
Enabling Dynamic Access Control for Controller
Applications in Software-Defined Networks

Hitesh Padekar
San Jose State University
hitesh.padekar@sjsu.edu

Younghee Park∗

San Jose State University
younghee.park@sjsu.edu

Hongxin Hu
Clemson University

hongxih@clemson.edu

Sang-Yoon Chang
Advanced Digital Sciences

Center
sychg@adsc.com.sg

ABSTRACT
Recent findings have shown that network and system attacks
in Software-Defined Networks (SDNs) have been caused by
malicious network applications that misuse APIs in an SDN
controller. Such attacks can both crash the controller and
change the internal data structure in the controller, causing
serious damage to the infrastructure of SDN-based networks.
To address this critical security issue, we introduce a security
framework called AEGIS to prevent controller APIs from be-
ing misused by malicious network applications. Through the
run-time verification of API calls, AEGIS performs a fine-
grained access control for important controller APIs that
can be misused by malicious applications. The usage of API
calls is verified in real time by sophisticated security access
rules that are defined based on the relationships between ap-
plications and data in the SDN controller. We also present
a prototypical implementation of AEGIS and demonstrate
its effectiveness and efficiency by performing six different
controller attacks including new attacks we have recently
discovered.

Keywords
Software-defined networks, access control, API misuse, net-
work attacks, security

1. INTRODUCTION
Software-Defined Networking (SDN) is an emerging net-

work architecture that provides unprecedented programma-
bility, automation, and network control by decoupling the
control plane and the data plane. The SDN architecture ab-
stracts the underlying network infrastructure for network ap-
plications with logically centralized control [15, 7, 11]. Due

∗The first two authors contributed equally to this work.
Younghee Park is the corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SACMAT’16, June 05-08, 2016, Shanghai, China
c⃝ 2016 ACM. ISBN 978-1-4503-3802-8/16/06. . . $15.00

DOI: http://dx.doi.org/10.1145/2914642.2914647

to its centralized feature, the SDN controller plays an impor-
tant role in programmability and management, and allows
programmers to create various network applications running
on top of its core services. Therefore, it is crucial to protect
the SDN controller from potential attacks.

In spite of many favorable characteristics and benefits of
SDN, the SDN controller is most susceptible to attacks [18].
Any vulnerability in the controller would prompt a near
seizing-up of the network. Furthermore, due to the lack
of adequate security protection, malicious applications can
easily launch attacks on the controller, wreaking havoc on
the entire SDN network. Recently, various methods have
been proposed to defend against specific attacks in SDN
networks. AvantGuard proposed a connection migration
solution against saturation attacks in the data plane [19].
The Rosemary controller was developed using network appli-
cation containment to provide an isolated environment for
running SDN applications [18]. VeriFlow provided a valida-
tion technique to check flow modification messages [13]. To-
poGuard developed a topology checker to validate updates
of network topology against network topology poisoning at-
tacks [12]. FortNOX provided role-based authorization and
security constraint enforcement in the controller kernel [4].

However, those existing solutions have either addressed
specific attacks or proposed specific defense methods. They
often overlooked a fundamental requirement for verifying the
usage of API calls, which specify how SDN applications in-
teract with the SDN controller. In fact, most of discovered
attacks in SDN networks were caused by the misuse of con-
troller APIs. In addition, many undiscovered vulnerabilities
in the SDN controller still remain that can be leveraged by
attackers to continue threatening the controller. Further-
more, as discussed in [12] [18], the most promising security
solution for SDN is to have a robust SDN controller that
can withstand misleading applications from vulnerable APIs.
Therefore, there is a critical need to design a general secu-
rity solution that can defense against various vulnerabilities
in the SDN controller and protect the controller from a wide
range of misuse of controller APIs.

To this end, we propose a novel security framework, AEGIS,
to protect the SDN controller from various attacks by gen-
erating and enforcing security access rules. AEGIS aims to
provide a dynamic access control mechanism for the usage
of APIs and for the validation of data in the controller when-
ever controller applications utilize any controller service. In
particular, AEGIS monitors SDN applications running on

51

top of the controller’s core modules, and intercepts the ex-
ecution flow of applications through API hooking. It vali-
dates a service request by inspecting the pre-defined rules
and by verifying input/output parameters in captured APIs.
In essence, AEGIS dynamically validates the legitimacy of
a service request by checking whether the associated appli-
cation follows security access rules, and then it makes a de-
cision to either block or allow the service request.
We design three core components for AEGIS: a data gen-

erator, a security rule generator, and a decision engine. The
data generator identifies a list of important APIs along with
internal data in the controller that must be protected from
potential attacks. Our system can automatically extract
invariant or variant data, the values of which need to be
checked syntactically or semantically at runtime. The secu-
rity rule generator in AEGIS defines a set of security access
rules based on extracted information from the data genera-
tor. Invariant data is defined as syntactic information con-
sistent throughout all services. By contrast, variant data is
defined as semantic information needed for updates during
the service. The security rule generator defines rules that de-
scribe the relationships among applications, APIs, and their
inputs and outputs. Moreover, to validate service requests
from applications, the decision engine intercepts APIs in real
time and checks the input/output data of each API based
on security access rules. We implement AEGIS based on
API hooking in SDN controllers. To evaluate our system,
we generate six different controller attacks, including new
attacks we recently discovered, to illustrate the effectiveness
and efficiency of our system. Our experimental results show
that our system can detect various malicious SDN applica-
tions and dynamically control access of controller APIs on
the fly.
This paper makes the following contributions:

• We propose a general security framework called AEGIS
that enables dynamic access control for SDN controller
applications. AEGIS can identify important relation-
ships between SDN applications and critical data in
the SDN controller, and generate security access rules
for protecting the SDN controller.

• We propose a runtime verification technique, which
verifies the legitimacy of services in the dynamic con-
text of API calls, to control access of controller APIs.

• We implement a prototype of AEGIS based on Flood-
light [4], an open source SDN controller, and evaluate
the effectiveness and performance of AEGIS using a
number of typical controller attacks.

This paper is organized as follows. In Section 2, we ad-
dress our motivation through the discussion of various at-
tacks that misuse controller APIs. Section 3 presents the
design of AEGIS. The implementation and evaluation of our
system are described in Section 4. Section 5 addresses the re-
lated work, and Section 6 discusses several important issues.
In Section 7, we conclude this paper.

2. PROBLEM STATEMENT
Many network applications provide network services through

calling core APIs, which are common interfaces to develop
network applications, in the SDN controller. Since the ap-
plications are vulnerable to software bugs due to the lack of

authentication and access control [19, 12], they can misuse
APIs to launch serious attacks in SDN networks. Specif-
ically, they can exhaust system resources, shut down the
controller, and change important internal data, such as net-
work topology information [19, 12], in the controller. Since
it is challenging to write bug-free controller code, it is more
desirable to handle such misuse cases in real time before any
attack is launched.

To make a robust SDN controller, the controller’s APIs
and its data structure should be protected against applica-
tion bugs and network attacks. The first step to achieve
this is to validate API usage called by the network applica-
tions. Before allowing any service to be used, the legitimacy
of service requests need to be checked by investigating the
relationships between the caller and callee of the APIs, and
their input and output in the controller.

We next introduce several attack cases that result from
misusing core APIs through network applications in the SDN
controller. Most open-source controllers contain a set of core
modules that define the controllers’ major functionalities.
The proposed attack model targets these core modules and
causes the misuse of these controllers’ core APIs. We will
readdress some attacks, which have been studied in previous
research. We will also discuss several new attack cases that
we newly discovered. We target core APIs that are related to
the five main functionalities: topology manager, device man-
ager, statistics manager, host tracker, and switch manager.
These core modules provide major network services through
common APIs in most of popular SDN controllers. Table 1
summarizes attack cases that could cause serious damage
with respect to three popular SDN controllers: Floodlight,
OpenDaylight [6], and ONOS [5]. We can divide these at-
tacks into two categories: system resource attacks and inter-
nal data attacks. We found a set of misused API lists based
on both known attacks and newly discovered attacks. We
discuss those attacks in the following subsections, mainly
explaining in detail two new attack cases we recently dis-
covered: Network Saturation Attack and Bypassing Device
Authorization.

2.1 System Resource Attacks
[Attack 1] System Crashing Attack : In this attack, the
unprivileged applications can call System.exit() function to
shut down the controller completely [19], thus affecting con-
troller robustness.

[Attack 2] Memory Resource Consumption Attack : The
malicious applications can launch a memory leakage attack,
causing memory to run out if they use enough resources [19].

[Attack 3] Network Saturation Attack : In addition to
above two known attacks, we newly discovered that the
controller is vulnerable to many resource consumption at-
tacks, such as bandwidth exhaustion attacks and flooding
attacks, due to misused APIs. For example, the forward-
ing modules in Floodlight are responsible for making packet
forward decisions, such as FORWARD OR FLOOD, FOR-
WARD, MULTICAST, DROP or taking no action. createM-
atchFromPacket() in the forwarding modules of Floodlight
constructs a specific match based on the deserialized OF-
PacketIn() payload. It uses the source MAC address, desti-
nation MAC address, and other IP and TCP header fields
to create a match for the received packet. However, it does
not take into consideration the switch inPort() or the TCP
packet type while making a forwarding decision. Hence,

52

Table 1: Misused controller APIs.

Attacks Module Floodlight OpenDaylight ONOS

Crashing SDN controller System System.exit() System.exit() System.exit()
Data attacks Link discovery manager rowsDeleted rowsDeleted removeLinks or removeLink

Resources consumption attacks Memory java.util.LinkedList.add java.util.LinkedList.add java.util.LinkedList.add
Network saturation attacks Forwarding handleMessage receiveDataPacket processPacket

processPacketInMessage
createMatchFromPacket

Bypassing device authorization Device manager learnDeviceByEntity learnDeviceByEntity networkConfigService.getConfig
Host location hijacking Host tracking isEntityAllowed isEntityAllowed validateHost

attacks service switchPortChanged updateNodeConnector BasicHostConfig.isAllowed()

any spoofed messages matching existing flow rules can be
forwarded to the target host due to no validation of the
same-origin security policy. Even though resource satura-
tion attacks are known problems, we discovered a new way
to launch such attacks through investigating other API calls.
In particular, as shown in Figure 1, we examine the con-

troller code to understand the process through the execu-
tion flow for the flooding attack. Figure 1 shows various
subsystems that are involved during the flooding attack,
the API sequence of actions, and the relationships between
them. The top and bottom dotted lines represent bound-
aries created by northbound and southbound APIs, respec-
tively. The provider is responsible for interacting with the
network environment and OpenFlow (OF) protocol. The
OF Channel Handler and OF Connection communicate with
the OpenFlow protocol. The OF Connection then invokes
the provider to transmit a sensing event to the OF Switch
Handler via Provider Service messageReceived() API. The
control plane contains core components for manager ser-
vices and it exposes several interfaces that are communi-
cating with northbound and southbound APIs. The OF
Switch Handler processes this packetIn event and identifies
the switch object sw associated with this communication.
The OF Switch Manager maintains the context for this com-
munication and provides an OFPacketIn message to the for-
warding module. The forwarding module follows routing
decisions from the controller and performs the forwarding
actions.
To perform each of these forwarding actions, the OF Switch

Manager invokes createMatchFromPacket() API, which does
not take into consideration the TCP packet type header. In
other words, the controller does not validate that the TCP
SYN packet is derived from the same source inside the cre-
ateMatchFromPacket() API. Any spoofed traffic can create
a bottleneck between the control and the data plane. Even-
tually, the flooding attack creates multiple flow rules, and
thus such flooding attacks cause control plane saturation
and bandwidth exhaustion. Validating the behavior of the
createMatchFromPacket() API requires to avoid this vulner-
ability in the controller.

2.2 Internal Data Attacks
The controller has a lot of important data, such as topol-

ogy information, device information, and link information
inside the controller. We discuss various attack cases to
compromise the internal data in the controller by misusing
APIs.

[Attack 4] Compromised Link Data : Applications can
call controller APIs to manipulate internal link information.
One such study on Rosemary [18] showed that network link

Forwarding

Controller

OF Switch Manager handleMessage(sw, m , c)

OF Switch Handler

dispatchMessage(sw, m, null)

processOFPacketIn(m)

processOFMessage(OFMessage m)

handleMessage(sw, OFPacketIn m, c)

messageReceived

OF Connection

OF Channel Handler
sendMessageToConnection

messageReceived

Interface

Provider Service messageReceived

Provider

OF Protocol

Service

Listener

NotifyAdd / remove

Sensing

createMatchFromPacket
FORWARD_OR_FLOOD,

FORWARD,

MULTICAST,

DROP,

taking no action

receive

processPacketInMessage

Routing

Figure 1: Execution flow of the flooding attack (At-
tack 3).

information can be modified or deleted using a simple test
application. In this attack scenario, a vulnerable application
can change the controller’s network link information. Even
though the previous research did not give a clear attack case
inside code, we particularly identified the misuse case of two
APIs: addOrUpdateLink() and deleteLinks() in the Flood-
light’s link discovery module.

[Attack 5] Host Location Hijacking Attack : Attackers
exploit the host tracking service in the controller, as de-
scribed in [12]. They can tamper with the host location
information of the controller to break the security and im-
personate the target host. All traffic on the target host
is routed to the attacker’s host. For example, isEntityAl-
lowed() in Floodlight and Opendaylight allows any device
to join the current network without any validation.

[Attack 6] Bypassing Device Authorization : The de-
vice manager controls device entities in a database based on
MAC addresses and network addresses mapped to the de-
vices and their locations in networks. The device manager

53

Controller

OF Switch Manager handleMessage(sw, m , c)

OF Switch Handler

dispatchMessage(sw, m, null)

processOFPacketIn(m)

processOFMessage(OFMessage m)

handleMessage(sw, OFPacketIn m, c)

messageReceived

OF Connection

OF Channel Handler
sendMessageToConnection

messageReceived

Interface

Provider Service messageReceived

Provider

OF Protocol

Service

NotifyAdd / remove

Sensing

Routing

Device Manager

handleMessage(sw, m , c)

learnDeviceByEntity(entity)

processPacketInMessage

receive

deviceMap

learnDeviceFromArpResponseData

Listener

Figure 2: Execution flow of the bypassing device
authorization attack (Attack 6).

authorizes a system entity to access a system resource. We
found specific new attack cases that compromise device in-
formation. Specifically, getSourceEntityFromPacket() in the
device manager in Opendaylight retrieves device entity in-
formation from the incoming packet. learnDeviceByEntity()
in Floodlight looks up entity information in the database
based on the device key, a host’s MAC address.
For example, in the Floodlight controller’s device man-

ager, getSourceEntityFromPacket method retrieves device
entity information from the packet. Based on this, the learn-
DeviceByEntity method does a lookup in the device entity
database of the device manager module. The lookup is based
on a device key, which is created using the host’s MAC ad-
dress. However, for a spoofed ICMP request with a wrong
MAC address, this lookup matches an existing entity. We
implemented this attack case by using ARP spoofing attacks.
We assume that attackers were aware of IP addresses of vic-
tims and compromised hosts in a local network. The attack
utilizes a gratuitous ARP request to probe the compromised
host’s MAC address. Then, it generates the spoofed ICMP
message towards the compromised host and uses the vic-
tim as its destination. The spoofed ICMP requests with
the spoofed MAC address bypass the lookup for the entity
database. Due to the misuse of these APIs, the device man-
ager can accidentally grant the spoofed entity access to con-
troller resources.
In particular, Figure 2 demonstrates the Bypassing De-

vice Authorization attack by examining the execution flow
of APIs. Before the controller receives an OF packet, the

API flow is the same as explained earlier. The controller
exposes an OF service that is used by the Device Manager
module. Upon receiving the packetIn event message, the De-
vice Manager computes the source entity from the Ethernet
packet based on the MAC address, VLAN ID, IPv4 address,
IPv6 address, switch DPID, OF port and current timestamp.
It then does a lookup in the deviceMap database using de-
viceKey, which is formed using the MAC address, VLAN
ID, IPv4 address, IPv6 address, switch DPID and OF port.
However, this lookup does not take into consideration the
switch ingress port for the devices. When an attacker im-
personates another host and generates spoofed ICMP pack-
ets, this lookup matches the existing entity in the deviceMap
database. Thus, without installing new flow rules and using
existing flow rules, attackers’ spoofed ICMP packets get for-
warded to the compromised host and the victim. Validating
the learnDeviceByEntity API and failing to respond in the
case of spoofed requests will prevent such attacks through
our proposed system.

3. SYSTEM DESIGN
This paper aims to design a general security framework for

investigating API usage and to define a set of security access
rules for monitoring API calls in the controller at runtime.
The following design goals should be achieved to address the
aforementioned challenges.

1. No Controller Code Change. The deployment of the
proposed system must be streamlined. Without chang-
ing the current code, the system should monitor appli-
cations running on the controller. For example, Open-
Daylight has more than 20 open-source applications
and many proprietary applications. Changing all the
applications and the controller code may not feasible
or practical. Any code modification would introduce
extra bugs in the controller and might also lead to
other serious issues. With the extracted data described
in the subsection 3.1 and the API hooking, the pro-
posed system can provide security functionalities with-
out changing the internal controller code.

2. Realtime Behavior Control and Monitoring. The pro-
posed system must continuously monitor applications
and control their behaviors. To do so, it must intercept
and control any API call on the fly since the APIs in-
clude all runtime behaviors. It must dynamically check
the legitimacy of API calls based on pre-defined secu-
rity access rules. Through intensive API inspection
using the rules, the system must validate execution be-
haviors in real time before providing services. It must
block or allow services according to the results of eval-
uating pre-defined security access rules.

3. Realtime Security Access Rules Adjustment. The pro-
posed system pre-defines security access rules that can
be applied to any new code release. It must add or
delete the rules dynamically in real time. Even though
applications can be often updated, the controller code
might be intact. The proposed system should dynam-
ically update the rules for new applications and new
APIs in the controller.

4. Semi-automatic Data and Rules Extraction. Due to
the huge amount of code, a complete manual inspec-
tion is error-prone and time-consuming. The proposed

54

Switch Router
N/w

device

Firewall

App

Routing

App

Other

Apps

Security Rules Database

& Log Database

S
e
c
u

r
it

y
 R

u
le

 G
en

e
r
a
to

rCore Modules

Host Tracker

Topology

Manager

Southbound interface

Northbound interface

Link discovery

Switch Manager

Statistics

Manager

Routing

Manager

O
th

e
r

se
r
v
ic

e
s

D
e
c
is

io
n

 E
n

g
in

e
 (

A
P

I
H

o
o
k

s)

Data Generator

Coarse-grained

Relationship

D
a
ik

o
n

S
ta

ti
c

C
o

d
e

S
D

N
 C

o
n

tr
o
ll

e
r

AEGIS Components

Invoke security rules

Interpret Rules

Update Rules

Log events with

security rules

Fine-grained

Relationship

Invariant &

Variant Data

APIs

Figure 3: Overview of AEGIS architecture.

system should identify syntactic or semantic data au-
tomatically while the security access rules can be gen-
erated manually.

We propose AEGIS, a general security framework, to mon-
itor the usage of APIs in SDN controllers whenever applica-
tions access APIs to get network services. Figure 3 shows
an overview of AEGIS architecture. AEGIS contains three
core components: data generator, security rule generator,
and decision engine. We explain each component in detail
as follows.

3.1 Data Generator
An SDN controller has APIs, data, and databases to store

information related to SDN networks and systems. We iden-
tify the important data and relationships by using Daikon [3],
which allows us to achieve automatic inspection of controller
code.
Table 2 summarizes various applications and databases af-

ter code inspection for three popular open-source SDN con-
trollers: Floodlight, ONOS, and OpenDaylight. In AEGIS,
among important data in the controller, we first identify ap-
plications running in the controller and databases to store
information related to the SDN controller. A database is
closely related to each important module. Specifically, the
statistics manager module has a statistics database. The
topology manager module has topology information. In ad-
dition, we automatically identify important APIs along with
invariant or variant data from runtime execution. Invariant
data is defined as syntactic information that is consistent
across all services, such as IP addresses and device infor-
mation. By contrast, variant data is defined as semantic
information that would be verified during the service due to
update or modification operations.
We leverage Daikon in order to automatically generate

important information from the controller code. Daikon
dynamically detects program invariants using a static con-

troller code. We run the Floodlight controller inside Daikon
Chicory Java front end. It executes the Java Floodlight con-
troller, creates data trace files, and runs Daikon on them to
detect invariants. The data traces include the results after
running the controller code, such as variables and their val-
ues. If the value for each variable does not change during
runtime, it is invariant data. Our tool also creates program
points in declaration files with vectors for an API call and
its input/output parameters. Using this method, the data
generator automatically generates the controllers’ APIs and
input/output parameter values, and detects the program in-
variant and variant data.

Once the APIs and their input/output parameters are
identified and the invariants are detected, we extract the im-
portant APIs and controller data from the Daikon results.
Table 3 shows partial results applying Daikon to inspect
Floodlight. It is a summary of sample important data struc-
tures for Floodlight’s Device Manager, Link Discovery Man-
ager and Topology Manager, classified into invariant data
and variant data.

More specifically, from the results of Daikon, deviceMap,
primaryIndex and secondaryIndexMap are invariants when-
ever a new device is attached to the network. For exam-
ple, Device Manager maintains a master device map that
maps device IDs to device objects within its execution in
deviceMap database and adds new devices to this when they
are discovered in the network. It also uses primaryIndex snd
secondaryIndexMap to maintain primary and secondary in-
dices over the fields in the devices. During the security check,
our system validates whether these values are correct or not.
However, DeviceEvent and syncStroreWriteIntervalMs are
invariant data due to fixed values for each. DeviceEvent is
the finite set of events (only add or remove a device with de-
vice ID), and syncStoreWriteIntervalMs is an interval within
certain boundary limit, such as debugCounters and deviceK-
eyCounter, which are also classified as invariant data.

55

Table 2: Security directives (D) for applications in Floodlight, ONOS, and OpenDaylight controllers.(r =
read, w = write, d = delete, (-) = no access required).

Controller Applications Flow Rules Device Manager Topology Manager Link Manager Configuration

Floodlight Static Flow r, w, d r - r r
Entry Pusher
Forwarding r, w, d r r r r
Firewall r, w, d r - r r

Circuit Pusher r, w, d r, w r, w r, w, d r
ONOS Flow Analyzer r - r r -

BGP Router r, w, d r r r r
ACL Service r, w, d r - - -

DHCP - r r - r
OpenDaylight Reservation r, w, d r r,w r,w, d r,w,d

Group Based Policy r, w, d r r r r, w
Network r, w, d r - - r, w

Internet Composition
Device Identification r, w r - - r

and Driver Management

Table 3: Summary of Daikon results for Floodlight.

Modules Device Manager Link Discovery Manager Topology Manager

Invariant Data debugCounters LLDP STANDARD DST MAC STRING CONTEXT TUNNEL ENABLED
deviceKeyCounter LINK LOCAL MASK currentInstance
entityCleanupTask EVENT HISTORY SIZE currentInstance
DeviceEvent LLDP BSN DST MAC STRING numTunnelPorts
syncStoreWriteIntervalMs TLV DIRECTION TYPE TOPOLOGY COMPUTE

INTERVAL MS
forwardTLV, reverseTLV
DISCOVERY TASK INTERVAL
LINK TIMEOUT
LLDP TO ALL INTERVAL
LLDP TO KNOWN INTERVAL
tunnelPorts, externalPortsMap

Variant Data deviceMap controllerTLV, links, switchLinks switchPorts, switchPortLinks
primaryIndex portLinks tunnelPortsa, directLinks
secondaryIndexMap linkDiscoveryAware portBroadcastDomainLinks
apComparator suppressLinkDiscovery externalPortsMap

3.2 Security Rule Generator
The rule generator defines a set of security access rules

from the output of the data generator. The rules consist of
two levels of regulations: directives and specific instructions.
A security directive indicates a coarse-grained relationship
between an application and a database, such as read, write,
and delete as shown in Tables 2. A security instruction
displays a fine-grained relationship between an API and data
from the data generator. It describes more specific detailed
instructions between calling APIs and input/output data.
Table 4 presents the basic primitives for our security ac-

cess rule, which are based on a tuple, < P , SD, A, SI, I, O>,
where P is a set of applications running on the controller,
SD is a set of security directives showing the access relation-
ships between applications and core data in the controller,
A is a set of the core APIs in the controller, on which we
focus, SI is a set of security instructions to verify the input
data passing through calling APIs (depending on the input
data and the output data, security instructions can check
the data syntactically and semantically), I is a set of inputs,
and O is a set of outputs for the calling APIs, which can

be any network and system information, such as existing IP
addresses, existing MAC addresses, and existing devices.

Table 2 show coarse-grain relationships for security direc-
tives. For example, in Floodlight, the Circuit Pusher [9]
creates a bidirectional circuit based on IP addresses and pri-
orities. It can read/write/delete flow rules in the controller.
In addition, a stateless Firewall applies ACL (Access Con-
trol List) rules for OpenFlow switches using flow rules and by
monitoring ingress traffic. It can read/write/delete flow rules.
However, it can only read other modules in the controller.
Similar in OpenDaylight, the DIDM (device identification
and driver management) can read and write a database of
flow rules; however, it can only read the device databases and
cannot access the topology and link databases. If this appli-
cation tries to update topology information, it will cause a
security violation due to security access rules. Futuremore,
the security instructions for fine-grained relationships can
verify the input/output data on each API call.

For instance, a security access rule is defined as, < Main,

write,main, null, System.exit(), null, null > which states that
a Main module can only write (i.e. execute) the System.exit().
Except of the controllermain() function, applications cannot

56

Table 4: Basic primitives for security access rules for AEGIS.

Lanuage Description

P = p1, p2, ... P is a finite set of the applications of the controller.
D ::=< read|write|delete > A security directive is one of read, write, and delete.
DB =< db1, db2, ... > DB is a set of different database storing data related to networks and systems.
A = a1, a2, ... A is a finite set of all controller APIs for all A(i) j controller APIs
SI = s1, s2, ... SI is a set of instructions applicable to the calling APIs
I :: =< IP |Port|...|Devices > I is a set of input for the calling API.

It can be all the network and systems information,
such as IP addresses, port numbers, MAC addresses, and device, and so on.

O ::=< IP |Port|...|Devices > O is a set of output for the calling API.
R ::=< P, SD,A, SI, I, O > R is a security rule.

A rule defines a set of the directive SD applicable for the application P ,
the calling API A with its input parameters I, and output parameters O.

call this exit() function. It prevents the controller system
from crashing. Another example is < DeviceManager, read|write,

deviceMap, learnDeviceByEntity, entity, device >, which means
that the application DeviceManager can only read or write
deviceMap through learnDeviceByEntity() with the device
entity instance. It returns device information or updates it
in the device entity database. It syntactically checks the de-
vice information in the deviceMap. Therefore, it protects the
deviceMap from being accessed or modified by any controller
module other than the DeviceManager.
The security access rules are saved into a rules database

which contains controller APIs, variant/invariant data, and
security directives and instructions. It is maintained in a
hash table and uses an API name as the key to fetch entries
from the hash table. The rules cover all the possible cases
to prevent APIs from be misused into three categories: syn-
tactic, semantic, and communication information. Syntactic
information is related to invariant data. Semantic informa-
tion indicates variant data that needs to data values checked.
Lastly, communication information is related to network be-
havior. This violation will cause a DoS attack and a problem
between two modules or interfaces. The hooked APIs will
maintain the state of the communication for verification.
Static information related to existing data such as an IP

address, a port number, or a switch interface number are the
parameters that qualify as syntactic information. Dynami-
cally changing address range and flow entry are semantic
information. For example, when a new device is added to
the network, the new device’s IP address is within the ex-
pected range of IP addresses. In addition, depending on
the services, we need to check the range of port numbers.
Communication information is used to verify whether any
of the parameters violate the execution of the flow of the
protocol. For example, if any part of the network link is mi-
grated from one switch port to the other switch port without
proper shutdown of the link, this is considered to be a vi-
olation of the communication. APIs that handle link-level
information, flow rules, and host tracking are categorized as
communication information.

3.3 Decision Engine
We propose a state machine to make a decision for the

legitimacy of API calls while monitoring API calls from ap-
plications. The notation we use for the state machine is a
6-tuple <Q, q0, R,

∑
, f , o>, where:

• Q is a finite set of states,

• q0 ∈ Q is the start (initial) state,

• R is a set of accepting rules,

•
∑

is the input accepted,

• f is a state-transition function f : Q X
∑

X R −→ Q,

• o is an output function.

The input
∑

has a set of data extracted from the data
generator. The data includes APIs, invariant and variant
data passing through the API call. Q has two states: True
or False. R is a set of security access rules from r0 to
rn. The decision engine invokes a state-transition function
f whenever an application requests a service and uses core
APIs in the controller. If the engine is in a state q and
reads input a with a rule r in R, it moves True (allow)
or False (block) state depending on the access rules. It will
allow or block a specific request while investigating APIs with
input/output data.

The decision engine utilizes API hooking to intercept the
behaviors of applications in the controller. It intercepts the
function calls and their parameters at runtime. It gains
control over the controller APIs, validates the parameters
passed to the APIs, and validates the rules related to the ap-
plications and the API calls. When an application requests
a service in the controller, it hooks the API calls and checks
the security access rules. The decision engine retrieves secu-
rity access rules from the rules database and applies the rules
to the API parameter. If any rule is violated, the request is
dropped or a negative response is returned.

4. IMPLEMENTATION AND EVALUATION

4.1 Implementation
We implemented our proposed system using Floodlight

master version along with Daikon and hooking techniques.
Because all code changed is in API hooks and AEGIS plugs,
which are separate modules from the controller, our system
does not need to change the controller code.

To generate interesting data, we analyzed the controller
code using Daikon offline. We implemented hooking by us-
ing AspectJ [1] supported by Spring [8]. AspectJ is a seam-
less aspect-oriented extension to Java. We created a new

57

Table 5: Security access rules for evaluating the validation latency.

Number API Security Rule (R)

1 System.exit() < Main, write, null, System.exit()
CallerModule == Main, null, null>

2 learnDeviceByEntity < DeviceManager, read | write, deviceMap, learnDeviceByEntity,
entity.sw port /∈ entitydatabase entity, device >

3 isEntityAllowed < DeviceManager, read, deviceMap, primaryIndex, isEntityAllowed,
entity.sw port /∈ entitydatabase && entity.state == validShutdown ,
entity, EntityClass, boolean >

4 LinkedList.add < ALL MODULES, write, null, LinkedList.add,
resourceRequested < reserved , object, boolean>

5 addOrUpdateLink < LinkDiscovery, write, links, addOrUpdateLink,
CallerModule == LinkDiscovery Link, LinkInfo, boolean >

6 deleteLinks < LinkDiscovery, delete, links, switchLinks, portLinks,
deleteLinks, CallerModule == LinkDiscovery Links, reason, updateList , boolean >

7 switchPortChanged < OFSwitchManager, write, switchLinks, portLinks, links ,
switchPortChanged , CallerModule == OFSwitchManager ,
switchId, port, type, null >

AspectJ library in the Floodlight controller written in Java.
It allows us to hook the controller APIs at run-time and to
check the security access rules for applications. Our system
checks the hooked APIs for each of the input and output
parameters against the security access rules.
The testbed to emulate attacks consists of three hosts, one

Floodlight controller, and one switch. To evaluate system
performance, we used cbench [2], a performance benchmark
tool, on the controller host to measure the memory usage,
execution time, latency, and effectiveness of our system. Af-
ter making a number of runs, we computed an average for
each experiment.

4.2 Evaluation
Startup Time of AEGIS in Floodlight : We measured
boot-up time for the Floodlight controller with and without
AEGIS implementation for various numbers of security ac-
cess rules. The timer started when the controller entered
the main() function and ended when it loaded all modules
of the Floodlight controller with or without AEGIS includ-
ing all necessary modules, such as REST APIs and AspectJ.
We computed an average boot-up time for the fixed number
of security access rules. The evaluated boot-up time also in-
cluded additional time required for looking up and fetching
the right security access rules.
As in Figure 4, the overhead of Floodlight with AEGIS

was an average of 2.5%. Floodlight spent an average of 1.85
seconds for booting time. However, Floodlight with AEGIS
expended an average of 2.19 seconds. This was 0.34 seconds
more than the original controller. The boot-up time slightly
increased as we added more security access rules to AEGIS.
The original Floodlight showed consistent costs and AEGIS
increased the cost only very slightly depending on the num-
ber of security access rules added, except for an initial spike
time. For AEGIS, the beginning of the boot-up showed a
spike time because of loading other Java libraries, such as
AspectJ and Spring. After the spike time, it showed a stable
cost regardless of the number of security access rules. There-
fore, the performance overhead for the booting time caused
only a very slight increase in the number of the rules except
for the first spike time.

Memory Consumption : The controller loads all modules’s
jar files into the memory. To estimate memory usage, we uti-
lized the cbench tool. Figure 5 demonstrates that the mem-
ory size used by the controller remained constant regardless
of the number of switches. Both Floodlight and AEGIS
consumed around 6.5MB. The difference between them was
only 52 bytes in memory. Therefore, the additional libraries
to the controller caused a negligible amount of overhead to
memory usage regardless of the number of switches. How-
ever, while the number of switches did not have much effect
on memory, the number of API calls did, which affected
memory usage with additional runtime java libraries.

Table 6: The processing time of Daikon with Flood-
light.

Module Name data processing (in)variant
time (sec) generation

time (sec)
Link discovery 111 72
Device manager 386 262

Topology manager 24 20

0

500

1000

1500

2000

2500

0 3 6 9 1 2 1 5 1 8 2 1 2 4 2 7 3 0 3 3 3 6 3 9 4 2

B
o
o
ti

n
g
 T

im
e

(m
s)

Number of Security Rules

Floodlight with AEGIS

Floodlight

Figure 4: Booting time according to the number of
security access rules.

58

6559310

6559320

6559330

6559340

6559350

6559360

6559370

6559380

6559390

6559400

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

M
em

o
ry

 S
iz

e
(b

y
te

s)

Number of Switches

Floodlight with AEGIS

Floodlight

Figure 5: Memory consumption according to the
number of switches added in an SDN network.

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

F
lo

o
d

in
g
li

g
h

t
E

x
ec

u
ti

o
n

 T
im

e
(m

s)

A
E

G
IS

E

x
ec

u
ti

o
n

 T
im

e
(m

s)

Number of Switches

Floodlight with AEGIS Floodlight

Figure 6: Average execution time of AEGIS accord-
ing to the number of switches added into a SDN
network.

Execution Time: We evaluated the execution time of our
proposed system with cbench [2]. The cbench creates a num-
ber of OpenFlow switches, connects to the controller, creates
1000 unique source MAC addresses per switch, and measures
average execution time for the number of flow rules installed
per second. As already discussed, we targeted a security
rule related to a learnDeviceByEntity() API that we imple-
mented in AEGIS. When this API was invoked by adding a
new host to the network, a packetIn event was received from
the OpenFlow switch. We estimated the execution time of
the security rule with different numbers of switches added
into the network.
As shown in Figure 6, the average execution time of the

APIs varied depending on the number of switches. When we
added one switch, the execution time of AEGIS was 0.0933
ms and the original Floodlight took 0.0018 ms. As each
switch was added into the network, the execution time of
AEGIS increased. When the switches were added, the orig-
inal Floodlight showed an average execution time of 0.0037
ms, but our system had an average execution time of 0.1571.
After seven switches were added, the execution time increased
slightly with AEGIS until ten switches were added. However,
once eleven switches were added and thereafter, execution
time with AEGIS increased dramatically while less dramat-
ically increasing the execution time for the original Flood-
light. The reason for increased execution time with AEGIS
is that AspectJ implementation to support API hooking in
Java inflates overhead of the API execution. This overhead
is proportional to the controller’s API usage based on the
number of switches.

0

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7

L
a

te
n

cy
 (

m
s)

Security Rules

!"##$"%&'(!"##$"%&'()*%(')+,-./

Figure 7: Average latency of AEGIS to check each
security rule against each attack case, as shown in
Table 5. Note that each number in x-axis is corre-
sponding to the number in Table 5.

Latency for Security Rule Validation : Figure 7 shows
the overhead needed by our system to verify the security
access rules against each attack scenario described in Sec-
tion 2. We evaluated the latency of API execution to check
our security access rules against each attack with or with-
out AEGIS. Table 5 1 shows a list of our attack cases with
specific security access rules that need to be verified. Based
on these security access rules, as shown in Figures 1 and 2,
AEGIS inspected all successive API calls before allowing the
services. A comparison of the amount of overhead needed
for different attacks shows that, on average, our system re-
quires around 30% more latency with AEGIS than without
AEGIS in order to validate the security access rules. For
a few of the unimplemented APIs, such as the isEntityAl-
lowed() API, the latency is high because this API has not in
fact been implemented.

AEGIS protects APIs by implementing security access
rules, which add overhead. The latency is affected by the
amount of data and the number of other API calls. The
reason that the overhead is high is that we examine all data,
including all input and output parameters passing through
the APIs. To reduce this overhead, we can apply a heuristic
method by profiling common application behaviors. For ex-
ample, based on the log information, the same application
with the same security rule can be checked very quickly.

Effectiveness: We evaluated a detection rate to measure
the effectiveness of our system with the six attack cases
shown in Table 1 and the security access rules shown in Ta-
ble 5. We ran the Floodlight with AEGIS implementation
and randomly generated various attack test scenarios under
the active legitimate traffic for the controller. Among sixty
test cases by randomly selecting the cases in sixty times, the
proposed system failed to detect only 2 test cases. It showed
96% detection rate to identify attack cases. Our experimen-
tal results demonstrated the effectiveness of our proposed
system, and we can achieve 100% detection rates through
increasing the number of security access rules.

1Note that P is any application that uses any core module
in the controller. Since there are many applications in the
controller, we do not specify a particular application. For
example, Device Manager can indicate a group of applica-
tions that use the Device Manager module in the controller.
These rules are closely related to our current implementation
for AEGIS.

59

Lastly, we evaluated the processing time of Daikon with
Floodlight and there are two parts: data trace and invari-
ant/variant generation. The data generation obtains data
trace files related to API calls and variables. Table 6 shows
the results of processing time for each core module. It re-
quires much time to analyze invariants and variants. How-
ever, it is an one-time cost to obtain the data.

5. RELATED WORK
Several approaches have been proposed to protect the

SDN controller from application bugs and exploitation cases.
Many of these approaches focus on generating new attack
scenarios and implementing a defense mechanism for pre-
venting each of them.

Attacks in SDNs: Many prior research efforts have identi-
fied specific application misuse scenarios and provided corre-
sponding defense mechanisms. The Rosemary controller im-
plemented a network application containment and resilience
strategy to defend against system crash and data compro-
mise attacks [18]. TopoGuard identified a few of misused
APIs and generated new attack scenarios such as host loca-
tion hijacking attack [12]. However, this approach does not
address a way to protect the controller from misusing other
APIs. Avant-Guard demonstrated the control plane satu-
ration attack, which disrupts the network operation, and
proposed a connection migration mechanism in which they
altered the data plane to proxy the TCP handshake and only
completed handshakes are moved to the control plane [19].
However, such an approach needs the control plane as well as
the data plane to accommodate the new design. FLOVER
implemented a dynamic controlled protection mechanism for
the flow rules and a model checking framework, which veri-
fies the flow policies instantiated within an OpenFlow Net-
work [20]. In this paper, we identify additional misused APIs
through comprehensive code analysis. Based on sophisti-
cated security access rules, we present a promising solution
to protect the controller from other APIs misuse scenarios.

Policy Based Approaches in SDNs: As discussed in [14],
an access control and policy-based scheme for the SDN con-
troller may help in securing the northbound APIs. In par-
ticular, a controller needs to be protected from various net-
work attacks. SE-Floodlight implemented security features
using trust model and policy mediation logic for the SDN
applications [16]. They addressed many security issues with
an authentication service, role-based authorization, a per-
mission model for mediating configuration changes and de-
tecting conflicting flow rules. Such an implementation re-
quires rigorous validation and testing for the controllers’
existing behaviors for the trustworthy operations. AEGIS
focuses on protecting core controller APIs and does not in-
volve changes in existing logic of the controller to solves such
issues, thus, securing the controller from future attack sce-
narios as well. OperationCheckpoint presented an approach
to secure the northbound interfaces by introducing a per-
mission system that ensures that controller operations are
available to trusted applications only [17]. This is also an
attempt to make northbound APIs secure and define the
permissions for applications for using these APIs. However,
this research work does not attempt to secure the controller
core modules from network attacks. In [21], researchers im-
plemented read, notification, write and system access per-
missions for OpenFlow applications and they isolated the

controller and apps in thread containers. They also intro-
duced an access control layer between the applications and
the operating system. Although this gives an idea about pro-
viding access policies for applications, the proposed design
does not provide a method to dynamically control access for
the OpenFlow applications. Frenetic [10] is a specific north-
bound API designed to resolve policy conflicts. Our study
focuses on protecting the controller core modules from ma-
licious applications as well as network attacks. This unique
approach can be used for protecting both northbound and
southbound interfaces, and securing controller from future
attack scenarios.

6. DISCUSSION
The new security framework, AEGIS, not only intensifies

the SDN controller by enforcing intensive security checks,
but also protects the controller from malicious behaviors
that could launch network and system attacks. In this sec-
tion, we discuss our proposed work in various respects and
also compare it with current open source security services.

Code-based Security Framework : Most access control
frameworks have been based on external observed behaviors
and user-centric approaches. More specifically, users usually
define security access rules based on their network activities
and patterns. For example, users only allow incoming SSH
connections to a system. However, in our work, security
access rules are defined based on the internal code specifi-
cation because most of discovered attacks in SDN networks
have given risen to specific internal code.

Performance Overhead : We cannot avoid performance
overhead in order to achieve trustworthy and dependable
SDN controllers. The booting time is an one-time cost that
will not affect the controllers during runtime. However, the
execution time of AEGIS is proportional to the number of
controller APIs as the number of switches added to the net-
work increases. To address this problem, we can only focus
on investigating important APIs instead of the entire list of
APIs. Then, the performance overhead of AEGIS could be
reduced significantly.

Semi-automated Security Access Rules Generation : In
general, security access rules can be manually defined through
observation and analysis, but we achieved semi-automation
for the rule generation in AEGIS. We manually defined our
security directives after examining applications and databases
in the controller. By using the Daikon function, we were able
to automatically identify significant relationships in variant
or invariant data for security instructions, and then auto-
matically set up the rules related to these extracted data
along with the extracted APIs.

Comparisons with Current Controller Security : ONOS
implemented AppGuard, which has a general secure mode
and a non-secure mode of operations. Upon enabling Secure
Mode ONOS (SM-ONOS), AppGuard aids performing API-
level permission checking. It checks whether the caller has
the required permissions, and uses Java’s security module
AccessController for access control operations and decision
making, which can protect critical system resources and de-
cides on access based on current security policies in effect.
It also marks the code as being ‘privileged’, thus affecting
subsequent access determinations. In addition, it obtains a
snapshot of the current calling context to make access con-
trol decisions from a different context. However, Floodlight

60

and OpenDaylight controllers do not allow the implementa-
tion of such a security model. AppGuard implementation
only checks for access permissions for APIs, does not carry
out any semantic or syntactic validation of API input param-
eters, and does not validate the flow of executing controller
APIs.

7. CONCLUSION
In this paper, we have presented AEGIS, a security frame-

work, to detect the misuse of APIs called by SDN controller
applications. AEGIS provides three core functions including
data generation, security rule generation, and decision mak-
ing to protect controller APIs. AEGIS hooks various SDN
controller APIs at runtime and validates pre-defined rela-
tionships for all available data. In particular, AEGIS iden-
tifies sophisticated relationships among diverse data, such
as applications, APIs and their input/output data, invari-
ant/variant data, and databases in the controller using a
combination of Daikon tool and manual inspection. From
these complicated relationships, AEGIS defines a set of pre-
cise security access rules in order to control application be-
haviors. At runtime, AEGIS automatically checks applica-
tions’ behaviors when they call APIs, and prevents controller
APIs from being misused. Experimental results have shown
that AEGIS is able to prevent various network attacks and
inadvertent use of controller APIs. In addition, AEGIS can
generate standard security access rules, which could help in
preventing any potential new attack scenarios.

Acknowledgments
This work was partially supported by grants from National
Science Foundation (NSF-IIS-1527421, NSF-CNS-1537924
and NSF-CNS-1531127).

8. REFERENCES
[1] AspectJ: A seamless aspect-oriented extension to the

Java programming language.
https://www.eclipse.org/aspectj/.

[2] cbench: Performance benchmarking tool for the
controller. https://www.github.com/andi-
bigswitch/oflops/tree/master/cbench.

[3] The daikon invariant detector.
http://plse.cs.washington.edu/daikon/.

[4] Floodlight: Open SDN Controller.
http://www.projectfloodlight.org.

[5] ONOS: Open Networking Operation System.
http://onosproject.org/.

[6] OpenDaylight Platform.
https://www.opendaylight.org/.

[7] SDN. http://www.sdncentral.com/flow/sdn-software-
defined-networking/.

[8] Spring: Platform with inbuilt AspecJ libraries for
JVM-based systems. https://www.spring.io/.

[9] Project Foodlight. Circuit Pusher.
http://www.projectfloodlight.org/circuit-pusher/.

[10] Nate Foster, Rob Harrison, Michael J Freedman,
Christopher Monsanto, Jennifer Rexford, Alec Story,
and David Walker. Frenetic: A network programming
language. In ACM SIGPLAN Notices, volume 46,
pages 279–291. ACM, 2011.

[11] Open Networking Fundation. Software-defined
networking: The new norm for networks. ONF White
Paper, 2012.

[12] Sungmin Hong, Lei Xu, Haopei Wang, and Guofei Gu.
Poisoning network visibility in software-defined
networks: New attacks and countermeasures. In
Proceedings of the 22nd Annual Network and
Distributed System Security Symposium (NDSS’15),
February 2015.

[13] Ahmed Khurshid, Wenxuan Zhou, Matthew Caesar,
and P Godfrey. Veriflow: verifying network-wide
invariants in real time. ACM SIGCOMM Computer
Communication Review, 42(4):467–472, 2012.

[14] Felix Klaedtke, Ghassan O Karame, Roberto Bifulco,
and Heng Cui. Access control for sdn controllers. In
Proceedings of the third workshop on Hot topics in
software defined networking, pages 219–220. ACM,
2014.

[15] Nick McKeown, Tom Anderson, Hari Balakrishnan,
Guru Parulkar, Larry Peterson, Jennifer Rexford,
Scott Shenker, and Jonathan Turner. Openflow:
enabling innovation in campus networks. ACM
SIGCOMM Computer Communication Review,
38(2):69–74, 2008.

[16] Phillip Porras, Steven Cheung, Martin Fong, Keith
Skinner, and Vinod Yegneswaran. Securing the
software-defined network control layer. In Proceedings
of the 2015 Network and Distributed System Security
Symposium (NDSS), San Diego, California, 2015.

[17] Sandra Scott-Hayward, Christopher Kane, and Sakir
Sezer. Operationcheckpoint: Sdn application control.
In Network Protocols (ICNP), 2014 IEEE 22nd
International Conference on, pages 618–623. IEEE,
2014.

[18] Seungwon Shin, Yongjoo Song, Taekyung Lee, Sangho
Lee, Jaewoong Chung, Phillip Porras, Vinod
Yegneswaran, Jiseong Noh, and Brent Byunghoon
Kang. Rosemary: A robust, secure, and
high-performance network operating system. In
Proceedings of the 2014 ACM SIGSAC Conference on
Computer and Communications Security, pages 78–89.
ACM, 2014.

[19] Seungwon Shin, Vinod Yegneswaran, Phillip Porras,
and Guofei Gu. Avant-guard: Scalable and vigilant
switch flow management in software-defined networks.
In Proceedings of the 2013 ACM SIGSAC Conference
on Computer and Communications Security, pages
413–424. ACM, 2013.

[20] S. Son, Seungwon Shin, V. Yegneswaran, P. Porras,
and Guofei Gu. Model checking invariant security
properties in OpenFlow. In Communications (ICC),
2013 IEEE International Conference on, pages
1974–1979, June 2013.

[21] Xitao Wen, Yan Chen, Chengchen Hu, Chao Shi, and
Yi Wang. Towards a secure controller platform for
openflow applications. In Proceedings of the second
ACM SIGCOMM workshop on Hot topics in software
defined networking, pages 171–172. ACM, 2013.

61

