the probe ip range; the other is named as

PIPR_End array, to store the end of the probe ip range. Before

the PIPR table, we have a PIPR_Index register, which is used

to index the PIPR table. The initial value of the PIPR_Index

register is set as 0 by the control plane; upon an incoming

probe packet, the value of PIPR_Index increases by 1, until the

size of the PIPR table; after that, the PIPR_Index is assigned

as 0 again and another loop starts. For the PIPR_Start array,

upon each incoming packet, the corresponding PIPR_Start

register increases by 1, until the PIPR_End register. When

the value of the last PIPR_Start register is equal to the value

of the last PIPR_End register, the scanning for the current

PIPR table is finished, and the PIPR Entry Producer module

is supposed to fill a new round of probe ip ranges into the

PIPR table. To send the finish signal to the control plane, we

leverage the egress to egress mirror primitive in the switch

pipeline, which can carry a predefined flag to the switch CPU

to notify the PIPR Entry Producer module.

However, conducting a new round of PIPR table filling is

a time-consuming task. According to our tests on the Intel

Tofino switch [23], even with the batching optimization, filling

a PIPR table with size of 65,536 requires about 0.3 seconds.

This indicates that, after a round of scanning, the data plane

has to wait for at least 0.3 seconds to start the next round of

scanning. This is unacceptable for high-speed scanning, as it

compromises the scanning rate significantly. To resolve this

problem, we introduce two PIPR tables and PIPR_Index reg-

isters. When one PIPR table is being scanned, the other PIPR

table is being filled with the next round of probe ip ranges. To

make the two PIPR tables handoff seamlessly, we design a

Probe_Table register in the first stage of the egress pipeline,

which is switched between 0 and 1, and controls the flow of

probe packets. The switching of the Probe_Table register is

triggered by the finish signal of the egress to egress mirror

primitive. Definitely, to achieve continuous probe packets,

there is a mathematical relation that the PIPR table size, the

PIPR table filling time, and the scanning rate must satisfy.

Supposing the size of the PIPR table is N, the difference be-

tween each PIPR_Start register and PIPR_End register (i.e.,

the size of a PIPR table entry) is L, the PIPR table filling time

is T seconds, the total scanning rate R (packets per second)

should satisfy that R ≤ N×L
T

. However, there are still a few

extreme scenarios where the actual PIPR table filling time is

longer than the expected T , e.g., caused by the congestion of

the switch CPU or the control channel. It means the inequality

is not held and the PIPR table is being read before fully filled.

To deal with such cases, we add a Filling_State register before

the PIPR_Table register to indicate whether the PIPR table

filling is finished. It is set to 1 when the control plane begins

to fill and set to 0 when the control plane finishes the filling.

The finish signal of the egress to egress mirror primitive will

check whether the Filling_State register is 0 before it switches

the PIPR_Table register.

Until now, the designs above only consider one port sce-

nario, which should be extended to support a port range sce-

nario, e.g., scanning from port 22 to port 80. Since the scan-

ning address already has good randomness, we choose to scan

the port one by one. However, updating the Port register from

the control plane would bring about race conditions, as the

high-speed probe packets are already looping in the switch

pipeline. To address this, we design a port self-increment

mechanism in the data plane. As the control plane knows in

advance the number of times the scanning address space needs

to loop in the PIPR table, we design a Port_Stride register in

the switch pipeline, which is filled with the number of loop

times by the control plane. Every time the scanning of one

PIPR table finishes, the corresponding counter increases by 1,

until the value of the Port_Stride register. Then, the Port reg-

ister increases by 1 and the counter is set as 0 again. With all

the mechanisms above, the final design of our random probe

address is described in Figure 3, which achieves to generate
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address-random probing packets to cover the scanning space

completely, without overwhelming target networks.

4.1.2 Adaptive probe rate

To avoid affecting the normal packet routing functional-

ity of the network, IMap desires a network-aware method to

generate high-speed probe packets with adaptive rate. The

“adaptive” here has two kinds of meanings. First, the con-

trol plane of the IMap switch should be aware of the nearby

network conditions for further scanning rate adjustment. Fur-

thermore, the IMap data plane should have a rate-adjusting

interface, which can receive commands from the control plane

to accurately adjust the scanning rate.

To be control plane aware, IMap should be able to adjust

the scanning rate according to the network conditions. We

formulate the scanning rate adjustment problem as follows.

The scanning network can be modeled to a graph G = (V,E),
where V and E are sets of forwarding devices and directed

links between devices. Note that link e = (vi,v j) is directed,

and (vi,v j) and (v j, vi) are different links. Each link e ∈ E has

a capacity ce and its current load is represented with le. We

assume there exists a monitoring system in the network, so le
can be obtained with the port bandwidth usage of the devices

connected by e periodically. IMap is deployed in vIMap ∈V

and its ports PIMap = {p} connect to the network with links

{ep} ⊂ E. The maximal scanning rate for port p is cep , which

is the bandwidth capacity of the link ep. According to the

routing table on vIMap, we can partition the scanning space

S by PIMap in advance so that each port p corresponds to a

routing-aware sub-scanning space sp ⊂ S. Besides, we can

estimate the extra load dp,e on each link e caused by full-rate

probe packets of sp. This can be done by configuring IMap

to send probe packets of sp with a specific tag on port p at

low rate, then using the monitoring system to detect the load

caused by the traffic with the given tag, and finally inferring

dp,e when the scanning rate is cep [28, 31]. Such partition and

estimation should be repeated to adapt to routing dynamics

when the routing tables in the scanning network change dras-

tically. Then the scanning rate adjustment problem can be

solved based on the Linear Programming (LP), as follows:

max ∑
p∈PIMap

αpcep (1)

s.t.∀e ∈ E : le + ∑
p∈PIMap

αpdp,e ≤ βce (2)

where 0 ≤ αp ≤ 1 denotes the rate throttling parameter and

0 ≤ β ≤ 1 denotes the maximum bandwidth occupation ratio.

αp is the output of this formulation and β is set by adminis-

trators to make the network robust for burst traffic. Equation

(1) indicates that the objective is to maximize the total scan-

ning rate on all ports. And Equation (2) states the extra load

brought by IMap can not overwhelm any link in the network.

Given {αp}, the control plane can determine the scanning rate

for each port. Note that our current design fits for one single

Autonomous System (AS) network; for inter-AS networks, as

different networks belong to different administrative domains

and they are not willing to share confidential information

(e.g., network topology, network utilization), it is extremely

difficult to design an inter-AS network-aware rate adjustment

approach accurately. IMap is mainly designed for the single-

AS network scanning, and only provides a best-effort probing

service for inter-AS network scanning tasks.

To make the scanning rate of IMap adjustable, we add a

throttle in the switch pipeline, which can be adjusted from the

control plane dynamically. Located in the ingress pipeline, the

throttle is used to determine when the replicator could repli-

cate the template packets. In general, the switching ASICs can

provide a per-port 100 Gbps packet processing capability, thus

enabling nanosecond-level (e.g., ∼6 nanoseconds for 64-byte

packets) timestamp for each incoming packet. Our throttle

consists of two registers in the switch pipeline. The first one

is named as a timestamp register, which is used to record the

timestamp of the last template packet that is successfully repli-

cated and sent out to the editor. For every incoming template

packet, we calculate the difference between the timestamp of

the current packet and the timestamp recorded in the times-

tamp register. Upon the difference exceeds a certain threshold,

we pass the template packet to the replicator and update the

recorded timestamp. The second one is named as a rate reg-

ister, which is used to make the aforementioned threshold

configurable from the control plane. In the ingress pipeline,

the rate register resides in the front of the timestamp register,

and the control plane programs can fill the certain value into

the rate register to achieve the rate control.

4.2 Response Packet Processing

As an in-network scanner based on the core switch, IMap is

also responsible for forwarding normal packets, e.g., packets

from other routers and switches in the network. IMap should

be able to distinguish normal packets and response packets

correctly. Meanwhile, since the throughput of response pack-

ets may be large, IMap should be able to efficiently process

the response packets to avoid saturating the storage server.

4.2.1 Distinguishing normal/response packets

To distinguish response packets from normal packets, one

approach is to maintain a secret state for each probe packet,

and then verify whether the response packet is corresponding

to the secret state accordingly. However, the switching ASICs

only have limited memory resources, which cannot maintain

massive secret states.

To resolve this, we design a stateless connection mecha-

nism similar to SYN cookies [5]. Rather than maintaining

states in the switching ASICs, we encode the secret state into

the mutable fields of each probe packet. The fields should
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Figure 4: Key update procedure of IMap.

have recognizable effects on fields of the corresponding re-

sponse packets. Specifically, for TCP scanning, we choose

the source port and initial sequence number; for ICMP, we

use the ICMP identifier and sequence number; for UDP, we

use the source port. Take TCP as a concrete example, in the

egress pipeline, when IMap sends a probe packet, the editor

sets SrcPort as hash(Key,Proto,SrcIP,DstIP), and SeqNo as

hash(Key,Proto,SrcIP,DstIP,SrcPort,DstPort), where Key

is a secret key maintained in the register of the switching

ASICs. Accordingly, in the ingress pipeline, IMap has a

verifier, which checks the DstPort and AckNo to determine

whether the received packet is a valid response to the probe

packet. ICMP scanning and UDP scanning work in a simi-

lar manner, except for different packet fields. After the veri-

fier checks the validation of the response packets, similar to

ZMap [14], IMap also responds a TCP RST packet to each

SYN-ACK packet to close the TCP connection.

One potential issue with the method above is the security

of the verifier. Currently the hash functions supported in the

switching ASICs (e.g., CRC32) are relatively simple, which

are not true cryptographic functions and are vulnerable to cho-

sen plaintext attacks [48]. As a result, attackers may perform

such attacks to restore the Key, and deliberately inject forged

response packets to pollute the scanning results. To further

enhance the security of the verifier and enable pollution-free

scanning results, IMap updates the Key every t seconds. This

can reduce the damage caused by compromised secret keys to

a large extent: even if an attacker somehow manages to obtain

the current key, such knowledge will become useless after at

most t seconds.

However, simply updating the Key would result in inconsis-

tent scanning results. For example, Key1 is updated to Key2

after IMap sends the probe packet. Soon the response packet

arrives, the verifier determines this packet is invalid as the

current key cannot obtain a correct validation for its packet

headers. To address the inconsistency issue described above,

IMap stores the last key used for a certain period of time.

More specifically, IMap maintains three keys (i.e., the previ-

ous key, the current key, and the next key) at any given time.

Every t seconds, IMap rotates a slot index from 0 to 2, and the

key in sloti is used for the hash function. Each key can stay

in a slot for at most 3t seconds; after 3t seconds, the key is

updated by the control plane. A concrete example is shown in

Result IP1, Px, Sa

Response Counter 0 → 1

Result IP1, Px, Sa IP2, Py, Sb … IPN, Pz, Sc

Response Counter N-1 → N (0) 

R1

RN

… … …

Result IP1, Px, Sa IP2, Py, Sb

Response Counter 1 → 2R2

…

Evict !

Storage Server

Result Unpacker

Persistent DB

Figure 5: Response packets aggregating in IMap.

Figure 4, where T denotes the max time interval between any

probe packet and the corresponding response packet. The edi-

tor will encode the 2-bit slot index of the key into the header

fields of the probe packet, and the fields should also be added

in the corresponding response packet within this connection.

Currently, we encode it into the source port for TCP/UDP and

the identifier for ICMP. Based on the slot index, the verifier

can conduct the validation correctly.

4.2.2 Aggregating response packets

To avoid saturating the storage server, IMap desires an ef-

ficient response packet processing approach. One intuitive

approach is to use hash mechanisms [17, 35, 49]. However,

as the key set is really large in IMap (e.g., the size of the

scanning address space), even only storing 2-bit value for

each key requires GB-level memory, which exceeds the mem-

ory resources of the switching ASICs (i.e., 50-100MB [35])

significantly.

To resolve this problem, instead of seeking to store all the

keys/values, we adopt a response packet aggregation mech-

anism that is compatible with the current switching ASICs.

More specially, as shown in Figure 5, IMap designs a dedi-

cated N-size register array to temporarily store the scanning

results. For each incoming response packet, IMap extracts

its source IP, source port and state (i.e., active or inactive),

and records the information in one register. When the register

array is filled up, the corresponding response packet packs

all the results from the register array, and goes to the storage

server. To determine which register stores which result, we im-

plement a counter in the ingress pipeline. Upon an incoming

response packet, the counter increases by 1. The information

extracted from the i-th packet will be stored in the i-th regis-

ter. The N-th response packet will trigger the replication and

be sent to the switch port connected with the storage server,

packing and carrying all the results from the register array.

Meanwhile, the counter is reset as 0 and another aggregation

loop starts. With this approach, IMap achieves an N to 1 aggre-

gation, reducing the pressure for the bandwidth of the storage

server significantly. In the side of the storage server, we use

DPDK [12], a high-performance I/O framework, to parse the

result packets and extract the scanning results. Finally, the

scanning results are stored in a persistent database.
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5 Implementation

We implement a prototype of IMap, and make our code

publicly available here [22]. Figure 6 illustrates the compo-

nent layout of IMap on the data plane switching ASICs and

the control plane switch CPUs.

The data plane part is implemented with ∼2K lines of

P4-16 code for the Intel Tofino ASIC. In the probe packet

generation module, we set the size of PIPR tables as 65536

and the size of one PIPR table entry as 256. In the response

packet processing module, we utilize CRC32 as the hash

function, allocate a 64-bit register for each Key, and set the

size of the register array to store results temporarily as 16.

The control plane part is written in ∼3K lines of C code.

It is responsible to initialize the data plane, inject template

packets, receive update notifications, update entries/registers

in the data plane and interact with the campus monitoring

systems. In the probe packet generation module, we set β
in Equation (2) as 0.8 to accommodate to traffic bursts, and

solve the LP problem with the Gurobi [18] toolboxes. Since

the routing tables in our campus network are pretty stable, we

only estimate the extra load dp,e on each link by full-rate probe

packets once, with the approach in §4.1.2. In the response

packet processing module, to reduce the risk of suffering from

chosen plaintext attacks, the control plane generates a random

Key every t=1 second and the data plane applies Xorshift [32]

as the random number generator.

Besides, the backend agent running on the storage server is

implemented with DPDK, which extracts the scanning results

from the aggregated response packets and writes the results

into a Redis [29] database.

6 Evaluation

In this section, we evaluate IMap via testbed experiments

and real-world deployments to answer the questions below:

• What is the overall effectiveness of IMap to conduct

in-network scanning (§6.2)?

Campus 
Backbone 
Network

Border Router Firewall

Internet

Our Campus Network

40 Gbps 4 x 10 Gbps

IMap

Monitoring
SystemStorage Server

Relay Server

Figure 7: Deployment of IMap.

• Can IMap generate high-speed probe packets with ran-

dom address and adaptive rate (§6.3)?

• Can IMap process response packets correctly and effi-

ciently (§6.4)?

• How helpful is IMap in understanding our campus net-

work’s security situations (§6.5)?

6.1 Experimental Setup

IMap setup. Our testbed is composed of one 3.3 Tbp/s In-

tel Tofino switch (Edgecore Wedge 100BF-32X) and two

Dell R730 servers. Both servers are equipped with Intel(R)

Xeon(R) E5-2620 v3 CPUs and 64 GB memory, and con-

nected to the switch via 40 GbE Intel XL710 NICs. In par-

ticular, one server runs as the storage server and the other

server runs as the relay node to bridge IMap with our campus

network. With the relay server, we can collect and analyze the

probe packets from IMap and the response packets to IMap

accurately. Working with the network administrator of our

campus network, we deploy IMap to connect to one backbone

switch in our campus network, as shown in Figure 7. Due

to security and reliability considerations, we are not allowed

to replace the backbone switch with the IMap switch. The

network conditions are obtained from the monitoring systems

in our campus network, according to which IMap adjusts its

scanning rate correspondingly.

Baselines. We use two state-of-the-art network scanners as

baselines in our experiments, i.e., Zipper ZMap [1] (Z-ZMap

for short) and Masscan [33]. They are deployed on a Dell

R430 server located at the network edge, which is equipped

with a 10 GbE Intel 82599ES NIC to connect to our campus

network. Note that 10 Gbps is the maximum capacity offi-

cially supported on the project homepage of these baseline

scanners. We adopt the fastest configuration recommended

in Z-ZMap [1] for baseline scanners to achieve the best scan-

ning capability, e.g., we install “PF_RING ZC” NIC driver to

support the high-speed scanning of Z-ZMap and Masscan.

Scanning Task. Since TCP SYN scanning is one of the most

representative probes among single-packet probes, we use

TCP SYN scanning to evaluate IMap in our experiments. The

scanning target is configured to some or all ports (0∼65535)
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Table 1: Scanning rate and scanning completion time.

Scanner
Scanning

Rate

Time for 1000-

Ports Scan1
Time for All-

Ports Scan

IMap 55.6 Mpps 12 seconds 8 minutes

Z-ZMap 14.2 Mpps 35 seconds 33 minutes

Masscan 9.4 Mpps 51 seconds 50 minutes

of our campus network including 6 Class B addresses, a total

of up to 25 billion scanning space, which is nearly 6 times

larger than Internet-wide single-port scanning space.

6.2 Overall Effectiveness

Scanning accuracy. In order to determine whether IMap can

perform high-speed scanning and obtain accurate scanning

results in our campus network, we examine whether the scan-

ning rate, i.e., the rate of probe packets sent from IMap, has

any effect on the hit rate, i.e., the fraction of responsive probed

hosts (responding with SYN-ACK or RST in this case). We

experiment by using IMap and baseline scanners to scan port

80 of our campus network and normalize the experimental

results. Figure 8 shows that IMap is capable of handling scan-

ning at up to 55 Mpps without obvious hit rate degradation. In

contrast, baseline scanners such as Z-ZMap and Masscan can

neither reach a high scanning rate, nor achieve a comparable

hit rate (at least 1.5 times gap). These benefits are brought by

the in-network deployment location and performant switch

implementation. Our results also verify baseline scanners ex-

perience the decreased hit rate with the higher scanning rate

due to the drop of probe/response packets [1].

Vantage point. To demonstrate the advantage of IMap in

employing in-network scanning, we probe all addresses in

our campus network on port 80 and measure the latency be-

tween sending a probe packet and receiving the response

packet from active hosts. We also conduct the same measure-

ment on two baseline scanners at the same time. The CDF of

the results are shown in Figure 9. IMap gains much shorter

round-trip response time for over 90 percent of hosts than

state-of-the-art scanners. This is benefited from the fact that

IMap is deployed in the core network and probe/response

packets take a shorter path, 2-4 hops compared with 4-8 hops

of end-to-end scanning. It also indicates the less bandwidth

waste to the network and the smaller possibilities of dropping

probe/response packets, which promises IMap can conduct

high-speed scanning accurately and efficiently.

Fastness and scalability. To illustrate that IMap is fast and

scalable in network scanning, we measure the scanning rate

and scanning completion time of IMap and baseline scanners.

Port 0-999 and all ports of our campus network are chosen as

the scanning tasks respectively. For each scanner, we repeat

both tasks for 10 trials at the midnight to minimize the impact

for our campus network and report the averages in Table 1.

1It includes time to send probe packets as well as a fixed 5-second delay

after all probes are sent, during which scanners wait for late response packets.

Table 2: Switch resource utilization.

Computational Memory

Resource Tables ALUs Gateways SRAM TCAM

Usage 42.86% 45.84% 18.75% 20.83% 0.69%

The results show IMap is able to generate 55.6 million probe

packets per second (close to 40 Gbps linespeed), which is

4 times improvement compared with Z-ZMap and Masscan.

Note that 40 Gbps is not the upper limit of IMap; instead,

when we enable all ports of the switch, IMap can generate

probe packets at terabit line rate. Currently, we cannot replace

the core switch with IMap to conduct such a pressure test,

which is left for our future work. Besides, Table 1 also shows

IMap can complete scanning tasks much faster than the other

scanners, which can help operators capture network security

snapshots much more quickly.

Resource overhead. To evaluate the resource consumption

of IMap, we focus on its resource usage of our test switch,

which is a low-end switch with pretty limited resources. Table

2 displays the average hardware resource utilization of IMap

across all stages of the switch. As we can see, even with such

a low-end switch, IMap takes up less than half of computa-

tional resources, one-fifth of SRAM, and negligible TCAM,

still leaving enough resources for the concurrent execution

of traditional forwarding behaviors [35]. Leveraging high-

end switches with more hardware resources (e.g., Edgecore

Wedge 100BF-65X), the resource usage of IMap can be much

lower. Besides, the resource utilization of a switch does not

have any obvious effect on its forwarding performance. This

is because as long as the compiled P4 program that integrates

IMap and the forwarding functionality can be fitted into the

switching ASICs, the switch is guaranteed to process and

forward packets at terabit line rate [26, 51].

6.3 Probe Packet Generation

Random probing. To validate the randomness of probe ad-

dresses generated by IMap, we first explore the distribution of

the first 1000 addresses selected by IMap and Z-ZMap when

they are probing port 80 of our campus network. Consider-

ing our campus network only contains class B addresses, as

shown in Figure 10, we only keep the last two octets of the IP

address and map them to the x and y coordinates, respectively.

Based on the results, we can see that the address random-

ization of IMap achieves slightly worse statistical properties

than Z-ZMap because IMap employs the PIPR table, but we

believe it is still good enough to avoid overwhelming the desti-

nation networks. To verify this, we analyze the pressure IMap

brings to access networks. Figure 11 indicates several vital ac-

cess networks in our campus network only receive thousands

of probe packets per second even though the scanning rate

of IMap reaches as high as 55 Mpps. Such additional packet

overhead is negligible for most edge networks.
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Figure 13: Adaptive scanning rate.

Adaptive probing. To evaluate the adaptability of scanning

rate of IMap, we first quantify the rate control accuracy of

IMap by comparing the rate specified by the runtime parame-

ter with the actual rate of probe packets sent from IMap. As

shown in Figure 12, the error gradually increases with the

rising of the scanning rate, but it is always limited within 5%

even when the scanning rate of IMap reaches 55 Mpps. Such

error mainly comes from the restricted accuracy of the packet

rate in the recirculate port and can be manually corrected

in the real scanning. Besides, from this figure, we can also

see that rolling PIPR filling optimization (§4.1) helps IMap

achieve high-speed scanning continuously. Then we investi-

gate whether IMap can adjust its scanning rate according to

network conditions. We conduct scanning on our campus net-

work with IMap at different time, and record the rate of probe

packets in Figure 13. Since the monitoring system reports

the campus network conditions every 10 seconds, and the

LP problem can be solved within 3 seconds for our campus

network, we make IMap update the scanning rate every 10

seconds to adapt to the change of the network conditions.

6.4 Response Packet Processing

Secure verifying. The security of the response verifier is

guaranteed by the dynamic key updating technique in IMap,

whose efficiency is decided by the parameter t. To find a

suitable value for t, we first simulate the relationship between

the computing power and the time required to reverse Key

used by the hash function in IMap. As we can see from Figure

14, it takes about 4 seconds for high-end CPUs and more than

20 seconds for mainstream CPUs to locate the real Key using

the stack algorithm [38]. In this case, IMap is protected from

chosen plaintext attacks with t smaller than 1.3 seconds. Then

we choose several different t for IMap and scan all ports of

our campus network to seek how t affects probing. Figure 15

presents the number of response packets received by IMap but

not pass the verifier during each scan, which occurs when the

response time is beyond 3t. The results manifest that, under

a common attacker, 0.3s∼1.3s are all applicable choices for t

in our campus network.

Response aggregating. To testify the efficiency of response

packet aggregation mechanism, we configure IMap to scan

the campus network at different rate, and monitor the response

traffic that is sent from the switch to the storage server. Figure

16 and 17 display the packet rate and throughput of such traffic

with or without aggregating response packets respectively. It

can be seen that the aggregation enables a 93.8% reduction

in RX rate and an 86.1% reduction in RX throughput for

the storage server, which efficiently protects it from being

saturated by massive response traffic.

6.5 Analysis of Scanning Results

High-speed scanning of IMap has enabled the faster snap-

shots of the network. Therefore, we conduct an experiment

where IMap continuously scans all addresses in our campus
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Figure 16: Packet rate of scanning results.
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Figure 17: Throughput of scanning

results.
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Table 3: Top 10 active TCP ports of our campus network.

Port Service
Active

Rate

Active

Count

Inactive

Count

8680 WeChat 1.34% 5271 12555

7680 Windows Update Delivery 1.33% 5211 12065

3389 RDP (Remote Desktop) 0.69% 2693 11659

5040 Windows Deployment Service 0.55% 2176 11709

80 HTTP 0.44% 1722 4841

135 Microsoft DCE/RPC 0.41% 1607 11081

445 Microsoft-DS 0.38% 1499 10592

139 NetBIOS Session 0.36% 1422 10559

22 SSH 0.34% 1354 4831

21 FTP 0.25% 983 10918

network on all TCP ports. This experiment lasts for a week

and the scanning results in the Redis database are persisted

into the disk with a tag of time after each scan is over. In

order to explore potential applications of IMap, based on the

scanning results, we attempt to track the adoption of com-

mon protocols and discover new potential risks and security

incidents in our campus network.

Protocol adoption. We first compute the average count of

active and inactive hosts for each port in all time periods.

Table 3 lists the top 10 open ports we observed and reveals

several interesting findings. First, as the proportion of online

devices in our campus network (∼5%) is far lower than that

of the Internet, the active rate of the port is also lower than

that of the Internet. Besides, we notice IMap just receives a

small number of response packets from some sensitive ports,

like ports 22 and 80, and we speculate the reason is that many

Table 4: Exploitability of vulnerabilities to 135 and 3389.

Port Vulnerability Exploitability

135 Leak the host name, OS version, timestamp 100%

Leak all NICs and IPs 99.6%

Leak all RPC services 98.8%

3389 Leak the host name, OS version, timestamp 81.3%

Leak the login screen 35.4%

Remote shutdown* 20.2%

systems filter such probe packets via the host firewall. Finally,

we find Table 3 displays a really different sorting from that of

the Internet in ZMap [14]. For example, the most active port

in our campus network is 8680, which is used by WeChat,

one of the most popular messaging App, and the second one

is 7680, which is occupied by Windows to distribute system

updates. We also observe a surprising number of open ports

associated with file/device sharing over the network, such as

ports 139, 445, and 5070. We attribute these differences to

that more personal devices than servers are connected to our

campus network. Furthermore, we then analyze the active rate

variation of the top 10 ports by time over one day. As we can

see in Figure 18, the active rate of some ports, e.g., 8680 and

7680, exposes an obvious diurnal pattern while that of other

ports does not change significantly over time. This is because

the former are usually opened by personal devices while the

latter are opened by servers.

Potential risks. Among the top 10 ports, 135 (DCE/RPC) and

3389 (RDP) catches our attention because they are known for

information leakage. Considering their popularity, we investi-
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gate the exploitability of their vulnerabilities in our campus

network. As shown in Table 4, 100% of the 135-opened hosts

and more than 80% of the 3389-opened hosts are at the risk

of information leakage. Moreover, the 3389-opened Windows

hosts are also vulnerable to being shutdown remotely due to

the misconfiguration from their users. For instance, Figure 19

is the screenshot from one of such vulnerable hosts, showing

that users are allowed to perform shutdown operations on the

RDP login screen. Even though the firewall of our campus

network bans external access to internal hosts’ sensitive ports

including 135 and 3389, we believe these vulnerabilities still

pose a high risk to our campus network and may be exploited

by attackers. We have contacted our network administrators,

and they confirmed these risks and issued a notice to remind

teachers and students to check their configurations.

Botnets detection. We also implement several alarm scripts

triggered when the scanning results satisfy some conditions.

One of them is used to detect botnets by monitoring whether

the active count of certain ports surges in the last scan. During

our experiment, we did find a fast increase of 48101-opened

hosts and suspected it is caused by a Mirai botnet. We reported

such an issue to the network administrators immediately and

they finally determined it is just an experiment on Mirai con-

ducted by a security lab. Even we dodged a bullet, it still

reflects the potential of IMap in fast revealing security inci-

dents with high-speed scanning, which cannot be obtained in

time by existing network scanners like Z-ZMap and Masscan.

7 Discussion

Scanning results v.s. deployment locations. From a net-

work perspective, different switches have diverse network

utilization, topological connection relations and access restric-

tions. As a result, the deployment locations of IMap affect

the scanning results inevitably. Furthermore, we can also co-

ordinate multiple switches to deploy IMap for cooperative

scanning, which can achieve a higher scanning rate and hit

rate. For any given network, there must be optimal distributed

deployment locations in a given period of time, which can

achieve the highest scanning rate and hit rate. We leave the

deep exploration of optimal distributed deployment locations

in a given network as our future work.

Relationship with application-layer scanners. Currently,

IMap only supports single-packet scanning, including TCP

SYN scans, ICMP echo request scans, and application-

specific UDP scans, and does not support complex application-

layer protocols, e.g., TLS handshakes, directly. However, sim-

ilar to ZMap, IMap can serve as a foundation to obtain the

responsive host list from the given port, e.g., port 443 for TLS

protocol. Based on this list, operators can use application-

layer scanners to collect advanced information, e.g., a custom

certificate fetcher to retrieve TLS certificates. In a word, IMap

can narrow down the scanning space for application-layer

scanners significantly.

8 Related Works

Our work is highly related to the following topics.

Network scanners. Many network scanners have been devel-

oped to conduct network scanning tasks. Nmap [39] is opti-

mized for small network segments with a wide variety of prob-

ing techniques. IRLscanner [30], ZMap [14], Masscan [33]

and Zipper ZMap [1] are designed for Internet-scale scanning,

mainly with a single-packet probing paradigm. IMap is very

similar to ZMap and Masscan in the scanning methodology,

but with different implementation targets and deployment

locations, thus achieving orders of magnitude scanning capa-

bility improvement.

IPv6 scanning. Numerous research works have been de-

voted to improving the IPv6 scanning efficiency by optimiz-

ing the scanning space algorithmically. Entropy/IP [15] em-

ploys information entropy to segment the addresses in the

hitlist and generate target addresses based on the relation-

ship between different fragments. 6Gen [36] and Entropy-

Clustering [16] extend the scope of prefix space for En-

tropy/IP and discover seed address fingerprint with clustering

analysis. 6hit [21] adopts a reinforcement learning based tar-

get generation method to improve the probing efficiency. As a

high-speed scanning system, IMap is completely orthogonal

to these algorithmic works. And the scanning space gener-

ated from these algorithms can be set as the input of IMap to

further improve the scanning efficiency.

Programmable switches. Recently programmable switches

have been used as accelerators for various applications in

networking [17, 35, 37], distributed systems [25, 26] and se-

curity [27, 34, 51], and these applications achieve far better

performance with lower costs than their software counterparts

running on commodity servers. The closer work to ours is

HyperTester [49], which shows how to design a high-speed

network tester with programmable switches. However, Hy-

perTester neither illustrates how to generate probe packets

with random address and adaptive rate, nor how to process re-

sponse packets correctly and efficiently. IMap addresses these

unique challenges, and thus turns a switch into a practical

high-speed network scanner.

9 Conclusion

In this paper, we identify the limitations of current network

scanners, and introduce IMap, a fast and scalable in-network

scanner with programmable switches. We devise a set of

techniques and optimizations, i.e., an address-random and

rate-adaptive probe packet generation mechanism, and a cor-

rect and efficient response packet processing mechanism, to

turn a switch into a practical high-speed network scanner. We

implement an open-source prototype of IMap and conduct ex-

tensive evaluations to show the advantages of IMap compared

with current network scanners. We hope IMap can serve as

the foundation of next-generation terabit network scanners.
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