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ABSTRACT

Network Function Virtualization (NFV) is an emerging technol-
ogy to implement network functions in software, which reduces
equipment costs (CAPEX) and operational cost (OPEX) through
decoupling network functions from network dedicated devices and
deploying them on high-volume standard servers and running as
virtual instances. However, due to running in a shared and open
environment and lacking the protection of proprietary hardware,
virtual network functions (VNFs) face more security threats than
traditional network functions. Hence, it is crucial to build a trusted
execution environment to protect VNFs. In this paper, we first
analyze the challenges for VNF security protection. We then pro-
pose a lightweight and trusted execution environment for securing
VNFs based on SGX and Click. To demonstrate the feasibility of
our approach, we implement a DDoS defense function on top of
our environment and conduct paramilitary evaluations. Our eval-
uation results show that our system only introduces manageable
performance overhead for protecting VNFs.
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1 INTRODUCTION

Network Function Virtualization (NFV) implements network func-
tions in software through decoupling network function from net-
work dedicated devices and deploying them on high-volume stan-
dard servers and running as virtual instances. It can reduce both
equipment costs (CAPEX) and operational cost (OPEX) and speed
up software-oriented network innovation to bring new services
and generate new revenue streams. Recently, more and more com-
panies have started to embrace NFV so as to adapt to increasing
complicated network environment and IT virtualization. Despite
the benefits, virtual network functions (VNFs) face more serious se-
curity challenges than the protection of proprietary hardware[1-3].
Traditional network functions run in a dedicated network appli-
ances that have their own separated CPU and memory, which can
provide a relatively closed running environment. However, VNFs
run in a shared and open environment and bring more security
risks, such as the isolation threat, code and policy being tampered
with, network sensitive data leakage, unlimited open ports, and
side channel [4]. Hence, it is crucial to build a trusted execution
environment for VNFs.

Some research efforts have been devoted to building trusted
VNFs. ESTI NFV Security and Trust Guidance [1] proposes to pro-
vide trusted protection based on HSM (Hardware Security Module),
TPM (Trusted Platform Module), and vIPM (virtual Trusted Plat-
form Module). NetBricks [5] leverages a safe language (Rust) and
LLVM [6] to build a zero copy soft isolation. It provides memory
isolation software by using the type safe language and achieves
high performance by adoption LLVM as an optimization back-end
of compilers. NetBricks can also ensure that only a single NF can
access a packet so as to guarantee that packet isolation in common
cases. OpenNetVM [7] runs NFs in lightweight Docker containers
based on the NetVM architecture. It provides NF isolation through
container mechanisms, such as namespace and capability. Recently,
Intel Software Guard Extensions (SGX) [2, 3, 8, 9] has been proposed
to build secure running environment that can be used to protect
VNFs. Intel SGX can isolate an application to a hardware sand-
box called an enclave so that OS, driver, BIOS or virtual machine
monitor (VMM) can not access the code and data in the enclave.
However, running existing network functions in SGX enclaves can
cause a high performance overhead [10].
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In this paper, we propose a lightweight and trusted execution en-
vironment for protecting VNFs. We leverage the modularity feature
provided by Click [11] to design VNFs and only run the security-
aware elements of VNFs in SGX enclaves. We also design state
management and migration mechinisms to achieve fine-grained
state consistency and ensure lose-free and order-preserving for NF
scaling. To demonstrate the feasibility of our approach, we use a
DDoS defense function as a case study. We have implemented the
DDoS defense function on top of our environment and evaluated it
in three different configurations, no-SGX mode, SGX in simulation
mode, and SGX in hardware debug mode. The results show that our
design has the lower performance overhead.

The rest of this paper is organized as follows. In Section 2, we
describe the challenges for protecting VNF using SGX. Section 3
presents our method for building trusted VNF based on Click and
SGX. Section 4 discusses our system implementation and experi-
mental results. Conclusion is drawn in Section 5.

2 CHALLENGES FOR VNF PROTECTION
WITH SGX

SGX provides a new way for securing applications through putting
the security-related data and code to a trusted container. Intel calls
this container an enclave. SGX assumes that everything on a system,
such that OS, driver, BIOS, and virtual machine monitor (VMM),
except CPU is untrusted. For an SGX program, an enclave is a
trusted execution environment where only the application self can
access its data and code. Since SGX provides a run-time secure
environment for applications, some existing work has explored to
use SGX to protect VNFs. S-NFV [12] tried to use SGX to protect the
VNF state, but it ignores other data such as policies. LightBox [13]
presented a secure SGX-assisted system, which supports secure and
generic middleboxes for network function outsourcing. However,
it does not address the issues about state migration and usable
SGX-aware APIs. In addition, they directly ported BRO to SGX
enclave, which could cause larger performance overhead. Trusted
Click [10] proposed to use SGX to enforce data privacy and provide
guaranteed computation for network function outsourcing in cloud.
Although it provided a framework to secure network function out-
sourcing, it also did not address some important issues including
state migration. To effectively and efficiently protect VNFs using
SGX, our study reveals following challenges:

e Performance Overhead: We have done a deep analysis of
Snort code, and decomposed it into the seven modules in-
cluding sniffer, pre-processor, rules matching, state processing,
policy, system interface, and library. Furthermore, we divided
them to trusted modules and untrusted modules. In addi-
tion, we put the trusted modules, such as pre-processor, rules
matching, state processing, and policy, to a secure enclave
in real SGX device. We found that those trusted modules
still caused a very high performance overhead although we
have carefully divided Snort modules and only run security-
related modules in the enclave. Our evaluation shows that
the performance overhead for the state processing in SGX-
protected Snort modules is about 10 times than running
those modules in no-SGX mode. If we run all security-related
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Figure 1: Architecture Overview

modules in the SGX enclave, the performance becomes even

worse.
e Function Decomposition: Taking Snort as an example
again, if we want to secure Snort with SGX, we need to di-
vide it to trusted and untrusted modules and only run trusted
modules in SGX enclaves. However this is a hard as well as
time-consuming task. For example, the policy processing in
Snort runs across almost all Snort procedures. Thus, if we
want to use SGX to protect the policy and policy processing
of Snort, we may need to upload almost all of the Snort code
and data to enclaves, which would bring unacceptable per-
formance overhead. Hence, a new approach for designing
lightweight VNFs based on SGX is desirable.
State Synchronization and Migration: State management
is crucial for VNFs. Previous work [14, 15] has addressed
state synchronization and migration mechanism for VNF
scaling. However, Those work does not consider the security
issue during the procedure of state synchronization and mi-
gration, which are based on shared and unencrypted buffers
and vulnerable to security threats, such as information theft.
Usable APIs: It is currently a tough task for developers
to design secure applications using SGX. The developers
need to have specialized knowledge in the SGX platform,
principles, and SDKs. Hence, there is another challenge to
design easy-to-use APIs for developers who can use SGX in
the development of secure VNFs.

3 OVERVIEW OF ARCHITECTURE

Our goal is to design a lightweight and trusted execution environ-
ment for VNFs based on SGX and Click. Click is a flexible, modular
software architecture for building network applications. Building
trusted VNFs based on Click and SGX has three advantages. First,
the modularity of Click allows us to compose different elements for
easily building different VNFs. Second, the modular VNFs enable
more fine-grained NF scaling. Third, modular VNFs protected by
SGX can only lead to a low performance overhead.
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Figure 1 shows the overview architecture of our trusted envi-
ronment for VNFs. The architecture is divided into two parts: a
trusted part and an untrusted part. The trusted part protects the
packets preprocessor, policy resolution, decision actor and the state
synchronization modules. The untrusted part implements an inter-
face to system calls and provides the support for enclaves, such as
command line and configuration file parsing and so on.

The trusted part contains the key elements, such as Packets Pre-
processors, Actors, Policy Processor, State Synchronization, Elements
Configure, and Packet Switch, which are protected by SGX enclaves.
Packets Preprocessors may include many different elements which
perform some preprocessing operations on the fetched packets,
such as assembling, decoding, filtering and so on. Policy Proces-
sor is used to decrypt the sealed policy with SGX. Actors can also
have many different elements which make decisions for packets
processing such as discarding, rate limiting, logging, outputting
and so on. Packet Switch is responsible for sending packets to the
corresponding processing ports through searching rule tables. State
Synchronization is responsible for state synchronization and migra-
tion. The Rule Matching element is responsible for searching rule
tables, matching the rules with the corresponding processing action.
After the action of matching is successful, packets will be sent to
the corresponding action processing module. Elements Configure
is responsible for initializing and building the process of detection
and execution.

The untrusted part contains Packet Transform, Manager Config-
uration, Communication, and Message Parser/Composer elements.
Packet Transform element transfers packets to the trusted part. Man-
ager Configure initializes the implementation of various modules.
Communication element is responsible for creating the connection
with the controller. Message Parser/Composer element parses the
messages sent by the controller, and then sends messages to the
trusted part.

The Quoting Enclave is used to make attestation for the virtual
network function which is protected with SGX.

Through the modular design for VNF, we can easily put the small
and security-related elements to SGX enclaves. Meanwhile we can
flexibly extend the designed virtual functions and elastically scale
the virtual network functions.

3.1 State Synchronization

In NFV environment, when the traffic can not be proceeded by
a single instance, it is necessary that the controller divides net-
work traffic to two or more instances by updating the flow tables.
Hence, state migration [14, 16, 17] is a vital problem for VNFs. Our
approach achieves fine-grained state consistency and ensures lose-
free and order-preserving for VNF scaling. Loss-free means that
all packets should be processed without any packet lose. Order-
preserving indicates that packets should be processed according to
the original order when they are forwarded to the new NF instances.
An overview of the state synchronization process is illustrated in
Figure 2, which consists of the following steps:

(@ We assume there is an existing NF instance A. When the
traffic of A is too large, the controller creates a new NF instance B.

(@ The controller copies the configuration of the instance A
to the instance B. According to the configuration, the instance B
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Figure 2: State Synchronization Process

completes initialization and begins to run. The instance B waits to
synchronize with the instance A, caching the packet F2 forwarded
by the switch.

(3 The controller updates the flow tables, and the switch for-
wards part of the data flows to the instance B.

@ The controller sends the command of copying instance to the
instance A.

(® The NF instance A runs the classifier, and caches the data
packets that should have been sent to the instance B. The data
packets are actually sent to the NF instance A, because the flow
table has not taken effect due to the time delay.

(® Then, the instance A and the instance B perform remote
authentication and exchange keys.

(D The instance A sends the encrypted internal states of the
stream, which needs be synchronized to the instance B until state
synchronization is completed.

(® The instance A sends buffered packets to the instance B.

(@ The instance B processes the packets from the instance A,
and then processes the latest packets.

4 IMPLEMENTATION AND EVALUATION

To evaluate our design, we design a virtual DDoS defense func-
tion [18, 19] with the support of SGX and Click. We implement
several elements including FromDevice, Manager, ToDevice, Aggre-
gatelPFlows, CheckLength, IPFilter, Packet Switch, UDP Flood, SYN
Flood, DNS Amplify, Discard and Delay. The element of FromDevice
reads packets from network devices and then the packets flow into
the Manager element. Furthermore, the packets are processed in
SGX enclaves. When it has finished, ToDevice element sends benign
packets to network devices.

The main elements of our system are run in SGX enclaves. The
AggregatelPFlows element uses source and destination addresses
and source and destination ports to distinguish flows, and set the
aggregate annotation on every passing packets to a flow number.
The CheckLength element checks every packet’s length. The IPFilter
element filters IP packets by contents. The UDP Flood element, SYN
Flood element and DNS Amplify element can detect different DDoS
attacks. The Packet Switch element develops corresponding strate-
gies according to the flow table delivered by NFV controller. Then
Packet Switch element sends packets to action elements through
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Figure 3: Performance Overhead with SGX and without SGX

different outgoing ports. Packets can be sent to the Discard element,
the Delay element, or the Todevice element to make different deci-
sion processing. In addition, we create state tables storing packet
information (such as source IP and destination IP) for state syn-
chronization. Furthermore, we develop OCALL (e.g., ocall_print)
and ECAL Linterfaces (e.g., ecall_generat_router) in the Manager
element between enclave and outside elements as enclaves cannot
directly use system calls.

To measure the performance of our design, we have conducted
experiments on two DELL Inspiron 7567 laptops with Intel Core
i7-7700HQ 2.80GHz CPU and 8 GB memory, which run a 64-bit
Ubuntu Linux and the SGX SDK 2.0.

We performed a simple experiment to evaluate the overhead of
our system in three different configurations: no-SGX mode, SGX
in simulation mode, and SGX in hardware debug mode. In order to
simulate DDoS attacks, we use Scapy on another computer to send
different rates and types of DDoS packets to our system. In our
experiments, the rates of packets is 10, 100 and 1000 per second,
and the type of packets is UDP and TCP.

Our evaluation results are summarized in Figure 3, regardless
of the rates of receiving packets, the average time of packets pro-
cessing in the same mode is almost the same. In no-SGX mode, the
average time is about 31.3us. In simulation mode and hardware
debug mode, the processing time is about 50.7us and 86.3us respec-
tively. On the whole, the DDoS detection system running on top of
SGX in simulation mode gives 62% additional running time delays,
and 176% additional running time delays in hardware debug mode
compared to no-SGX mode.

5 CONCLUSIONS

In this paper, we have analyzed the challenges of using the SGX
to protect VNFs. We have also proposed a lightweight and trusted
framework for protecting VNFs based on SGX and Click. Taking
the DDoS defense function as a use case, we have implemented
the DDoS defense function based on our framework. We have also
evaluated our system and our evaluation results show that our
system only introduce very low performance overhead for securing
VNFs.
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