NFP: Enabling Network Function Parallelism in NFV

Chen Sun
Tsinghua University
c-sunl4@mails.tsinghua.edu.cn

Heng Yu
Tsinghua University
hengyul213@163.com

ABSTRACT

Software-based sequential service chains in Network Function
Virtualization (NFV) could introduce significant performance over-
head. Current acceleration efforts for NFV mainly target on op-
timizing each component of the sequential service chain. How-
ever, based on the statistics from real world enterprise networks,
we observe that 53.8% network function (NF) pairs can work in
parallel. In particular, 41.5% NF pairs can be parallelized without
causing extra resource overhead. In this paper, we present NFP, a
high performance framework, that innovatively enables network
function parallelism to improve NFV performance. NFP consists
of three logical components. First, NFP provides a policy specifi-
cation scheme for operators to intuitively describe sequential or
parallel NF chaining intents. Second, NFP orchestrator intelligently
identifies NF dependency and automatically compiles the policies
into high performance service graphs. Third, NFP infrastructure
performs light-weight packet copying, distributed parallel packet
delivery, and load-balanced merging of packet copies to support NF
parallelism. We implement an NFP prototype based on DPDK in
Linux containers. Our evaluation results show that NFP achieves
significant latency reduction for real world service chains.

CCS CONCEPTS

» Networks — Middle boxes / network appliances; Network
performance analysis; Network control algorithms;

KEYWORDS

NFV, network function parallelism, service chain

ACM Reference format:

Chen Sun, Jun Bi, Zhilong Zheng, Heng Yu, and Hongxin Hu. 2017. NFP:
Enabling Network Function Parallelism in NFV. In Proceedings of SSIGCOMM
’17, Los Angeles, CA, USA, August 21-25, 2017, 14 pages.
https://doi.org/10.1145/3098822.3098826

“Chen Sun, Jun Bi, Zhilong Zheng, and Heng Yu are with Institute for Network Sciences
and Cyberspace, Tsinghua University, Department of Computer Science, Tsinghua
University, and Tsinghua National Laboratory for Information Science and Technology
(TNList). Jun Bi is the corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SIGCOMM 17, August 21-25, 2017, Los Angeles, CA, USA

© 2017 Association for Computing Machinery.

ACM ISBN 978-1-4503-4653-5/17/08....$15.00
https://doi.org/10.1145/3098822.3098826

Jun Bi
Tsinghua University
junbi@tsinghua.edu.cn

43

Zhilong Zheng
Tsinghua University
zhengzl15@mails.tsinghua.edu.cn

Hongxin Hu
Clemson University
hongxih@clemson.edu

ClickNP NetBricks OpenBox
Based NFs Based NFs Based NFs
DPDK, _/ NetM | ‘ v
ClickOS ey
VPN Monitor Firewall Load Balancer
Accelerate each component of the chain Horizontally
(a) Traditional sequential NF chain
~ ..
Policies
Service Graph
Orchestrator
Infrastructure
|| | | 2
=
Firewall E
U U :
N
VPN Load Balancer S
Y\Q_
Monitor =
Processing & Delivery
In Parallel

(b) NFP framework supporting parallel NFs

Figure 1: Traditional sequential chain derived from [36] v.s.
NFP service graph with parallel NFs

1 INTRODUCTION

Network Functions Virtualization (NFV) addresses the problems
of traditional proprietary middleboxes [61] by leveraging virtu-
alization technologies to implement network functions (NFs) on
commodity hardware, in order to enable rapid creation, destruc-
tion, or migration of NFs [24]. In operator networks [52], data cen-
ters [32, 36], mobile networks [25] and enterprise networks [60],
network operators often require traffic to pass through multiple
NFs in a particular sequence (e.g. firewall+IDS+proxy) [7, 26, 50],
which is commonly referred to as service chaining. Meanwhile,
Software-defined Networking (SDN) is used to steer traffic through
appropriate NFs to enforce chaining policies [2, 16, 23, 32, 50]. To-
gether, NFV and SDN can enable flexible and dynamic sequential
service chaining.

https://doi.org/10.1145/3098822.3098826
https://doi.org/10.1145/3098822.3098826

SIGCOMM ’17, August 21-25, 2017, Los Angeles, CA, USA

However, the benefits of NFV come with considerable compro-
mises [24]. Especially, software-based NFs could introduce signif-
icant performance overhead (e.g., Ananta Software Muxes run-
ning on commodity servers can add from 200us to 1ms latency
at 100 Kpps [21]). Moreover, the service chain latency may grow
linearly with the length of the chain (possibly seven or longer [36]),
which may be unacceptable for some applications that work under
tight latency constraints. For example, real-time analytics and On-
line Data-Intensive (OLDI) applications like web search and online
retail generate short messages that are sensitive to packet delay,
which partially comes from NFs inside data centers [31]. Appli-
cations, such as algorithmic stock trading and high performance
distributed memory caches, require ultra-low (a few microseconds)
latency from NFs in the cloud infrastructure [21, 37].

Some research efforts have been devoted to addressing the perfor-
mance drawback of software-based NFV. We mark their optimiza-
tion points on the example service chain in Figure 1(a). #1: Individual
NF acceleration: ClickNP [37] proposes to offload software logic
onto programmable hardware (e.g. FPGA) to accelerate individual
NFs. NetBricks [47] abandons VMs or containers, and runs NFs on
a single CPU core to improve NF performance. #2: Packet delivery
acceleration: Intel DPDK [30], ClickOS [38] and NetVM [28, 64]
optimize packet delivery from the network interface cards (NICs)
to VMs, and between VMs. #3: NF modularization: OpenBox [7]
modularizes NFs (which is also proposed in [2, 46, 60]) and improves
overall performance by sharing common building blocks between
NFs and chaining the remaining blocks together. We summarize
that #1, #2 and #3 address the NFV performance challenge in a hor-
izontal scope, i.e. accelerating each component in a service chain
horizontally, while still following sequential composition of NFs.

However, a closer look into the NFs in a service chain shows
that some NFs share no dependency and could work in parallel. For
example, in the service chain shown in Figure 1(a), the Monitor
NF only maintains packet statistics without modifying packets.
Therefore, as shown in the service graph in Figure 1(b), we could
send traffic into the Monitor and the Firewall simultaneously, pick
the output of the Firewall, and achieve the same result as sequential
composition. In this way, the equivalent chain length is three and
could bring a theoretical latency reduction by 25%. Moreover, our
study on NFs deployed in enterprise networks (§4) reveals that
53.8% NF pairs could work in parallel. Especially, 41.5% pairs can
be parallelized without introducing extra resource overhead.

Therefore, orthogonal to above NFV acceleration efforts, we
exploit opportunities to enhance NFV performance from a ver-
tical scope. Based on above observations, we refer to the idea
of Instruction-Level Parallelism (ILP), an acceleration technology
widely adopted in modern CPUs [13], and propose NFP, a high
performance framework, that innovatively embraces NF parallelism
to reduce NFV latency. As shown in Figure 1(b), NFP framework
consists of three logical components including a policy specifica-
tion scheme, NFP orchestrator, and NFP infrastructure. Our main
contributions are:

e We present the motivation and design challenges of introducing
NF parallelism into NFV, and propose the NFP framework that
exploits NF parallelism to improve NFV performance. (§2)

44

C. Sun, J. Bi, Z. Zheng, H. Yu, H. Hu

o NFP provides a policy specification scheme for intuitively repre-
senting sequential or parallel chaining intents of network opera-
tors to improve the parallelism optimization effect of NFP. (§3)

o We design NFP orchestrator that can identify NF dependency and
automatically compile policies into high performance service
graphs with parallel NFs. (§4)

o We design NFP infrastructure that efficiently supports NF paral-
lelism based on light-weight packet copying, distributed parallel
packet delivery, and load-balanced merging of packet copies. (§5)

e We implement NFP based on DPDK in Linux containers. Evalua-
tions show that NFP could achieve up to 35.9% latency reduction
for real world service chains. (§6)

2 MOTIVATION AND CHALLENGES

This section first describes the background and motivation for
adopting NF parallelism in NFV. We then introduce design chal-
lenges of NF parallelism in NFV.

2.1 Background and Motivation

Background: Parallelism has been well studied in computer pro-
gramming [1, 29] and high performance computing [14]. A type of
parallelism named Instruction-Level Parallelism (ILP) reorganizes
sequential instructions and executes independent instructions in
parallel [1]. ILP has been widely adopted in modern processors [13].
Analogous to ILP, we intend to embrace NF parallelism to improve
NFV performance by identifying independent NFs and making them
work in parallel.

To determine the optimization scope of NF parallelism for NFV,

we investigate and conclude from the literature that there exist two
models to support service chains in NFV, including the pipelining
model [28, 38, 64] and the run-to-completion (RTC) model [27, 47].
The pipelining model uses multiple cores to carry a chain, while the
RTC model consolidates an entire service chain as a native process
on a CPU core. NF parallelism targets at accelerating pipelining
model based NFV networks. We present a more detailed discussion
about two models in § 7.
NF Parallelism brings significant latency benefit: To get intu-
itive feelings about the optimization effect of NF parallelism, we
collect commonly deployed NFs, their actions, and percentages in
enterprise networks [60, 61] (see Table 2 in §4). Based on the statis-
tics, we find that 53.8% of NF pairs can be parallelized (§4), which
promises the optimization range of NF parallelism. Furthermore, ac-
cording to our measurement, parallelizing the Firewall and Monitor
NFs in Figure 1 brings 12.9% latency reduction. For some real world
service chains, NFP can achieve up to 35.9% latency reduction (§6).
NF Parallelism can work with and benefit other optimization
techniques: First, for individual NF acceleration techniques [37,
47], NF parallelism can parallelize independent accelerated NFs
to achieve higher performance. Second, we can use fast packet
delivery technologies [28, 30, 64] to accelerate packet delivery in
NF parallelism. Third, NF parallelism could benefit both monolithic
and modularized NFs [2, 7, 60]. After decomposing NFs into building
blocks, common modules can be shared, and NF parallelism can be
implemented in the granularity of building blocks. We provide an
example of combining parallelism and modularity in §7.

NFP: Enabling Network Function Parallelism in NFV

2.2 Design Challenges

Based on the above motivation, we propose a novel framework,
NFP, to enable NF parallelism in NFV to improve its performance.
We encounter four key challenges in the design of NFP.

Policy design to describe service graphs: For sequential service
chaining, network operators assign specific positions for NFs in a
service chain. However, when we intend to support NF parallelism
in NFV, traditional approach for specifying NF positions cannot be
used to describe NF parallelism intents. Therefore, supporting NF
parallelism requires a new, intuitive way to describe both sequential
and parallel NF composition intents to construct optimized service
graphs. To this end, NFP proposes a policy specification scheme
with richer semantics to address this challenge. We introduce its
definition in §3.

Orchestrator design to construct service graphs: With NF par-
allelism, traditional sequential service chains are optimized into
high performance service graphs. Thus, supporting NF parallelism
challenges the orchestrator to identify NF dependencies and au-
tomatically compile NFP policies into high performance service
graphs. However, with the fast innovation and booming NFs in
NFV, exhaustively and manually analyzing each pair of NFs is time
consuming and lacks scalability. In response, we propose NF depen-
dency principles along with an automatic dependency identification
algorithm running in the NFP orchestrator. We present them in §4.
Orchestrator design to optimize resource overhead: NF par-
allelism may introduce two or more copies of every packet that
could occupy extra network bandwidth resource and largely deteri-
orate throughput. Thus, the orchestrator is challenged to construct
high performance service graphs with marginal resource overhead.
One strawman solution is to adopt consolidation [28, 60] and place
parallel NFs in the same hardware box to store packet copies in
the memory. However, this solution still suffers from the trade-off
of gaining 2X performance at the cost of 2X memory resources. In
response, we propose an optimized solution to mitigate the resource
overhead brought by NF parallelism. We carefully design the NFP
orchestrator that intelligently identifies opportunities to realize NF
parallelism without packet copying. Furthermore, we introduce
several resource optimization techniques. We discuss them in §4.
Infrastructure design to support NF parallelism: Introducing
NF parallelism into NFV incurs several concerns on the infrastruc-
ture design. First, the infrastructure should support light-weight
packet copying to minimize the copy overhead. Second, the infras-
tructure requires a merging module to merge processed packets
from parallelized NFs into the final output. However, the merger
is burdened to process massive packet copies and could become a
performance bottleneck. Finally, current solutions on packet deliv-
ery between NFs [28, 38, 64] depend on a centralized virtual switch.
However, packet queuing in this centralized switch would compro-
mise the performance. The problem is even worse when supporting
NF parallelism, which might double the number of packets to be
forwarded at the same time. We introduce the NFP infrastructure
design to address above challenges in §5.

3 POLICY DEFINITION

For traditional sequential service chaining, network operators
need to specify a policy, which sequentially assigns positions to

45

SIGCOMM ’17, August 21-25, 2017, Los Angeles, CA, USA

Table 1: Sequential v.s. NFP description of chaining intents
based on the example in Figure 1.
(FW stands for Firewall, and LB represents Load balancing)

Traditional Assign(VPN, 1)

description of Assign(Monitor, 2)

the service chain | Assign(FW, 3)

in Fig 1(a) Assign(LB, 4)

NFP Policy for Order(VPN, before, Monitor)
the service chain | Order(Monitor, before, FW)
in Fig 1(a) Order(FW, before, LB)

NFP Policy for Position(VPN, first)

the service graph | Order(FW, before, LB)

in Fig 1(b) Order(Monitor, before, LB)

NFs in the chain, as shown in the first row of Table 1. However,
NFP attempts to construct high performance service graphs with
parallel NFs, requiring an intuitive way to describe both sequential
and parallel NF composition intents. Therefore, we define a policy
specification scheme, which includes three types of rules, in NFP.
Network operators can compose several rules together into a policy
to describe chaining intents.
Order (NF1, before, NF2): This rule expresses the desired execu-
tion order of two NFs. For example, in the service chain shown
in Figure 1(a), the network operator can first send the traffic to
the VPN and then the Monitor by specifying Order (VPN, before,
Monitor). This Order rule type can be used to describe a sequen-
tial NF composition intent. Multiple Order rules can describe a
sequential service chain as shown in the second row in Table 1,
which is equivalent to the traditional description in the first row.
This ensures the compatibility of NFP to support sequential service
chains. Network operators can simply provide a traditional service
chain specification without using NFP policies, and we are able to
automatically transfer it to NFP policies. Then, NFP orchestrator
could explore parallelism opportunities for the NFs in Order rules
for better performance. In this way, NFP could optimize traditional
sequential service chains into high performance service graphs. We
elaborate this in §4.
Priority (NF1 > NF2): In NFP, network operators should be able
to describe the intent of executing two NFs in parallel. However,
the actions of the two NFs may conflict. For instance, Firewall
and Intrusion Prevention System (IPS) may disagree on whether
to drop packet or not. Therefore, network operators can specify
the Priority(IPS > Firewall) rule to parallelize the two NFs
while indicating the system should adopt the processing result of
IPS during conflicts. NFP orchestrator will automatically identify
conflicting actions between NFs and parallelize them accordingly.
A seemingly equal rule to the above rule is Order (Firewall,
before, IPS). Although they may provide the same result, they
are used in different situations. An Order rule is used to intuitively
describe sequential NF composition intents, while two NFs in a
Priority rule are intended to be executed in parallel. NFP orches-
trator further inspects the dependency of NFs in an Order rule to
see whether they are parallelizable. If they are, an Order rule is
converted into a Priority rule, and the NF with the back order
is assigned a higher priority. If not, the two NFs should still be
chained in sequence.

SIGCOMM ’17, August 21-25, 2017, Los Angeles, CA, USA

C. Sun, J. Bi, Z. Zheng, H. Yu, H. Hu

Table 2: A non-exhaustive list of commonly deployed NFs and their actions on packets [8, 60, 61].
The % column presents the percentage of the NF deployed in enterprise networks derived from [60].
(R for Read, W for Write, T for True, and Add/Rm for Add headers to or Remove headers from packets)

| NF | Products | % [SIP | DIP | SPORT [DPORT | Payload | Add/Rm [Drop |
Firewall iptables 26% | R R R R T
NIDS NIDS cluster [62] | 20% R R R R R
%chvgf‘&g?;f CiscoMGX [11] | 19% | R | R
Load Balance | F5 [45], A10 [44] | 10% | R/'W | R/'W R R
Caching Nginx [54] 10% | R R R
VPN OpenVPN [17] 7% R R R/W T
NAT iptables R/W | R'W | R/W R/W
Proxy Squid [56] R/'W | R'W
Compression | Cisco IOS [10] R/W
Traffic Shaper | Linux tc [22]
Monitor NetFlow [12] R R R R

Position (NF, first/last): The service chain for north-south traffic
in data centers [36] in Figure 1(a) requires all packets to be processed
by the VPN first. This raises the requirement of placing an NF in
a specific position in the service graph. However, we cannot pre-
acknowledge the final optimized graph structure. Thus, we can
only assign an NF as the first or last one in the service graph. We
design the Position(NF, first/last) rule to describe such type of
intents. For instance, we can specify a Position(VPN, first) to
ensure packets traverse the VPN first. NFP orchestrator places the
VNF in the service graph in a sequential manner, as illustrated by
the VPN NF in Figure 1(b).

With above rules, network operators can define chaining intents
by composing multiple rules into a policy (the third row in Table 1)
to describe a service graph (Figure 1(b)). Note that traditional se-
quential description of a service chain has to assign all NFs with
positions in the chain. With NFP policy, however, operators can only
specify chaining intents for partial NFs as needed. This looses the
constraints and leaves a larger space for NFP to seize all parallelism
opportunities to improve performance. Finally, the rules manually
written by operators could possibly conflict with each other. For
example, an operator could write two rules with conflicting orders,
i.e. Order(NF1, before, NF2) and Order(NF2, before, NF1), or
assign an NF at different positions, i.e. Position(NF1, first) and
Position(NF1, last). The challenges of policy conflict detection
and resolution have been recognized and studied in [34, 40, 49]. We
will refer to prior wisdom and leave them to our future work.

4 ORCHESTRATOR DESIGN

NFP orchestrator takes the NFP policies as input, identifies NF
dependencies, and automatically compiles policies into high perfor-
mance service graphs possibly with parallel NFs. The optimization
goals of the compilation is to fully benefit from the high performance
brought by NF parallelism, while introducing very little resource
overhead. This section will introduce each step in the service graph
construction process in detail.

4.1 NF Parallelism Analysis

As introduced above, for NFP policies, we take the two NFs in a
Priority rule as directly parallelizable, and place the NF assigned

46

Table 3: For Order (NF1, before, NF2), whether the two NFs
are parallelizable, and whether we need to copy packets if
the two NFs can be executed in parallel.

Green blocks denote parallelizable, no need to copy.

Orange blocks denote parallelizable, need copy pkts.

Gray blocks denote not parallelizable situations.
For read-write or write-write case, we need not copy
packets if two NFs modify different fields.

NF2

Read | Write | Add/Rm | Drop

NF1
Read
Write
Add/Rm
Drop

in a Position rule in the head or tail of the graph in a sequential
manner. However, for two NFs in an Order (NF1, before, NF2)
rule, we need to further explore their parallelism possibility.

NFs may perform various actions on packets including Reading or
Writing headers or payloads, Adding or Removing header fields, and
Dropping packets. Table 2 presents a summary of some commonly
deployed NFs and their actions on packets, derived from [8, 60, 61].
We observe that the actions of different NFs may conflict with each
other. For instance, the NAT and the Load Balance both modify
the destination IP address of a packet. If the operator inputs an
Order (NAT, before, LB), the orchestrator is challenged to iden-
tify the parallelism possibility of the two NFs for high performance.

To analyze whether two NFs are parallelizable, we propose a
result correctness principle: Two NFs can work in parallel, if parallel
execution of the two NFs results in the same processed packet and
NF internal states as the sequential service composition. Based on
this principle, we summarize parallelizable and unparallelizable
situations in Table 3. The green and orange blocks represent par-
allelizable situations. For example, suppose NF1 reads the packet
header, and NF2 later modifies the same header field. To ensure
that NF1 reads the original header that has not been changed by
NF2, we could copy the packets and send two copies into NF1 and
NF2 in parallel. Gray blocks denote unparallelizable situations. For

NFP: Enabling Network Function Parallelism in NFV

example, if NF1 first writes a packet header and later NF2 reads this
header, the operator intends to transmit the modification of NF1 to
NF2. Therefore, the two NFs should work in sequence.

4.2 Resource Overhead Optimization

In a Priority rule or a parallelizable Order rule, the two NFs
can work in parallel with packet copying, which could incur re-
source overhead. Furthermore, large memory block copying could
degrade latency and throughput performance [28, 30]. To address
this challenge, NFP explores opportunities to support NF parallelism
without packet copying, and proposes optimization techniques to
reduce copying overhead.

We refer to the result correctness principle and summarize the
situations where packet copying is not necessary for parallelism in
green blocks in Table 3. For example, suppose NF1 and NF2 both
read the packet. Since the reading action does not modify packets,
the two NFs can read the same packet simultaneously. Orange
blocks represent situations where packet copying is needed for
NF parallelism. For example, if NF1 reads a header and NF2 later
modifies it, we could copy the original packet, send two copies into
NF1 and NF2 in parallel, and select the output of NF2 as the final
output, which could still achieve result correctness.

To further reduce copying overhead, we propose the following re-

source optimization techniques based on our insights on NF actions
and dependencies.
OP#1: Dirty Memory Reusing: As represented by blocks with
both green and orange colors in Table 3, for read-write or write-
write situations, we decide the necessity for packet copying de-
pending on whether the two actions operate on the same packet
field. If two NFs read or write different fields of a packet, they
can operate on the same packet copy. We name this optimization
technique as Dirty Memory Reusing, which could reduce packet
copying necessities.

Note that when two NFs on two CPU cores operate the same

packet copy simultaneously, the header fields they manipulate could
possibly map to the same cache line, incurring cache contention
and degrading performance. However, according to our evalua-
tion in § 6, despite the possible existence of cache contention, by
adopting NF parallelism, NFP could still significantly outperform
sequential service chaining in NFV. Dirty Memory Reusing is de-
signed to reduce resource overhead when pursuing NF parallelism,
and provided as an optimal feature. If a network operator cares little
about resource consumption in NFV, this feature could be switched
off to provide safe performance enhancement.
OP#2: Header-Only Copying: We observe from Table 2 that
only few NFs (7%) modify packet payloads. Besides, we derive
from [4] that the average packet size in data centers is around 724
bytes. For TCP packets, the header only occupies 8.8% of the total
size. Therefore, we propose Header-Only Copying that only copies
packet headers for some cases of NF parallelism. Multiple NFs that
modify the payload will be executed in sequence, which is a very
rare situation according to Table 2. Header-Only Copying could
improve performance and save memory by shortening the length
of memory to be copied. Note that after header copying, we should
modify the packet length field of the copied header to the length of
the header itself, ensuring that parallel NFs receive valid packets.

47

SIGCOMM ’17, August 21-25, 2017, Los Angeles, CA, USA

Algorithm 1: NF Parallelism Identification

Input: Order(NF1, before, NF2).
Output: Parallelizable p, conflicting actions ca.

1 actionListl = fetchAction(AT, NF1);
2 actionList2 = fetchAction(AT, NF2);
3 p=TRUE;
4 ca=NULL;
5 foreach (al, a2) € (actionListl, actionList2) do
6 if (al, a2) = (read, write) or (write, write) then
7 if (a1, a2) operate the samefield then
8 L ca.append(al, a2);
9 L continue;

10 switch fetchParallelism(DT, (a1, a2) do

11 case NOT_PARALLELIZABLE

12 p =FALSE;

13 return;

14 case PARALLELIZABLE NO_COPY

15 L continue;

16 case PARALLELIZABLE WITH_COPY

17 L ca.append(al, a2) ;

4.3 NF Parallelism Identification Algorithm

Based on above NF parallelism analysis and resource optimiza-
tion techniques, we propose an NF parallelism identification algo-
rithm for two NFs obeying an order rule as shown in Algorithm 1 1.
NFP orchestrator maintains an NF action table (AT, i.e. Table 2)
and an action dependency table (DT, i.e. Table 3), and takes an
Order rule as input. The algorithm can determine that the two NFs
can be parallelized without packet copying or with packet copy-
ing, or cannot be parallelized. First, the algorithm fetches all the
actions of the two NFs from AT (lines 1-2). Then it exhaustively
goes over all action pairs from the two NFs (lines 5-17) to figure
out the parallelism possibility for the two NFs based on the DT.
For the read-write or write-write case, we need to further decide
if the two actions operate on the same field (lines 6-9). If the two
NFs can be parallelized with packet copying, we need to record the
conflicting actions (lines 16-17). Finally, the algorithm generates the
output of whether the two NFs are parallelizable (p) and possible
conflicting actions (ca), whose existence indicates the necessity of
packet copying.

We input all possible NF pairs from Table 2 into the algorithm.
According to the algorithm output and the appearance probabilities
of the NF pairs, we find that 53.8% NF pairs can work in parallel.
In particular, 41.5% pairs can be parallelized without causing extra
resource overhead, which promises the optimization effect of NF
parallelism for NFs summarized in Table 2.

To accommodate a new NF into NFP, network operators could
generate an action profile of the NF manually or with the analysis
tool provided by NFP (§5.4), and register it into Table 2. NFP would
then be able to construct service graphs containing this new NF.

For two NFs specified in a Priority rule, we still need to decide
whether they require packet copying to work in parallel. In this
situation, we still use Algorithm 1 to identify possible conflicting
actions of the two NFs.

!For parallelism identification among multiple NFs, we run Algorithm 1 for each pair
of NFs, as demonstrated in §4.4.2.

SIGCOMM ’17, August 21-25, 2017, Los Angeles, CA, USA

Position Order Priority
(NF2, before, NF3) (NF5 > NF6) .
(NF1, first) (NF2, before, NF4) (NF6 > NE7) Policy Input

string NF_namel (high i;rio)
string NF_name2 (low prio)
bool is_parallelizable
List<Action> conflicting_actions

[

Conflict: source IP i
Priority: NF5>NF6)|

string NF_name Intermediate

Representations

int position (first/last)

Conlflict:

. 11 none
. 13 @ Confflict: none

Plain Parallelism ;

Micrographs

@ Classify:
> Pkt version vi to NF 2/5/7)
Pkt version v2 to NF 6/8 Final Graph and
@ @ @ @ @ Fwd: Pkt v to NF 3/4 Forwarding &
Merge: modify(v1.sip, v2.sip) Merging Table
add(v2.4H, afier, v1.IP)

Final Graph

Figure 2: Service Graph Construction Workflow

4.4 Service Graph Construction

The NFP compiler constructs service graphs based on NFP poli-
cies to pursue high performance with marginal resource overhead. It
first transforms policies into pre-defined intermediate representa-
tions, then compiles the intermediate representations into indepen-
dent micrographs, and finally merges the micrographs to generate
the final service graph. We next introduce each step of the service
graph construction process, as demonstrated in Figure 2.

4.4.1 Transforming Policies into Intermediate Representations.
We design two types of intermediate representations to store NFP
policies, as shown in Figure 2. For Position rules, we maintain
the NF type and its position in the left representation block, which
records the placement of a single NF. For Order rules, we imple-
ment the Algorithm 1 to check whether they can be parallelized and
identify conflicting actions. For Priority rules, we still need Al-
gorithm 1 to find out conflicting actions. The Order and Priority
rules are finally transformed into the representation shown on the
right, which reveals the relationship between two NFs.

4.4.2 Compiling Intermediate Representations into Micrographs.
After transforming policies into intermediate representations, we
first sequentially chain NFs that are not parallelizable (e.g. NF2 and
NF3 in Figure 2). Then we concatenate intermediate representations
with overlapping NFs into a micrograph by using overlapping NFs
as junction points. There are three types of micrograph structures
including Single NF (e.g. NF1, NF8), Tree (e.g. NF2, NF3 and NF4), and
Plain Parallelism (e.g. NF5, NF6 and NF7). Single NF micrographs
come from NFs assigned in Position rules (e.g. NF1), or free NFs
with no rule restrictions (e.g. NF8). Tree micrographs come from
unparallelizable NFs. We exhaustively check dependencies of all
leaf NF pairs with the same root to figure out whether the leaf
NFs can work in parallel. For plain parallelism micrographs, we
exhaustively check the dependencies of all NF pairs to calculate how

48

C. Sun, J. Bi, Z. Zheng, H. Yu, H. Hu

many packet copies are needed for them. So far, we have generated
micrographs with no overlapping NFs.

4.4.3 Merging Micrographs into the Final Graph. Finally, we
merge micrographs to generate the service graph. NFs assigned by
Position rules are first placed in the head/tail of the chain (NF1).
Then we wrap up each remaining micrograph (including free NFs) as
one NF, and exhaustively check the dependency of each micrograph
pair to decide their parallelism. If any dependency is detected be-
tween micrographs, network operators will be informed to further
regulate execution priority of them. Finally, we place independent
micrographs in parallel (Figure 2).

Based on the final graph structure, NF dependencies, and NF
priorities, we create a classification table that records how to direct
a packet to its corresponding service chain, a forwarding table that
records how to steer different packet copies (version1 and version2
in Figure 2), and a merging table that stores how to merge packet
copies. We introduce the detailed table design in §5.

5 INFRASTRUCTURE DESIGN

Figure 3 illustrates the design overview of NFP infrastructure.
As mentioned in §2, NFP adopts consolidation to avoid occupying
extra network bandwidth resource. For packet delivery among NFs,
to pursue high performance, we use the zero-copy packet delivery
proposed in NetVM [28, 64]. As shown in Figure 3, each NF owns a
receive ring buffer and a transmit ring buffer, which are stored in a
shared memory region allocated in huge pages [41] accessible to all
NFs. Received packets also reside in the shared memory, while an
NF simply writes packet references into the receive ring buffer of
the other NF to realize packet delivery. Such a zero-copy delivery
eliminates the copy overhead for packet delivery.

However, the infrastructure design for supporting NF parallelism
is challenged in several aspects.

e NFs may drop packets. The infrastructure is challenged to deal
with the situation where one of the two parallel NFs drops the
packet, and the other one reads or modifies it.

o The infrastructure needs to merge multiple versions of a packet to
create the final output, which incurs the challenge for the merging
module to handle heavy load without becoming a performance
bottleneck.

e In previous work [28, 64], packet steering among NFs relies on
a centralized virtual switch, which according to our evaluation
incurs a performance overhead due to packet queuing. The infras-
tructure requires a more efficient approach in delivering packets
among NFs.

NFP carefully designs the infrastructure to address above chal-
lenges. The red solid line in Figure 3 shows a packet processing path
inside the infrastructure. When a packet enters an NFP server, we
introduce a classifier that sends the packet reference into the proper
service graph. For the packet delivery, we design a distributed NF
runtime to efficiently deliver packets among NFs in parallel. Finally,
multiple copies of a packet are sent into the merger module to gener-
ate the final output. These modules can be dynamically configured
by the orchestrator. Next we introduce each module in detail.

NFP: Enabling Network Function Parallelism in NFV

> Pecketfeferences | Chaining Orchestrator
===3 Configurations .. —p
@ Receive/Transmit Policies ‘ NFP Compiler ‘
Ring Buffers H I
H i
L Install classification,
‘ Server ‘ ‘ Server ‘ Delivery & merging rules
v
Server

Shared Memory on Huge Pages (packets, queues, tables)

@ O P66 O 6

VNF 1 VNF 2 Merger
NF Runtime NF Runtime NF Runtime
A ; :
Chaining i
Manager
Lpe Output @
Classifier NE Manager
Packet Packet
I v

Figure 3: NFP infrastructure design overview

5.1 Packet Classification

The classifier module takes an incoming packet from the NIC
and finds out the corresponding service graph information for the
packet, including how many packet copies are expected in the
merger, how to merge different copies of a packet, and the first
hop(s) of the service graph. Therefore, the classifier maintains a
Classification Table (CT) shown in Figure 4 to store the match fields
(e.g. five tuple), the total packet copy count to be received in the
merger, the merging operations (MOs) to merge packet copies (details
are presented in §5.3), and the actions indicating the first NF(s) of
the service graph, based on which the classifier sends the packet
into the entrance of the graph.

Note that different packets in a flow, or different flows that fol-
low the same service graph are forwarded and merged in the same
pattern according to its service graph structure. Therefore, we tag
those packets that follow the same service graph with the same
Match ID (MID) to avoid repeated storage of the service graph infor-
mation. Latter modules could identify the service graph to which
the packet belongs based on MID to forward or merge packets. To
transmit the MID to latter modules, we tag it into packet metadata
shown in Figure 5. Twenty bits of MID could express 1M service
graphs.

However, despite each packet in a flow should be merged in the
same way, the merger needs to collect all versions of each packet
to generate the output for this packet. For this purpose, we need
to grant an identification to each packet in a flow. Therefore, we
design a Packet ID (PID) identifier of 40 bits and tag it into the packet
metadata. Furthermore, to identify different versions of a packet,
we assign a version to each packet copy, which is also tagged into
packet metadata, for the merger to generate the final output.

Therefore, the NFP classifier attaches a 64 bits metadata to a
packet, recording the MID, PID and version of a specific packet
copy. The data structure of the packet is shown in Figure 5. Each
Classification Table entry is generated by the orchestrator to direct a

49

SIGCOMM ’17, August 21-25, 2017, Los Angeles, CA, USA

Classification Table (CT)

A q Forwarding Table (FT)
Match | MID o || (o Me.rglng Action -
Count| Operations MID Action
modify (v1.A, v2.A) | N . . Copy(vl, v2)
Distribute ’
10.0.0.1| 1 3 |add(v2.B, after, v1.A) w1, 1) 1 Distribute(v1, [4, 6])
_A[remove (v1.0) Distribute(v2, 5)
Packet L Packet Forwarding 2 |Distribute(vl, Merger)
I NF Runtime
Accumulating Table (AT)
po | MID Current Received Packet
Count Versions | g—o___ Merging
1 1 1 [vi]

Figure 4: NFP infrastructure workflow

Metqdata
Match ID Packet ID
Versi
reference — (MID) ersion (PID) Packet
< 20 bits e 4 bits 40 bits

Figure 5: NFP packet data structure

flow into a specific service graph. It is then installed to the classifier,
and will remain static when processing and delivering packets of
this flow.

5.2 Packet Delivery Among NFs

After an NF processes a packet, NFP should steer the packet to the
subsequent NFs in the service graph without copying, or copy the
packet and send the copies into parallel NFs. As mentioned above,
using a centralized virtual switch as the forwarder might incur
performance overhead. To address this challenge, NFP distributes
the packet forwarding task and enables each NF to independently
forward packets to subsequent NFs in parallel. To make this process
transparent to NF developers and incur no NF modifications, we
design an NF runtime for each NF to perform traffic steering, as
shown in Figure 3. After packet processing, the NF could delegate
the packet to the NF runtime, which copies the packet reference
to the next NFs’ ring buffer to realize packet forwarding. Through
the distributed NF runtime, we could parallelize the packet delivery
process and alleviate the forwarding hot spot.

Each NF runtime maintains a forwarding table (FT) (see Fig-
ure 4), which stores a local view of the entire service graph. The
global forwarding table is generated at the end of the service graph
construction process (§4.4.3), and then statically installed to the
Chaining Manager (as shown in dashed blue line in Figure 3). The
chaining Manager splits the global table and installs the forwarding
rules to each NF runtime. When an NF delegates a packet to the
NF runtime, the MID in the packet metadata is used to look up the
actions in FT. We design four types of actions.
ignore: When an NF intends to drop the packet, it conveys the
dropping intention to the NF runtime. The NF runtime then imple-
ments the ignore action to ignore original actions in the FT entry
for this packet. Furthermore, the NF runtime sends a nil packet to
deliver the dropping intention to the merger.
distribute(version, targets): This action sends the reference of a
specific version of a packet to one or multiple target parallel NFs
without packet copying.

SIGCOMM ’17, August 21-25, 2017, Los Angeles, CA, USA

Packet copy version vl ‘ Field A, ‘ Field C, ‘ Field D, ‘
Packet copy version v2 ‘ Field A, ‘ Field B, ‘ Field D, ‘
modify (v1.A, v2.A) ‘ Field A, ‘ Field C, ‘ Field D, ‘
add (v2.8, after, v1.A) ‘ Field A, ‘ Field B, ‘ Field C, ‘ Field D, ‘
remove (v1.C) ‘ Field A, ‘ Field B, ‘ Field D, ‘

Figure 6: An example of NFP merging process

copy(versionl, version2): This action copies packet version1 and
tags the new copy as version2. We only copy packet headers and set
the “packet length” field as the length of the header itself. Besides,
we prepare memory blocks to store input or copied packets dur-
ing the system initialization. Therefore, the header copying does
not require dynamic allocation of the memory and could avoid
performance degradation.
output(version): This action is used to output the packet after
it has traversed the entire service graph. The output action is
performed by the last NF in the service graph possibly assigned by
a Position rule.

Note that the actions field of the Classification Table also includes
above actions. The classifier may copy and send a packet into one
or more NFs as a start, according to the service graph structure.

5.3 Load Balanced Packet Merging

After all NFs have processed a packet, multiple copies of this

packet is sent into a merger module to generate the final output.
The merger maintains a dynamic Accumulating Table (AT) as shown
in Figure 4. Each entry records the received packet copy count and
the received packet copy versions of a packet. Note that the number
of received packet versions may not be equal to the received packet
count, since several NFs may process the same packet copy and
send it to the merger independently. Next we introduce the merging
process in detail.
Packet Merging: When the current count field in AT reaches the
total count recorded in CT referenced by the key of MID, the merger
will merge the packet copies according to the merging operations
(MOs) in the CT. The original packet copy is tagged as version v1 by
the classifier, and MOs record how to merge the rest of packet copies
into vI to create the final output. In other words, MOs indicate
which bits of different packet versions should be included in the
final processed packet. MOs include three types of operations.

e modify(v1.A, v2.A):This operation overwrites the packet field
A of v1with that of v2. For example, modify(v1.SIP, v2.SIP)
changes the source IP address of packet v1 into that of v2.

e add(v2.B, before/after, v1.A): This operation adds the packet
field B of v2 before/after the field A of v1. For example, operation
add(v2.AH, after, v1.IP) adds the Authentication Header (AH)
of v2 after the IP header of v1.

e remove(v1.C): This operation removes the field D from v1. For
example, operation remove (v1.AH) removes the AH header from
packet version v1.

We show an example set of MOs in Figure 6. The merger goes
over each MO, executes the operation, and generates the final output

50

C. Sun, J. Bi, Z. Zheng, H. Yu, H. Hu

as shown in the last row of Figure 6. Note that Field D; of packet
v1 is not referred to by any operation. Therefore, this field remains
unmodified and is written directly into the final packet. Field D; of
v2 is also not mentioned by any operation, meaning that Dy will
be ignored and not included in the final packet. Current design
and implementation of MOs are protocol dependent. As our future
work, we will refer to protocol independent definition of packet
fields such as P4 [5] to support advanced and customized NFs.

To deal with NF dropping actions on a packet p, we enable the
NF runtime to send a nil packet, which has the same metadata as p
to the merger. When the merger receives a nil packet, it considers
the packet p as dropped. We then remove the related AT entry and
release the memory of all received packet copies. This could provide
consistent processing results with sequential NF processing.

A possible design choice of packet merging is to maintain an

extra copy of the original packet, simply xor the processed and
original packets to find the modified bits. In this way, we are relieved
from the burden of inspecting NF actions and generating merging
operations. However, there are several drawbacks of this approach.
First, we previously inspect NF actions to identify NF dependency.
Without NF action profiles, NF parallelism identification would
become adhoc by exhaustively analyzing each NF pair. Second,
the xor mechanism cannot easily handle header addition/removal
or dropping actions. Finally, maintaining the original copy of the
packet brings unnecessary resource overhead.
Merger Load Balancing: The merger is heavily burdened to pro-
cess all copies of every packet and could introduce performance
bottleneck. To address this challenge, we propose to deploy multiple
mergers in one NFP server and design a merger agent to balance
the load among the instances. A merger instance maintains a local
AT, and could merge any packet from any service graph.

To ease its instantiation and destruction, we implement the
merger as an NF. A merger instance can be dynamically instantiated
or destroyed by the orchestrator similar to other NFs. Packets to
be merged are first sent to the merger agent, which then performs
simple load balancing to split the load. Note that we should ensure
that multiple copies of the same packet are sent to the same merger
instance. However, packet copies may be modified by NFs. There-
fore, the merger agent performs a simple and fast hashing on the
immutable PID field of a packet and steers the packet to a merger
instance. Note that different packets in a flow own different PIDs
and could be distributed to different merger instances. We evaluate
the merger overhead and the load balancing effect in §6.

5.4 Integrating Network Functions into NFP

NFP provides NFs with interfaces to access and modify packets,
and an NF runtime to drop or deliver packets after processing. To
integrate a new NF into the system, NFP needs the actions of the
NF for parallelism identification and service graph construction. To
this end, NFP provides an inspection tool for operators that can
inspect NF codes to find the usage of interfaces that operate on
packets, including reading, writing, dropping and adding/remov-
ing bits. Operators can run the inspector against their NF code to
automatically generate an action profile, which can be registered
into NFP to integrate the new NF into NFP.

NFP: Enabling Network Function Parallelism in NFV

In our current implementation, we provide DPDK based interfaces
for NFs to access and modify packets. DPDK could parse the packet
and provide NFs with a data structure to read and write the packet
headers or payloads. The inspection tool analyzes the calls of the
packet data structure to determine actions of NFs. In future, we plan
to integrate advanced modular NF specifications [18, 35, 47] into
NFP, and identify actions of NFs by inspecting their component
modules and combining the actions of the modules together.

6 IMPLEMENTATION AND EVALUATION

We implement the NFP framework and the NF action inspector
(14,000 LoC in total) based on DPDK version 16.11. We evaluate
NFP based on a testbed with a number of servers, each of which
is equipped with two Intel(R) Xeon(R) E5-2690 v2 CPUs (3.00GHz,
10 physical cores), 256G RAM and two 10G NICs. The servers run
Linux kernel 4.4.0-31.

We run NFs using Docker [39]. Each NF runs inside a container
on a physical CPU core. Besides, each merger instance occupies
a container, while the merger load balancer itself also occupies a
container. All containers are configured to run in privileged mode
to access host resources including the NIC and shared memory
on huge pages. We isolate and dedicate each core to a container
alone, which could ensure that the core will not be scheduled by the
operating system. The classifier also consumes a separate CPU core.
It is implemented as a process running in the user space on the host
operating system. It constantly pulls packets from all active NICs
through DPDK interfaces, classifies each packet, attaches metadata
to it, and sends the packet to the corresponding service chain, by
writing the packet’s reference into the receive ring buffer of the first
NF in the chain. The NF runtime is implemented to initialize the
ring buffers of the NF in the shared memory on huge pages. After
an NF is deployed, its runtime collects packets from the receive
ring buffer, delivers packets to NF logic, and takes over the packet
for further delivery after NF processing.

For test traffic, we use a DPDK based packet generator that runs
on a separate server and is directly connected to the test server.
The generator sends and receives traffic to measure the latency and
the maximum throughput without packet loss.

NFP achieves high performance with marginal resource over-
head. We evaluate NFP with the following goals:

o demonstrate that NFP can support sequential service chains with-
out introducing extra performance overhead compared with state
of the art software based high performance platforms such as
OpenNetVM [64], a container implementation of NetVM [28]
(Figure 7).

o study the performance improvement brought by NFP based on
the variables of NF complexity, parallelism degree, and service
graph structure (Figures 8, 9, 11, 12).

o demonstrate that the overhead brought by NFP is minimal, in-
cluding the resource overhead from packet copying and the per-
formance overhead incurred by packet copying and merging.
(§6.3)

o demonstrate that NFP achieves significant latency reduction and
marginal resource overhead for real world service chains and
traffic in data centers (Figure 13).

51

SIGCOMM ’17, August 21-25, 2017, Los Angeles, CA, USA

6.1 Network Functions

To evaluate NFP, we implement a range of network functions:
L3 Forwarder: A simple forwarder that obtains the matching entry
from a longest prefix matching table with 1000 entries to find out
the next hop.

Load Balancer: We implement the commonly used ECMP mecha-
nism in data centers [21] that hashed the 5-tuple of the packet to
balance the load.

Firewall: This is a firewall similar to the Click IPFilter element. It
passes or drops packets according to the Access Control List (ACL)
containing 100 rules.

IDS: A simple NF similar to the core signature matching component
of the Snort intrusion detection system [55] with 100 signature
inspection rules.

VPN: It implements the tunnel mode of IPsec Authentication Header
(AH) protocol. It encrypts a packet based on the AES algorithm and
wraps it with an AH header.

Monitor: It maintains per-flow counters, which can be obtained by
the operator. The counter table uses the hash value of the 5-tuple
as the key.

6.2 Performance Improvement

6.2.1 Sequential Service Chain Performance. Despite that NFP
accelerates NFV through NF parallelism, there may be situations
where the policy is compiled into a sequential service chain. There-
fore, NFP is challenged to support sequential service chains with
no performance overhead compared with existing systems such as
OpenNetVM. In fact, a sequential service chain does not require
packet copying and merging, which theoretically incurs no perfor-
mance penalty.

To control the variable of NF complexity, we generate sequential
chains by composing multiple instances of the L3 forwarder that
is implemented in OpenNetVM and NFP in the same way. We
vary the chain length from 1 to 5. We use 64B to 1500B packets
to evaluate the throughput, and focus on the latency for (min-
size) 64B packets. Experimental results in Figure 7 show that NFP
suffers a tiny latency overhead, and outperforms OpenNetVM by
achieving line rate for packets of any sizes. OpenNetVM dedicates
a CPU core for the centralized switch to forward packets, while
NFP relies on the distributed NF runtime that shares the CPU core
with the NF. Therefore, NFP could suffer a little latency overhead,
but could alleviate the performance bottleneck of the centralized
switch during high packet rates and achieve a higher throughput.

6.2.2 Effect of Different NF Complexity. We evaluate the opti-
mization effect of NFP for NFs with different complexity. First, we
measure the performance of the six NFs implemented in NFP. To
study the effect of the complexity itself, we control the parallelism
grade as two, meaning that we compare the performance of sequen-
tial or parallel composition of two instances of the same NF. We also
compare the optimization effect with or without packet copying
and merging using 64B packets. We present the evaluation setup
in Figure 10. Figure 8 shows the performance of NFs with different
complexity. The L3 Forwarder simply performs one table look up,
while VPN needs to encrypt and encapsulate packets. We observe
that the latency benefit brought by NF parallelism increases with
the rise of NF complexity.

SIGCOMM ’17, August 21-25, 2017, Los Angeles, CA, USA

[OpenNetVM
| BWINFP

n
o

> 300 [W NFP-sequential

o

o

Latency (microseconds)

o

LB

1 2 3 4 5 Forwarder

NF Number

(a) Latency

o0
-
o

_1al IINFP - 1~5 NF _qal
a N OpenNetVM - INF &,

=12r [OpenNetVM - 2 NF 512-
< 10f OpenNetVM - 3 NF T 10}
= OpenNetVM - 4 NF =

Z8r B OpenNetVM -SNE - % 8
EZ 6t ~O—Line Speed = 6}
2 2
&~ of A~ ol

0 0
64 128 256 512 1024 1500 Forwarder LB
Packet Size (bytes)

(b) Processing Rate

Figure 7: Performance of sequential
chains (latency for 64B pkts)

00O~ O

Instance Instance distribute merge

#1 #2 }\O/

(2) NFP with no copy

merge

(1) Sequential (3) NFP with copy
Figure 10: Setup to evaluate optimization effect for NFs
with different complexity

To create a function of optimization effect and NF complexity,
we modify the Firewall NF so that it busily loops for a given number
of cycles after modifying the packet, allowing us to vary the per-
packet processing time as a representation of NF complexity. We
evaluate the performance using 64B packets. As shown in Figure 9,
the forwarding latency optimization effect rises with the increase of
NF complexity. For the most complex NF (3000 cycles), NFP brings
around 45% latency reduction. Besides, we can observe that the
performance overhead brought by packet copying is minimal.

6.2.3 Effect of Parallelism Degree. NF parallelism could reduce
overall processing latency by executing several parallel NFs simulta-
neously. Theoretically, parallelizing more NFs could reduce latency
to a larger extent. To create a function of optimization effect and the
parallelism degree, we vary the instance numbers of the Firewall
NF (with 300 cycles) from 2 to 5 and evaluate the performance of
sequential/parallel composition of these instances with or without
packet copying and merging using 64B packets. We observe from
Figure 11 that with the increase of parallelism degree, the latency
reduction rises from 33% to 52% for no-copy setups, and up to 32%
for copy setups. We could conclude that higher parallelism degree
brings larger latency benefit while the throughput is not much

B OpenNetVM-sequential

E I NFP-parallel-no copy
g 250 NEP-parallel-copy
H

Firewall Monitor
NF Type

(a) Latency

Firewall Monitor
NF Type

(b) Processing Rate

Figure 8: Performance of different NFs
with different complexity

52

C. Sun, J. Bi, Z. Zheng, H. Yu, H. Hu

[OpenNetVM-sequential
| [NFP-sequential
[NFP-parallel-no copy
NFP-parallel-copy

Latency (microseconds)
3
S

VPN IDS 1

300 600 900 1200 1500 1800 2100 2400 2700 3000
Processing Cycles Per Packet

(a) Latency

I OpenNetVM-sequential

[NFP-sequential

[NFP-parallel-no copy
NFP-parallel-copy

[OpenNetVM-sequential sl

I NFP-sequential

I NFP-parallel-no copy
NFP-parallel-copy

o &

Processing Rate (Mpps)

VPN DS 1

300 600 900 1200 1500 1800 2100 2400 2700 3000
Processing Cycles Per Packet

(b) Processing Rate

Figure 9: Performance of Firewall NF
with different complexity

affected. However, the latency reduction cannot reach the theoreti-
cal value of 80% for 5 degree parallelism. We attribute this to the
merging process. With higher degree, the merger has to collect and
merge more packets, which increases latency.

6.2.4 Effect of Graph Structure. NFP orchestrator could con-
struct various types of service graphs comprising the same number
of NFs. For instance, for a service graph containing 4 NFs, there
exists 6 possible structures (non-exhaustive) as shown in Figure 14.
We evaluate their performance with or without packet copying and
merging using 64B packets. Figure 12 reveals a better latency opti-
mization effect for graphs with shorter equivalent chain length. For
example, graph(2) enjoys the biggest latency benefit since the equiv-
alent chain length is 1, while graph(5) sees little latency reduction
since the equivalent length is 3.

6.3 Overhead

Although NF parallelism could bring high performance, in 12.3%
situations, packet copying is needed for parallel processing (§4),
incurring extra resource overhead to accommodate copied packets,
and the performance overhead brought by packet copying/merging
actions.

6.3.1 Resource Overhead. NF parallelism could occupy extra
resource to store copied packets. To evaluate the resource overhead
brought by NFP, we calculate the extra resource usage percentage
as a function of TCP packet size (64B to 1500B) and parallelism
degree. According to the header-only copying optimization, only
packet headers are copied. Therefore, for a TCP packet of any size
on the Ethernet, packet copying only occupies 64B extra memory.
We construct the equation of resource overhead (ro), packet size
(s) and parallelism degree (d): ro = 64 X (d — 1)/s. We refer to the
packet size distribution in data centers from [4] and calculate that

NFP: Enabling Network Function Parallelism in NFV

SIGCOMM ’17, August 21-25, 2017, Los Angeles, CA, USA

[OpenNetVM-seq Il NFP-seq Il NFP-para-no copy NFP-para-copy OpenNetVM-seq mmm NFP-seq s NFP-para-no copy s NFP-p: Y - -
120 100 North-South Service Chain
— 100} Chain/Graph Structure Performance&
2 = 80k Overhead
2 3
$ sof open O oo @
2 H -
S 2 60 .
Z e g NetVM o Latency: 241ps
£ g VPN Monitor Firewall Load Balancer|
= 7. 40f -
g 40 g NEP Order (VPN, before, Monitor)
2 £ Polic Order (Monitor, before, Firewall)
- 20} = 20f Y | Order (Firewall, before, LB) Latency: 210us
Firewall (12.9% |)
o 0
2 3 4 5 1 2 3 4 5 6 Resource
Degree (NF T) Graph Index
Par g NFP Overhead: 0%
o
(a) Latency (a) Latency VPN | Lowd Balancer
Monitor
[OpenNetVM-seq Il NFP-seq Il NFP-para-no copy | NFP-para-copy OpenNetVM-seq i NFP-seq il NFP-para-no copy s NFP-para-copy West-East Service Chain
16} 0 o lé
16F pen- .
214} _ NetyM @_’._"I:III Latency: 220ps
&1 5 EL“ I DS Monitor Load Balancer
% '1 s12f NFP | Order (IDS, before, Monitor)
2 1f z .l . B .
3 08 3 1 Policy | Order (Monitor, before, LB) Latency: 141ps
Eputl gosf m (35.9% 1)
2061 % 3 Monitor
Z Gosl ¥4 T
204t S04l NFP Resource
& e Overhead: 8.8%
0.2k 02k Load Balancer
: DS
0 0
2 3 4 5 1 2 3 4 5 6
Parallelism Degree (NF Number) Graph Index

(b) Processing Rate

Figure 11: Performance of graphs with
different parallelism degree

(1) sequential (2) 1+1+1+1 (3)1X3
(4) 1+2+1
(5)1+3 (6) 2+2

Figure 14: Possible service graphs comprising 4 NFs

the resource overhead of NFP is ro = 0.088 X (d — 1), which is only
8.8% for the parallelism degree of 2, while achieving 30% latency
reduction derived from Figure 8.

6.3.2 Copying and Merging Performance Overhead. Memory
copying and additional packet merging would be time consum-
ing and could degrade performance [28, 30]. However, NFP needs
packet copying and merging to support NF parallelism. Therefore,
NFP proposes Dirty Memory Reusing to reduce copying necessities,
and uses Header Only Copying to shorten copied memory length to
a fixed 64B for TCP traffic. Furthermore, for packet copying imple-
mentation, we use optimized fast memory copy interfaces provided
by DPDK to reduce copying overhead. As shown in Figure 11, for
the firewall NF, packet copying and merging could bring an average
of 15 s latency penalty and minimal throughput penalty, while still
achieving 20% latency reduction compared with sequential com-
position. Furthermore, packet copying is only necessary in 12.3%
situations. With longer chains and more complex NFs (e.g. VPN),
the latency overhead percentage of copying and merging would be
further reduced.

Figure 12: Performance of different
graph structures comprising 4 NFs

53

(b) Processing Rate

Figure 13: Performance of real world
service chains

6.3.3 Merger Load Balancing. The merger module is burdened
to collect and merge multiple copies of a packet. Therefore, it suffers
a heavier load than NFs. To understand its capability, we evaluate
the peak processing rate with no packet loss of a merger instance
for 64B packets. We use the Firewall NF and set the parallelism
degree as 2. We find that one merger instance can handle 10.7 Mpps
processing rate with no packet loss. According to our experiments,
for packets of any size (including 64B), two merger instances are
sufficient to support full speed packet processing with the paral-
lelism degree of up to 5, which could demonstrate the effectiveness
of the merger load balancing mechanism.

6.4 Real World Service Chains

We evaluate NFP based on real world service chains in data
centers [32, 36] including service chains for north-south and east-
west traffic. For NFP policies, we assume the operator assigns a
sequential chain description based on Order rules for neighboring
NFs in the chain. We generate test packets according to the packet
size distribution derived from [4]. We present the original sequential
service chain, NFP policy description, optimized service graph
structure, and performance gain in Figure 13. For the north-south
service chain, NFP parallelizes the Firewall and the Monitor, and
could achieve 12.9% latency reduction with zero resource overhead.
For the west-east service chain, NFP executes the Monitor and
the Load Balancer in parallel, resulting in 35.9% latency reduction
with only 8.8% resource overhead. This demonstrates that NFP
can achieve significant performance improvement with marginal
overhead.

Moreover, to verify the correctness of NFP composition of NFs
in NFV, we generate a series of packets based on our DPDK packet
generator, tag each packet with a unique packet ID in the payload,

SIGCOMM ’17, August 21-25, 2017, Los Angeles, CA, USA

Table 4: Performance of OpenNetVM, NFP, and BESS for
service chains of different lengths. When the chain length
is n, we use n + 2 CPU cores to support each system.

Chain | CPU Latency (us) Processing Rate (Mpps)

Length | Cores | OpenNetVM | NFP | BESS | OpenNetVM | NFP | BESS
1 3 25 23 11.308 9.38 10.92 | 14.7
2 4 33 27 | 11.370 9.36 10.92 | 14.7
3 5 47 31 11.407 9.38 10.90 | 14.7

and replay them to the sequential service chain and the optimized
NFP service graph. We compare the processed packets and find
that NFP service graph could provide the same execution results
as the sequential service chain, which follows the result correctness
principle proposed in §4.1.

7 DISCUSSION

NFP on Containers v.s. Virtual Machines (VMs): NFP proto-
type is implemented based on Linux Containers instead of VMs
since containers such as Docker [39] are more light-weight [43]
and can provide faster service instantiation and higher perfor-
mance [43, 47]. However, NFP can also be implemented on VMs
with the similar infrastructure design based on the fast packet de-
livery technique between VMs proposed in NetVM [28]. We will
create a VM implementation in our future work.

Pipelining Model vs. Run-to-Completion Model for Service
Chains: We conclude from the literature that two models have
been proposed to support service chains in NFV networks, including
the pipelining model [28, 38, 63, 64] and the run-to-completion (RTC)
model [27, 47]. The pipelining model deploys an NF inside an iso-
lated VM or container with dedicated CPU cores. Meanwhile, the
RTC model abandons virtualization techniques and consolidates
the entire service chain inside one CPU core. NFP aims to acceler-
ate pipelining model based NFV networks by exploiting parallelism
opportunities of NFs to reduce the chain latency. In this section, we
briefly state our insights on the two models, while detailed discus-
sion and comparison of them are out of the scope of this paper.

We conduct a simple experiment to measure the performance of
a service chain composed of 1 to 3 firewall NFs in BESS [27] (RTC),
OpenNetVM (Pipelining), and NFP (Pipelining), when processing
64B packets. We run sequential service chains in OpenNetVM. We
enable NFP to run all NFs in parallel for the highest performance.
When chaining 3 NFs, NFP utilizes 5 CPU cores to carry 3 NFs, a
classifier, and a merger. Given 5 cores, BESS could duplicate 5 entire
chains to place on the 5 cores, and perform hashing in the NIC to
split traffic across cores. As shown in Table 4, RTC could achieve
lower latency and higher processing rate. Note that without the
limitation of the 10G NICs adopted in our experiment, the process-
ing rate of BESS could be even higher. As the chain length n grows,
with more cores to scale out, BESS could theoretically achieve
27.2 X (n + 2) Mpps processing rate [27].

Despite its high performance, RTC could possibly fall short in
supporting NFV’s elasticity of easy scaling out when an NF instance
is overloaded. In the pipelining mode, we could simply create a
new instance on a VM or container, migrate some states [23, 53],
and modify the forwarding table to redirect some flows to the
new instance. However, in RTC, if one NF instance is overloaded,
we need to introduce another core to alleviate the hot spot by
either (1) duplicating the entire chain to the new core, which could

54

C. Sun, J. Bi, Z. Zheng, H. Yu, H. Hu

>
E‘ﬂ Firewall
4
Read
Packets

Read Alert
’ Packets }—A }; ’ (Firewall) l LI
OpenBox Merge

Alert
Output

Read
Packets

Header
Classﬁ' ier

Header
Classifier

Header
Classifier

g
I

=
=

=

-

Classifier

Read
Packets

_‘ Header

Figure 15: OpenBox+NFP graph merging result

introduce unnecessary states to be migrated and more NF instances
to be managed, or (2) duplicating the overloaded NF to the new
core, and redirecting flows between two cores for load balancing,
which would introduce cross-core communication and degrade the
performance.

NFP Scalability: NFP consolidates NFs in a service graph inside
one server to optimize resource overhead. According to [25, 32, 36,
52, 60], the lengths of currently deploy service chains normally
do not exceed seven. By allocating one core to each container, a
service graph can be entirely accommodated inside a server with
20 physical CPU cores in our testbed. NFP can support NF scaling
inside one server by allocating remaining CPU cores to new NF
instances with new IDs and constructing service graphs containing
these new instances.

However, sometimes there may be too many NFs in a graph to

fit into one server. We need to revisit and propose resource over-
head optimization techniques to compress overhead and achieve
high performance when supporting NF parallelism across multi-
ple servers. For example, NFP could partition the service graph
onto multiple servers obeying: each server sends only one copy
of a packet to the next server. In this way, we could still benefit
from NF parallelism without introducing extra network bandwidth
resource overhead. Packet delivery between servers could refer
to Flowtags [16] or Network Service Header (NSH) [51]. As our
next step, we will focus on the design supporting cross-server NF
parallelism.
Combining Parallelism and Modularity: OpenBox [7] decom-
poses NFs into building blocks, many of which share no depen-
dencies. Therefore, NFP can be used here to exploit block level
parallelism. After decomposing NFs and sharing common modules,
we could identify dependencies of building blocks, seize parallelism
opportunities, and build an optimized module graph. The Open-
Box+NFP graph merging in Figure 15 could parallelize independent
building blocks, such as Alert (firewall) and DPI, to further reduce
latency. Thus, NFP provides a general optimization that can adapt
to both monolithic and modular NFs.

8 RELATED WORK

Parallelism in Packet Processing: Some recent works touched
the idea of using parallelism in packet processing. Cisco Vector
Packet Processing (VPP) [9] applies operations directly to a vec-
tor of packets, similar to the data-level parallelism that performs
the single instruction on multiple data (SIMD) simultaneously [48].

NFP: Enabling Network Function Parallelism in NFV

ClickNP [37] benefits from the parallelism capability of FPGA and
implements parallelism inside a building element and across ele-
ments inside an NF. NetVM [28] adopts batch processing, i.e. polling
multiple packets (a batch) each time from NICs to ameliorate IO bot-
tleneck. Above research efforts are orthogonal and complementary
to NFP. NFP already implements batch packet processing. Paral-
lelism based NF acceleration could also fit into the NFP framework.
P4 [6] abstracts NFs into multiple stages of tables, and identifies
table dependencies to enable parallelism inside an NF or across NFs.
P4 explores inter-table parallelism while NFP focuses on inter-NF
parallelism. However, P4 can be used as a possible hardware infras-
tructure for NFP.

ParaBox [65] also attempts to explore NF parallelism in NFV.
However, its NF parallelism detection remains preliminary and
lacks a comprehensive analysis on NF action dependency. ParaBox
has to provide different packet copies for NFs running in parallel,
which introduces large resource overhead. In comparison, NFP
proposes a comprehensive framework with three layers to enable
NF parallelism and enhance NFV performance. Network operators
could write NFP policies to intuitively orchestrate NFs. The NFP or-
chestrator could intelligently identify NF dependency and construct
high performance service graphs with little resource overhead. The
NFP infrastructure can perform light-weight packet copying, dis-
tributed parallel packet delivery, and load balanced packet merging
to support NF parallelism.

Besides, some prior efforts [19, 40] have proposed the concept
of parallel and sequential module composition to construct SDN
applications. They focus on ameliorating the conflicts of module
policies that operate on the same packets, due to the fact that dif-
ferent modules inside an SDN application, or different applications
in SDN networks share the flow table resource. In comparison, NFP
exploits NF parallelism in order to enhance the performance of
NFV networks. NFs in NFV are placed on isolated VMs or contain-
ers. To support NF parallelism, a packet needs to be distributed or
copied, and processed by multiple NFs simultaneously. Therefore,
the ideas proposed by [19, 40] cannot be adopted directly to support
NF parallelism in NFV.

NFV Acceleration Techniques: As summarized in §1, lots of
efforts have been devoted to accelerating NFV, including individual
NF performance enhancement [33, 37, 42, 47, 57], packet delivery
acceleration [28, 30, 38, 64], and NF modularization and building
block sharing [2, 7, 46, 60]. NFP is orthogonal and complementary
to all above research efforts. First, §2 analyzes the approaches to
adopt parallelism among accelerated individual NFs. Second, NFP
already adopts fast packet delivery techniques in the system design
to achieve high performance. Finally, §7 introduces the combination
of parallelism and modularity for larger benefits.

NF Orchestration Techniques: For NFV networks, commercial
solutions including OpenStack [59], OSM [15], and OPNFV [20] and
research efforts including SIMPLE [50] and Flowtags [16] all pro-
pose NF orchestration techniques surrounding sequential service
chains. NFP proposes to embrace parallelism and construct service
graphs possibly with parallel NFs to improve NFV performance. On
the other hand, [3, 58] propose policy based NF orchestration and
management. However, their policies refer to Service Level Agree-
ment (SLA) related objects, while NFs are still chained sequentially.

55

SIGCOMM ’17, August 21-25, 2017, Los Angeles, CA, USA

Nevertheless, their policy abstraction partially enlightened us to
provide policies to operators to describe chaining intents.

9 CONCLUSIONS AND FUTURE WORK

This paper presents NFP, a high performance framework, that
innovatively enables NF parallelism in NFV to improve NFV per-
formance. NFP defines a policy specification scheme for network
operators to intuitively describe sequential or parallel NF composi-
tion intents. NFP orchestrator compiles the policies into optimized
service graphs with marginal resource overhead. NFP infrastructure
performs classification, parallel delivery and merging to support
NF parallelism. We have implemented a prototype in Linux con-
tainers and demonstrated its performance and overhead. As our
future work, we will enhance the policy specification scheme to
represent more complex NF composition rules. We will also enable
NFP to inspect and ameliorate policy conflicts. Besides, we will
propose an inter-server NF parallelism design of NFP. Moreover,
we will integrate advanced modular NF specifications into NFP
to ease the identification of NF actions. Finally, we will study the
combination of parallelism and modularity to further accelerate
NFV, and demonstrate its performance with advanced Layer 7 NFs.

10 ACKNOWLEDGEMENT

We thank our shepherd Barath Raghavan and anonymous SIG-
COMM reviewers for their valuable comments. We thank Masoud
Moshref Javadi for proof-reading the paper and providing valuable
suggestions. We also thank Xiao Zhang, Qingnan Duan, and Zili
Meng from Tsinghua University for joining the discussion of this
paper. This work is supported by National Key Research and De-
velopment Plan of China (2017YFB0801701), and National Science
Foundation of China (No.61472213).

REFERENCES

[1] George S Almasi and Allan Gottlieb. 1988. Highly parallel computing. (1988).

[2] Bilal Anwer, Theophilus Benson, Nick Feamster, Dave Levin, and Jennifer Rexford.
2013. A slick control plane for network middleboxes. In Proceedings of ACM
SIGCOMM Workshop on Hot Topics in Software Defined Networking (HotSDN’13).
ACM.

[3] Md Bari, Shihabur Rahman Chowdhury, Reaz Ahmed, Raouf Boutaba, and oth-
ers. 2015. On orchestrating virtual network functions in NFV. arXiv preprint
arXiv:1503.06377 (2015).

[4] Theophilus Benson, Aditya Akella, and David A Maltz. 2010. Network traffic char-
acteristics of data centers in the wild. In Proceedings of the 10th ACM SIGCOMM
conference on Internet measurement. ACM, 267-280.

[5] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown, Jennifer
Rexford, Cole Schlesinger, Dan Talayco, Amin Vahdat, George Varghese, and
others. 2014. P4: Programming protocol-independent packet processors. ACM
SIGCOMM Computer Communication Review 44, 3 (2014), 87-95.

[6] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown, Jennifer
Rexford, Cole Schlesinger, Dan Talayco, Amin Vahdat, George Varghese, and
others. 2014. P4: Programming protocol-independent packet processors. ACM
SIGCOMM Computer Communication Review 44, 3 (2014), 87-95.

[7] Anat Bremler-Barr, Yotam Harchol, and David Hay. 2016. OpenBox: a software-
defined framework for developing, deploying, and managing network functions.
In Proceedings of the 2016 conference on ACM SIGCOMM 2016 Conference. ACM,
511-524.

[8] Anat Bremler-Barr, Yotam Harchol, David Hay, and Yaron Koral. 2014. Deep

packet inspection as a service. In Proceedings of the 10th ACM International on

Conference on emerging Networking Experiments and Technologies. ACM, 271-282.

Cisco. 2002. Vector Packet Processing. (2002). https://wiki.fd.io/view/VPP

Cisco. 2017. I0S Technologies. (2017). http://www.cisco.com/c/en/us/products/

i0s-nx-os-software/ios- technologies/index.html

Cisco. 2017. MGX 8800 Series Switches. (2017). http://www.cisco.com/c/en/us/

products/switches/mgx-8800-series-switches/index.html

[12] Benoit Claise. 2004. Cisco systems NetFlow services export version 9. (2004).

[9
[10

[11

https://wiki.fd.io/view/VPP
http://www.cisco.com/c/en/us/products/ios-nx-os-software/ios-technologies/index.html
http://www.cisco.com/c/en/us/products/ios-nx-os-software/ios-technologies/index.html
http://www.cisco.com/c/en/us/products/switches/mgx-8800-series-switches/index.html
http://www.cisco.com/c/en/us/products/switches/mgx-8800-series-switches/index.html

SIGCOMM ’17, August 21-25, 2017, Los Angeles, CA, USA

[13] David E Culler, Jaswinder Pal Singh, and Anoop Gupta. 1999. Parallel computer
architecture: a hardware/software approach. Gulf Professional Publishing.

[14] Jeffrey Dean and Sanjay Ghemawat. 2008. MapReduce: simplified data processing
on large clusters. Commun. ACM 51, 1 (2008), 107-113.

[15] ETSL 2017. OSM. (2017). https://osm.etsi.org/

[16] Seyed Kaveh Fayazbakhsh, Luis Chiang, Vyas Sekar, Minlan Yu, and Jeffrey C

Mogul. 2014. Enforcing network-wide policies in the presence of dynamic middle-

box actions using flowtags. In Proceedings of the USENIX Symposium on Networked

System Design and Implementation (NSDI'14).

Markus Feilner. 2006. OpenVPN: Building and integrating virtual private networks.

Packt Publishing Ltd.

[18] Daniel Firestone. 2017. VFP: A Virtual Switch Platform for Host SDN in the

Public Cloud.. In NSDI. 315-328.

Nate Foster, Rob Harrison, Michael J Freedman, Christopher Monsanto, Jennifer

Rexford, Alec Story, and David Walker. 2011. Frenetic: A network programming

language. In ACM Sigplan Notices, Vol. 46. ACM, 279-291.

[20] Linux Foundation. 2017. OpNFV. (2017).

[21] Rohan Gandhi, Hongqiang Harry Liu, Y Charlie Hu, Guohan Lu, Jitendra Padhye,
Lihua Yuan, and Ming Zhang. 2014. Duet: cloud scale load balancing with
hardware and software. In Proceedings of the 2014 ACM conference on SIGCOMM.
ACM, 27-38.

[22] Yang GAO and Yong-feng NIE. 2006. Traffic control management architecture

based on Linux TC [J]. Computer Engineering and Design 20 (2006), 056.

Aaron Gember-Jacobson, Raajay Viswanathan, Chaithan Prakash, Robert Grandl,

Junaid Khalid, Sourav Das, and Aditya Akella. 2014. OpenNF: Enabling innova-

tion in network function control. In Proceedings of the 2014 ACM conference on

SIGCOMM. ACM, 163-174.

R Guerzoni and others. 2012. Network functions virtualisation: an introduction,

benefits, enablers, challenges and call for action, introductory white paper. In

SDN and OpenFlow World Congress.

[25] W Haefiner,] Napper, M Stiemerling, D Lopez, and J Uttaro. 2014. Service function

chaining use cases in mobile networks. draft-ietf-sfc-use-case-mobility-01 (2014).

J Halpern and C Pignataro. 2015. Service Function Chaining (SFC) Architecture.

draft-ietf-sfc-architecture-07 (work in progress) (2015).

[27] Sangjin Han, Keon Jang, Aurojit Panda, Shoumik Palkar, Dongsu Han, and

Sylvia Ratnasamy. 2015. SoftNIC: A software NIC to augment hardware. Dept.

EECS, Univ. California, Berkeley, Berkeley, CA, USA, Tech. Rep. UCB/EECS-2015-155

(2015).

Jinho Hwang, KK Ramakrishnan, and Timothy Wood. 2015. NetVM: high per-

formance and flexible networking using virtualization on commodity platforms.

Network and Service Management, IEEE Transactions on 12, 1 (2015), 34-47.

[29] Kai Hwang and A Faye. 1984. Computer architecture and parallel processing.
(1984).

[30] Intel. 2012. Data Plane Development Kit (DPDK). (2012). http://dpdk.org

[31] Keon Jang, Justine Sherry, Hitesh Ballani, and Toby Moncaster. 2015. Silo: Pre-

dictable message latency in the cloud. ACM SIGCOMM Computer Communication

Review 45, 4 (2015), 435-448.

Dilip A Joseph, Arsalan Tavakoli, and Ion Stoica. 2008. A policy-aware switching

layer for data centers. In ACM SIGCOMM Computer Communication Review,

Vol. 38. ACM, 51-62.

[33] Christoforos Kachris, Georgios Sirakoulis, and Dimitrios Soudris. 2014. Network
Function Virtualization based on FPGAs: A Framework for all-Programmable
network devices. arXiv preprint arXiv:1406.0309 (2014).

[34] Peyman Kazemian, George Varghese, and Nick McKeown. 2012. Header Space

Analysis: Static Checking for Networks.. In NSDI, Vol. 12. 113-126.

Eddie Kohler, Robert Morris, Benjie Chen, John Jannotti, and M Frans Kaashoek.

2000. The Click modular router. ACM Transactions on Computer Systems (TOCS)

18, 3 (2000), 263-297.

[36] S Kumar, M Tufail, S Majee, C Captari, and S Homma. 2015. Service Function

Chaining Use Cases in Data Centers. IETF SFC WG (2015).

Bojie Li, Kun Tan, Layong Larry Luo, Yanqing Peng, Rengian Luo, Ningyi Xu,

Yongqiang Xiong, and Peng Cheng. 2016. ClickNP: Highly flexible and High-

performance Network Processing with Reconfigurable Hardware. In Proceedings

of the 2016 conference on ACM SIGCOMM 2016 Conference. ACM, 1-14.

[38] Joao Martins, Mohamed Ahmed, Costin Raiciu, Vladimir Olteanu, Michio Honda,
Roberto Bifulco, and Felipe Huici. 2014. ClickOS and the art of network function
virtualization. In 11th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 14). Seattle, WA: USENIX Association. 459-473.

[39] Dirk Merkel. 2014. Docker: lightweight linux containers for consistent develop-

ment and deployment. Linux Journal 2014, 239 (2014), 2.

Christopher Monsanto, Joshua Reich, Nate Foster, Jennifer Rexford, David Walker,

and others. 2013. Composing Software Defined Networks.. In NSDI, Vol. 13. 1-13.

[41] Masoud Moshref, Minlan Yu, Ramesh Govindan, and Amin Vahdat. 2016. Trumpet:

Timely and Precise Triggers in Data Centers. In Proceedings of the 2016 conference

on ACM SIGCOMM 2016 Conference. ACM, 129-143.

Jad Naous, Glen Gibb, Sara Bolouki, and Nick McKeown. 2008. NetFPGA: reusable

router architecture for experimental research. In Proceedings of the ACM workshop

(17

[19

[23

[24

[26

[28

[32

[35

[37

N
)

[42

56

[43

[44

[45

[46

N
)

N
o)

[54]

[55

[56

[58

[59]

[60

[62

[63

[64]

o
2

C. Sun, J. Bi, Z. Zheng, H. Yu, H. Hu

on Programmable routers for extensible services of tomorrow. ACM, 1-7.

S Natarajan, R Krishnan, A Ghanwani, D Krishnaswamy, P Willis, and A Chaud-
hary. 2015. An analysis of container-based platforms for NFV. IETF Draft, Oct
(2015).

A10 Networks. 2017. aFleX advanced scripting for layer 4-7 traffic management.
(2017). http://www.loadbalanceworks.com/features-aFleX.asp

F5 Networks. 2017. Local traffic manager. (2017). https://f5.com/products/
modules/local-traffic-manager

Shoumik Palkar, Chang Lan, Sangjin Han, Keon Jang, Aurojit Panda, Sylvia
Ratnasamy, Luigi Rizzo, and Scott Shenker. 2015. E2: a framework for NFV
applications. In Proceedings of the 25th Symposium on Operating Systems Principles.
ACM, 121-136.

Aurojit Panda, Sangjin Han, Keon Jang, Melvin Walls, Sylvia Ratnasamy, and
Scott Shenker. NetBricks: Taking the V out of NFV. In 12th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 16), USENIX OSDI, Vol. 16.
David A Patterson and John L Hennessy. 2013. Computer organization and design:
the hardware/software interface. Newnes.

Chaithan Prakash, Jeongkeun Lee, Yoshio Turner, Joon-Myung Kang, Aditya
Akella, Sujata Banerjee, Charles Clark, Yadi Ma, Puneet Sharma, and Ying Zhang.
2015. Pga: Using graphs to express and automatically reconcile network policies.
ACM SIGCOMM Computer Communication Review 45, 4 (2015), 29-42.

Zafar Ayyub Qazi, Cheng-Chun Tu, Luis Chiang, Rui Miao, Vyas Sekar, and
Minlan Yu. 2013. SIMPLE-fying middlebox policy enforcement using SDN. In
Proceedings of the ACM SIGCOMM 2013 conference (SIGCOMM’13). ACM.

Paul Quinn and Uri Elzur. 2014. Network service header. draft-quinnsfc-nsh-01
(2014).

P Quinn and T Nadeau. 2014. Service function chaining problem statement.
draft-ietf-sfc-problem-statement-10 (work in progress) (2014).

Shriram Rajagopalan, Dan Williams, Hani Jamjoom, and Andrew Warfield. 2013.
Split/merge: System support for elastic execution in virtual middleboxes. In
Presented as part of the 10th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 13). 227-240.

Will Reese. 2008. Nginx: the high-performance web server and reverse proxy.
Linux Journal 2008, 173 (2008), 2.

Martin Roesch and others. 1999. Snort: Lightweight Intrusion Detection for
Networks.. In LISA, Vol. 99. 229-238.

Alex Rousskov and Valery Soloviev. 1999. A performance study of the Squid
proxy on HTTP/1.0. World Wide Web 2, 1-2 (1999), 47-67.

Erik Rubow, Rick McGeer, Jeff Mogul, and Amin Vahdat. 2010. Chimpp: A Click-
based programming and simulation environment for reconfigurable networking
hardware. In Architectures for Networking and Communications Systems (ANCS),
2010 ACM/IEEE Symposium on. IEEE, 1-10.

Eder J Scheid, Cristian C Machado, Ricardo L dos Santos, Alberto E Schaeffer-
Filho, and Lisandro Z Granville. 2016. Policy-based dynamic service chaining
in Network Functions Virtualization. In Computers and Communication (ISCC),
2016 IEEE Symposium on. IEEE, 340-345.

Omar Sefraoui, Mohammed Aissaoui, and Mohsine Eleuldj. 2012. OpenStack:
toward an open-source solution for cloud computing. International Journal of
Computer Applications 55, 3 (2012), 38-42.

Vyas Sekar, Norbert Egi, Sylvia Ratnasamy, Michael K Reiter, and Guangyu Shi.
2012. Design and implementation of a consolidated middlebox architecture.
In Proceedings of the 9th USENIX conference on Networked Systems Design and
Implementation. USENIX Association, 24-24.

Justine Sherry, Shaddi Hasan, Colin Scott, Arvind Krishnamurthy, Sylvia Rat-
nasamy, and Vyas Sekar. 2012. Making middleboxes someone else’s problem:
network processing as a cloud service. ACM SIGCOMM Computer Communication
Review 42, 4 (2012), 13-24.

Matthias Vallentin, Robin Sommer, Jason Lee, Craig Leres, Vern Paxson, and Brian
Tierney. 2007. The NIDS cluster: Scalable, stateful network intrusion detection on
commodity hardware. In International Workshop on Recent Advances in Intrusion
Detection. Springer, 107-126.

Wei Zhang, Jinho Hwang, Shriram Rajagopalan, KK Ramakrishnan, and Tim-
othy Wood. 2016. Flurries: Countless Fine-Grained NFs for Flexible Per-Flow
Customization. In Proceedings of the 12th International on Conference on emerging
Networking EXperiments and Technologies. ACM, 3-17.

Wei Zhang, Guyue Liu, Wenhui Zhang, Neel Shah, Phil Lopreiato, Gregoire
Todeschi, KK Ramakrishnan, and Timothy Wood. 2016. OpenNetVM: A Plat-
form for High Performance Network Service Chains. In Proceedings of the 2016
ACM SIGCOMM Workshop on Hot Topics in Middleboxes and Network Function
Virtualization. ACM.

Yang Zhang, Bilal Anwer, Vijay Gopalakrishnan, Bo Han, Joshua Reich, Aman
Shaikh, and Zhi-Li Zhang. 2017. ParaBox: Exploiting Parallelism for Virtual
Network Functions in Service Chaining. In Proceedings of the Symposium on SDN
Research. ACM, 143-149.

https://osm.etsi.org/
http://dpdk.org
http://www.loadbalanceworks.com/features-aFleX.asp
https://f5.com/products/modules/local-traffic-manager
https://f5.com/products/modules/local-traffic-manager

	Abstract
	1 Introduction
	2 Motivation and Challenges
	2.1 Background and Motivation
	2.2 Design Challenges

	3 Policy Definition
	4 Orchestrator Design
	4.1 NF Parallelism Analysis
	4.2 Resource Overhead Optimization
	4.3 NF Parallelism Identification Algorithm
	4.4 Service Graph Construction

	5 Infrastructure Design
	5.1 Packet Classification
	5.2 Packet Delivery Among NFs
	5.3 Load Balanced Packet Merging
	5.4 Integrating Network Functions into NFP

	6 Implementation and Evaluation
	6.1 Network Functions
	6.2 Performance Improvement
	6.3 Overhead
	6.4 Real World Service Chains

	7 Discussion
	8 Related Work
	9 Conclusions and Future Work
	10 Acknowledgement
	References

