
FAME: A Firewall Anomaly Management Environment

Hongxin Hu, Gail-Joon Ahn and Ketan Kulkarni
Arizona State University
Tempe, AZ 85287, USA

{hxhu,gahn,kakulkar}@asu.edu

ABSTRACT
Firewalls are a widely deployed security mechanism to ensure the
security of private networks in most businesses and institutions.
The effectiveness of security protection provided by a firewall mainly
depends on the quality of policy configured in the firewall. How-
ever, designing and managing firewall policies are often error-prone
due to the complex nature of firewall configurations as well as
the lack of systematic analysis mechanisms and tools. This pa-
per represents an innovative anomaly management framework for
firewalls, adopting a rule-based segmentation technique to iden-
tify policy anomalies and derive effective anomaly resolutions. In
particular, we articulate a grid-based representation technique for
providing an intuitive cognitive sense about policy anomaly and
facilitating efficient policy anomaly management. In addition, we
demonstrate the feasibility and applicability of our framework through
a proof-of-concept prototype of a visualization-based firewall pol-
icy analysis tool called Firewall Anomaly Management Environ-
ment (FAME).

Categories and Subject Descriptors
D.4.6 [Security and Protection]: Access controls

General Terms
Security, Management

Keywords
Firewall policies, anomaly management, visualization tool

1. INTRODUCTION
Sitting on the border between a private network and the pub-

lic Internet, a firewall examines all incoming and outgoing packets
based on security rules to monitor suspicious traffic and unautho-
rized access to Internet-based enterprises. To implement a security
policy in a firewall, system administrators define a set of filtering
rules that are derived from the organizational network security re-
quirements.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SafeConfig’10, October 4, 2010, Chicago, Illinois, USA.
Copyright 2010 ACM 978-1-4503-0093-3/10/10 ...$10.00.

Firewall policy management is a challenging task due to the
complexity and interdependency of policy rules. This is further
exacerbated by the continuous evolution of network environments.
Therefore, effective mechanisms and tools for policy management
are crucial to the success of firewalls. Recently, policy anomaly de-
tection has received a great deal of attention [5, 6, 8, 9, 29]. Corre-
sponding policy analysis tools, such as Firewall Policy Advisor [5,
6] and FIREMAN [29], with the goal of detecting policy anoma-
lies have been introduced. Firewall Policy Advisor only has the
capability of detecting pairwise anomalies in firewall rules. FIRE-
MAN can detect anomalies among multiple rules by analyzing the
relationships between one rule and the collections of packet spaces
derived from all preceding rules. However, FIREMAN also has
limitations in detecting anomalies [8]. For each firewall rule, FIRE-
MAN only examines all preceding rules but ignores all subsequent
rules when performing anomaly analysis. The anomaly detection
procedures of FIREMAN are thus incomplete. In addition, each
analysis result from FIREMAN can only show that there is a mis-
configuration between one rule and its preceding rules, but cannot
accurately indicate all rules involved in an anomaly.

On the other hand, due to the complex nature of policy anoma-
lies, system administrators are often faced with a more challeng-
ing problem in resolving anomalies, in particular, resolving policy
conflicts. An intuitive means for a system administrator to resolve
policy conflicts is to remove all conflicts by modifying the conflict-
ing rules. However, changing the conflicting rules is significantly
difficult, even impossible, in practice from many aspects. First, the
number of conflicts in a firewall is typically large, since a firewall
policy may consist of thousands of rules, which are often logically
entangled with each other. Second, policy conflicts are often very
complicated. One rule may conflict with multiple other rules, and
one conflict may be associated with several rules. Besides, firewall
policies deployed on a network are often maintained by more than
one administrator, and an enterprise firewall may contain legacy
rules that are designed by different administrators. Thus, without a
priori knowledge on the administrators’ intentions, changing rules
will affect the rules’ semantics and may not resolve conflicts cor-
rectly. Furthermore, in some cases, a system administrator may
intentionally introduce certain overlaps in firewall rules knowing
that only the first rule is important. In reality, this is a commonly
used technique to exclude specific parts from a certain action, and
the proper use of this technique could result in a fewer number of
rules [29]. In this case, conflicts are not an error, but intended,
which would not be necessary to be changed.

Since the policy conflicts in firewalls always exist and are hard
to be eliminated, a practical resolution method is to identify which
rule involved in a conflict situation should take precedence when
multiple conflicting rules (with different actions) can filter a par-

Table 1: An example firewall policy.
Order Rule Protocol Source IP Source Port Destination IP Destination Port Action

1 r1 UDP 10.1.2.* * 172.32.1.* 53 deny
2 r2 UDP 10.1.*.* * 172.32.1.* 53 deny
3 r3 TCP 10.1.*.* * 192.168.*.* 25 allow
4 r4 TCP 10.1.1.* * 192.168.1.* 25 deny
5 r5 * 10.1.1.* * * * allow

ticular network packet simultaneously. To resolve policy conflicts,
a firewall typically implements a first-match resolution mechanism
based on the order of rules. In this way, each packet processed
by the firewall is mapped to the decision of the first rule that the
packet matches. However, applying the first-match strategy to cope
with policy conflicts has limitations. When a conflict occurs in a
firewall, the existing first matching rule may not be a desired rule
that should take precedence with respect to conflict resolution. In
particular, the existing first matching rule may perform opposite
action to the rule which should be considered to take precedence.
This situation can cause severe network breaches such as permitting
harmful packets to sneak into a private network, or dropping legal
traffic which in turn could encumber the availability and utility of
network services. Obviously, it is necessary to seek a way to bridge
a gap between conflict detection and using first-match mechanism
for resolving conflicts in firewalls.

In this paper, we represents a novel anomaly management frame-
work for firewalls based on a rule-based segmentation technique
to facilitate not only more accurate anomaly detection but also ef-
fective anomaly resolution. Moreover, the outputs of prior policy
analysis tools [5, 6, 29] are mainly a list of possible anomalies,
which does not give system administrators a clear view of the orig-
ination of policy anomalies. Since information visualization tech-
nique [18] enables users to explore, analyze, reason and explain
abstract information by taking advantage of their visual cognition,
our policy analysis tool adopts an information visualization tech-
nique to facilitate policy analysis. A grid-based visualization tech-
nique is introduced to represent outputs of policy anomaly analy-
sis, enabling an efficient anomaly management. The implementa-
tion of our visualization-based policy analysis tool called Firewall
Anomaly Management Environment (FAME) is discussed as well.

This paper is organized as follows. Section 2 overviews firewall
policies and the anomalies in such policies. Section 3 presents an
anomaly representation technique based on packet space. In Sec-
tion 4, we articulate our policy anomaly management framework.
In Section 5, we address the implementation details of FAME fol-
lowed by the related work in Section 6. Section 7 concludes this
paper and discusses our future directions.

2. PRELIMINARIES

2.1 Overview of Firewall Policies
A firewall policy consists of a sequence of rules that define the

actions performed on packets that satisfy certain conditions. The
rules are specified in the form of 〈condition, action〉. A condition
in a rule is composed of a set of fields to identify a certain type of
packets matched by this rule. Five fields are most commonly used
in a rule’s condition: protocol type, source IP, source port, des-
tination IP and destination port. 1 Those fields are either a single
value or a finite interval of non-negative integers. An action in a
1Some firewalls may occasionally utilize other fields, such as IP
TOS (Type of Service) and TTL (Time to Live), which increase the

rule describes the corresponding action performed on the matched
packets and typically takes the value “allow”, which permits the
packets passing through the firewall, or “deny”, which leads to the
packets to be blocked.

A packet matches a rule if and only if the header information of
the packet satisfies all fields in the rule. Upon finding a matching
rule, the corresponding decision for the packet is derived. A fire-
wall policy with a sequence of rules typically follows a first-match
semantic to evaluate a packet: the decision of the first matching
rule is applied to the packet. If there is no matching rule that could
be found in the firewall policy, a default action is performed. Most
firewalls utilize “deny” as the default action, implying every packet
that could not be matched by any rules will be denied.

Table 1 shows an example of a firewall policy, which includes
five firewall rules r1, r2, r3, r4 and r5. Note that the symbol “*”
utilized in firewall rules denotes a domain range. For instance, a
single “*” appearing in the IP address field represents an IP address
range from 0.0.0.0 to 255.255.255.255.

2.2 Anomalies in Firewall Policies
Two rules in a firewall policy may overlap, which means one

packet may match both rules. Moreover, two rules in a firewall may
conflict, implying that those two rules not only overlap each other
but also take different actions. Policy conflicts may lead to both
security problems (e.g. allowing malicious traffic) and availability
problems (e.g. denying legitimate traffic), and policy redundancies
will affect the performance of a firewall. A comprehensive classifi-
cation of policy anomalies (misconfigurations) has been articulated
by several related work [6, 29]. Following existing classification,
we summarize policy anomalies as follows:

1. Shadowing: A rule can be shadowed by one or a set of pre-
ceding rules that match all the packets which also match the
shadowed rule, while they perform a different action. In this
case, all the packets that one rule intends to deny (accept) can
be accepted (denied) by previous rule(s), thus the shadowed
rule will never be taken effect. In Table 1, r4 is shadowed by
r3 because r3 allows every TCP packet coming from any port
of 10.1.1.* to the port 25 of 192.168.1.*, which is supposed
to be denied by r4.

2. Generalization: A rule is a generalization of one or a set
of previous rules if a subset of the packets matched by this
rule is also matched by the preceding rule(s) but taking a
different action. For example, r5 is a generalization of r4 in
Table 1. These two rules indicate that all the packets from
10.1.1.* are allowed, except TCP packets from 10.1.1.* to
the port 25 of 192.168.1.*. Note that, as we discussed earlier,
generalization might not be an error.

3. Correlation: One rule is correlated with other rules, if a rule
intersects with others but defines a different action. In this

dimensionality of the rule conditions but do not affect the proposed
approach in this paper.

(a) Two dimensional geometric representation
of overlapping rules

(b) Packet space segmentation (c) Uniform representation

Figure 1: Packet space representation derived from the example policy.

case, the packets matched by the intersection of those rules
may be permitted by one rule, but denied by others. In Ta-
ble 1, r2 correlates with r5, and all UDP packets coming
from any port of 10.1.1.* to the port 53 of 172.32.1.* match
the intersection of these rules. Since r2 is a preceding rule
of r5, every packet within the intersection of these rules is
denied by r2. However, if their positions are swapped, the
same packets will be allowed.

4. Redundancy: A rule is redundant if there is another same
or more general rule available that has the same effect. For
example, r1 is redundant with respect to r2 in Table 1, since
all UDP packets coming from any port of 10.1.2.* to the port
53 of 172.32.1.* matched with r1 can match r2 as well with
the same action.

Anomaly detection algorithms and corresponding tools were also
introduced by [6, 29]. However, prior work only treated a policy
conflict as an inconsistent relation between one rule and other rules.
Given a more general definition on policy conflict as shown in Def-
inition 1, we believe that identifying policy conflicts should always
consider a firewall policy as a whole piece, and precise indication
of the rule set involved in a conflict is critical for effectively resolv-
ing the conflict.

DEFINITION 1. (Policy Conflict). A policy conflict pc in a fire-
wall F is associated with a unique set of conflicting firewall rules
cr={r1, ..., rk}, which can derive a common network packet space.
All packets within this space can match exactly the same set of fire-
wall rules, where at least two rules have different actions: Allow
and Deny.

Similarly, we give a more general definition for rule redundancy
in firewall policies as follows:

DEFINITION 2. (Rule Redundancy). A rule r in a firewall F
is redundant if removing r from F fulfills that the network packet
space derived from the new firewall F ′ is equal to the network
packet space defined by F . That is, F and F ′ satisfy following
equations: SA

F = SA
F ′ and SD

F = SD
F ′ , where SA and SD denote

allowed and denied network packet spaces, respectively.

3. ANOMALY REPRESENTATION BASED
ON PACKET SPACE

3.1 Packet Space Segmentation and Classifi-
cation

As we discussed in Section 2.2, existing anomaly detection meth-
ods could not accurately point out the anomaly portions caused

by a set of overlapping rules. In order to precisely identify pol-
icy anomalies and enable a more effective anomaly resolution, we
adopt a rule-based segmentation technique, which can convert a list
of rules into a set of disjoint network packet spaces. This technique
has been recently introduced to deal with several research problems
such as network traffic measurement [30], firewall testing [14] and
optimization [15, 23]. Inspired by those successful applications, we
adopt this technique for the purpose of firewall anomaly analysis.

To facilitate the correct interpretation of analysis results, a con-
cise and intuitive representation method is necessary. For the pur-
poses of brevity and understandability, we employ a two dimen-
sional geometric representation for each packet space derived from
firewall rules. Note that a firewall rule typically utilizes five fields to
define the rule condition, thus a complete representation of packet
space should be multi-dimensional. Figure 1(a) gives the two di-
mensional geometric representation of packet spaces derived from
the example policy shown in Table 1. We utilize colored rectan-
gles to denote two kinds of packet spaces: allowed space (white
color) and denied space (grey color), respectively. In this example,
there are two allowed spaces representing rules r3 and r5, and three
denied spaces depicting rules r1, r2 and r4.

Two spaces overlap when the packets matching two correspond-
ing rules intersect. For example, r5 overlaps with r2, r3 and r4, re-
spectively. An overlapping relation may involve multiple rules. In
order to clearly represent all identical packet spaces derived from
a set of overlapping rules, we adopt the rule-based segmentation
technique to divide an entire packet space into a set of pairwise dis-
joint segments. 2 We classify the policy segments as follows: non-
overlapping segment and overlapping segment, which is further
divided into conflicting overlapping segment and non-conflicting
overlapping segment. Each non-overlapping segment associates
with one unique rule and each overlapping segment is related to a
set of rules, which may conflict with each other (conflicting over-
lapping segment) or have the same action (non-conflicting overlap-
ping segment). Figure 1(b) demonstrates the segments of packet
spaces derived from the example policy. Since the size of segment
representation does not give any specific benefits in resolving pol-
icy anomalies, we further present a uniform representation of space
segments in Figure 1(c). We can notice that seven unique disjoint
segments are generated. Three policy segments s2, s4 and s7 are
non-overlapping segments. Other policy segments are overlapping
segments, including two conflicting overlapping segments s3 and
s5, and two non-conflicting overlapping segments s1 and s6.

3.2 Grid Representation of Policy Anomaly
To enable an effective anomaly resolution, complete and accu-

2The detail of an algorithm for the packet space segmentation is
given in [1].

Figure 2: Grid representation of policy anomaly.

rate anomaly diagnosis information should be represented in an in-
tuitive way. When a set of rules interacts, one overlapping relation
may be associated with several rules. Meanwhile, one rule may
overlap with multiple other rules and can be involved in a couple
of overlapping relations (overlapping segments). Different kinds of
segments and associated rules can be viewed in the uniform repre-
sentation of anomalies (Figure 1(c)). However, it is still difficult
for an administrator to figure out how many segments one rule is
involved in. To address the need of a more precise anomaly repre-
sentation, we additionally introduce a grid representation that is a
matrix-based visualization of policy anomalies, in which space seg-
ments are displayed along the horizontal axis of the matrix, rules
are shown along the vertical axis, and the intersection of a segment
and a rule is a grid that displays a rule’s subspace covered by the
segment.

Figure 2 shows a grid representation of policy anomalies for our
example policy. We can easily determine which rules are covered
by a segment, and which segments are associated with a rule. For
example, as shown in Figure 2, we can notice that a conflicting
segment s5, which points out a conflict, is related to a rule set con-
sisting of three conflicting rules r3, r4 and r5 (highlighted with a
horizontal red rectangle), and a rule r3 is involved in three segments
s5, s6 and s7 (highlighted with a vertical red rectangle). Our grid
representation provides a better understanding of policy anomalies
to system administrators with an overall view of related segments
and rules.

4. ANOMALY MANAGEMENT
FRAMEWORK

Our anomaly management framework is composed of two core
functionalities: conflict detection and resolution, and redundancy
discovery and removal, as depicted in Figure 3. Both function-
alities are based on the rule-based segmentation technique. For
conflict detection and resolution, conflicting segments are identi-
fied in the first step. Each conflicting segment associates with a
policy conflict and a set of conflicting rules. Also, the correlation
relationships among conflicting segments are identified and conflict
correlation groups are derived. Policy conflicts belonging to differ-
ent conflict correlation groups can be resolved separately, thus the
searching space for resolving conflicts is reduced by the correlation
process. The second step generates action constraints for each con-
flicting segment by examining the characteristics of each conflict-
ing segment. A strategy-based method is introduced for generating
action constraints. The details of action constraints are discussed in

Figure 3: Policy anomaly management framework.

Section 4.2. The third step utilizes a reordering algorithm, which is
a combination of a permutation algorithm and a greedy algorithm,
to discover a near-optimal conflict resolution solution for policy
conflicts. Regarding redundancy discovery and removal, segment
correlation groups are first identified. Then, the process of property
assignment is performed to each rule’s subspaces. Consequently,
redundant rules are identified and eliminated.

4.1 Correlation of Packet Space Segment
Technically, one rule may get involved in multiple policy anoma-

lies. In this case, resolving one anomaly in an isolated manner may
cause the unexpected impact on other anomalies. Similarly, we
cannot resolve a conflict individually by only reordering conflict-
ing rules associated with one conflict without considering possible
impacts on other conflicts. On the other hand, it is also inefficient to
deal with all conflicts together by reordering all conflicting rules si-
multaneously. Therefore, it is necessary to identify the dependency
relationships among packet space segments for efficiently resolving
policy anomalies.

Algorithm 1: Segment Correlation

Input: A set of segments, C.
Output: A set of groups for correlated segments, G.
G.New();1
foreach s ∈ S do2

R ←− GetRule(s);3
foreach g ∈ G do4

foreach s
′ ∈ GetSegment(g) do5

R
′
.Append(GetRule(s

′
));6

if R ∩R
′ 6= ∅ then7

g.Append(s);8
else9

G.NewGroup().Append(s);10

return G;11

Figure 4 shows an example of segment correlation. 3 Suppose
we add three new rules r6, r7 and r8 in the example policy shown
3Note that for conflict resolution we only need to examine the cor-
relation relations among conflicting segments.

in Table 1. Several rules in this firewall policy are involved in mul-
tiple anomalies. For example, r2 is associated with three segments
s1, s2 and s3. Also, we can identify r3, r5, r6 and r7 are also
associated with multiple segments. Assume we need to resolve
the conflict related to a conflicting segment s3 by reordering as-
sociated conflicting rules, r2 and r5. The position change of r2

and r5 would also affect other segments, s1, s2, s4, s5 and s6.
Thus, a dependency relationship among those segments can be de-
rived. We cluster such segments with a dependency relationship as
a group called correlation group. The pseudocode of an algorithm
for identifying correlation groups is given in Algorithm 1. Apply-
ing this algorithm to our example, two correlation groups, group1
and group2, can be identified as shown in Figure 4: group1 con-
tains seven segments and a rule set with five elements (r1, r2, r3, r4

and r5); and group2 includes three segments and three associated
rules, r6, r7 and r8.

Figure 4: Example of segment correlation.

The major benefit of generating correlation groups for the anomaly
analysis is that anomalies can be examined within each group inde-
pendently, because all correlation groups are independent of each
other. Especially, the searching space for reordering conflicting
rules in conflict resolution can be significantly lessened and the ef-
ficiency of resolving conflicts can be greatly improved.

4.2 Action Constraint Generation and Rule Re-
ordering for Conflict Resolution

Each conflicting segment indicates a policy conflict as well as a
set of conflicting rules involved in the conflict. Once conflicts are
identified, a possible way for a system administrator to resolve con-
flicts is to manually change the conflicting rules. However, as we
addressed in Section 1, resolving all conflicts manually is a tedious
task and even impractical due to the complicated nature of policy
conflicts. Thus, a practical and effective method to resolve a policy
conflict is to determine which rule should take precedence when a
network packet is matched by a set of rules involved in the conflict.
In order to utilize the existing first-match conflict resolution mech-
anism implemented in common firewalls, the rule expected to take
precedence needs to be moved to the first-match rule.

Our conflict resolution mechanism introduces that an action con-
straint is assigned to each conflicting segment. Then, to resolve a
conflict, we only assure that the action taken for each packet within
the conflicting segment can satisfy the corresponding action con-
straint. A key feature of this solution is that we do not need to
move a rule expected to take precedence to the first-match rule at
all times. Any rule associated with the conflict on the same ac-
tion (as a rule with the precedence) can be moved to the first-match

rule, guaranteeing the same effect with respect to the conflict reso-
lution. Thus, it is doable to obtain an optimal solution for conflict
resolution.

DEFINITION 3. (Action Constraint). An action constraint ac
for a conflicting segment cs defines a desired action (either Allow
or Deny) that the firewall policy should take when any packet in the
conflicting segment comes to the firewall.

4.2.1 Action Constraint Generation

Figure 5: Strategy-based conflict resolution.

To generate action constraints for conflicting segments, we pro-
pose a strategy-based conflict resolution method, which generates
action constraints with the help of effective resolution strategies
based on the minimal interaction with system administrators. Fig-
ure 5 shows the main processes of this method, which incorporates
both automated and manual strategy selections.

Once conflicts in a firewall policy are discovered and conflict
correlation groups are identified, the risk assessment for conflicts
is performed. The risk levels of conflicts are in turn utilized for
both automated and manual strategy selections. A basic idea of
automated strategy selection is that a risk level of a conflicting seg-
ment is used to directly determine the expected action taken for the
network packets in the conflicting segment. If the risk level is very
high, the expected action should deny packets considering the pro-
tection of network perimeters. On the contrary, if the risk level is
quite low, the expected action should allow packets to pass through
the firewall so that the availability and usage of network services
cannot be affected. Thus, conflict resolution strategies (RS) can
be generated automatically for partial conflict segments by com-
paring the risk levels with two thresholds, upper threshold (UT)
and lower threshold (LT), which can be set by system administra-
tors in advance. If a risk level of a conflicting segment is between
the upper threshold and the lower threshold, system administrators
need to examine the characteristics of each conflict, and manually
select appropriate strategies for resolving the conflict, considering

Table 2: Constraint generation from conflict resolution strategy
Strategy Effect Action Constraint
Deny-overrides Deterministic Action = “deny”
Allow-overrides Deterministic Action = “allow”
Specificity-overrides Nondeterministic Action of the most specific rule
High-majority-overrides Nondeterministic Action of the rules with greater number than the opposite rules
Recency-overrides Nondeterministic Action of the newest rule
High-authority-overrides Nondeterministic Action of the rule with the highest authority level

network situations (e.g., risk levels of conflicts) and contexts asso-
ciated with conflicting rules (e.g., priorities, creation time, authors,
and so on). Thus, a fine-grained conflict resolution can be carried
out with human cognition via the interaction facility with system
administrators. Since some strategies may be nondeterministic and
could not generate a concrete action constraint when applying to a
conflict, system administrators need to adjust the strategy assign-
ments accordingly. Once each conflicting segment has been as-
signed appropriate conflict resolution strategies, action constraints
can be generated based on the assigned strategies. Table 2 sum-
marizes the effect of different conflict resolution strategies utilized
in our mechanism as well as the constraint generation from those
strategies.

Risk (security) levels are determined based on the vulnerability
assessment of the protected network. We have recently seen a num-
ber of attempts for qualitatively measuring risks in a network [13,
16, 25, 26]. In our work, we adopt the Common Vulnerability Scor-
ing System (CVSS) [22] as an underlying security metrics for risk
evaluation. Two major factors, exploitability of vulnerability (re-
flecting the likelihood of exploitation) and severity of vulnerability
(representing the potential damage of exploitation), are utilized to
evaluate the risk level of a network system. Beside those two fac-
tors, another important factor in determining the criticality of an
identified security problem is asset importance value. Normally,
system administrators place a higher priority on defending critical
servers than non-critical PCs. Similarly, some machines are more
valuable than others. We use asset importance value to represent
a service’s inherent value to network attackers or system adminis-
trators. Since the CVSS base score can cover both exploitability of
vulnerability and severity of vulnerability factors, we incorporate
the CVSS base score and asset importance value to compute the
risk value for each vulnerability. To calculate the risk level (RL) of
each conflicting segment, we accumulate all risk values of the vul-
nerabilities covered by a conflicting segment. In practice, system
administrators may mainly concern about the security risk of each
vulnerability in their network. In this case, an average risk value
needs to be calculated as the risk level of a conflicting segment. In
order to accommodate both requirements for risk evaluation of a
conflicting segment. We introduce a generic equation for the risk
level calculation as follows:

RL(cs) =

∑
v∈V (cs)(CV SS(v)× IV (s))

α× |V (cs)| (1)

Where, V (cs) is a function to return all vulnerabilities that are
contained in a conflicting segment cs; CV SS(v) is a function to
return the CVSS base score of vulnerability v; and IV (s) is a func-
tion to return the importance value (range from 0.0 to 1.0) of service
s. Also, we incorporate a coefficient factor α (1

|V (cs)| ≤ α ≤ 1)
that allows system administrators to express their preferences in
choosing average or overall risk value to measure the risk of each
conflicting segment.

4.2.2 Rule Reordering
A naive way to find an optimal solution is to exhaustively search

all permutations of correlated conflicting rules. We then compute
a resolving score for each permutation by counting how many ac-
tion constraints can be satisfied, and select the permutation with the
maximum resolving score as the best solution for a conflict resolu-
tion. However, a key limitation of using the permutation algorithm
is its computational complexity which is O(n!). Even though the
search space can be significantly reduced by applying our correla-
tion scheme, the number of correlated conflicting rules may still be
large, leading to the permutation algorithm unapplicable. That is,
the permutation algorithm can help us identify an optimal solution
for a conflict resolution, but it is inefficient for the firewall policies
with a larger number of conflicting rules within some conflict corre-
lation groups. As an approximation algorithm, the greedy conflict
resolution algorithm is thus more efficient in resolving conflicts,
but can only find a near-optimal solution. The detail of our greedy
algorithm is omitted in this paper due to the space limitation but
can be found in [1].

In order to achieve the objective of resolving conflicts effectively
and efficiently, our conflict resolution mechanism adopts a combi-
nation algorithm incorporating features from both permutation and
greedy algorithms. A threshold N for selecting a suitable rule re-
ordering algorithm to resolve a conflict can be predefined in the
combination algorithm. When the number of conflicting rules is
less than N , the permutation algorithm is utilized for resolving
conflicts. Otherwise, the greedy algorithm is applied to resolve
conflicts.

4.3 Property Assignment for Redundancy Re-
moval

Figure 6: Example of property assignment for redundancy re-
moval.

In this step, every rule subspace covered by a policy segment
is assigned with a property. Four property values, removable (R),

strong irremovable (SI), weak irremovable (WI) and correlated (C),
are defined to reflect different characteristics of each rule subspace.
Removable property is used to indicate that a rule subspace is re-
movable. In other words, removing such a rule subspace does not
make any impact on the original packet space of an associated pol-
icy. Strong irremovable property means that a rule subspace cannot
be removed because the effect of corresponding policy segment can
be decided only by this rule. Weak irremovable property is assigned
to a rule subspace when any subspace belonging to the same rule
has strong irremovable property. That means a rule subspace be-
comes irremovable due to the reason that other portions of this rule
cannot be removed. Correlated property is assigned to multiple
rule subspaces covered by a policy segment, if the effect of this
policy segment can be determined by any of these rules. We next
introduce three processes to perform the property assignments to all
of rule subspaces within the segments of a firewall policy, consid-
ering different categories of policy segments discussed in Section
3.1.

Process1: Property assignment for the rule subspace covered by a
non-overlapping segment. A non-overlapping segment con-
tains only one rule subspace. Thus, this rule subspace is
assigned with strong irremovable property. Other rule sub-
spaces associated with the same rule are assigned with weak
irremovable property, except for the rule subspaces that al-
ready have strong irremovable property.

Process2: Property assignment for rule subspaces covered by a
conflicting segment. The first rule subspace covered by the
conflicting segment is assigned with strong irremovable prop-
erty. Other rule subspaces in the same segment are assigned
with removable property. Meanwhile, other rule subspaces
associated with the same rule are assigned with weak irre-
movable property except for the rule subspaces with strong
irremovable property.

Process3: Property assignment for rule subspaces covered by a
non-conflicting overlapping segment. If any rule subspace
has been assigned with weak irremovable property, other rule
subspaces without any irremovable property are assigned with
removable property. Otherwise, all subspaces within the seg-
ment are assigned with correlated property.

The pseudocode of the algorithm for property assignment is shown
in Algorithm 2. Figure 6 shows the result of applying our property
assignment algorithm, which performs three property assignment
processes in sequence, to the example presented in Figure 2. We
can easily identify that r1 and r4 are removable rules, where all
subspaces are with removable property. 4

5. FIREWALL ANOMALY MANAGEMENT
ENVIRONMENT: FAME

Our framework is realized as a proof-of-concept prototype called
FAME. Figure 7 shows a high level architecture of FAME with
two levels. The upper level is the visualization layer, which visu-
alizes the results of policy anomaly analysis to system administra-
tors. Two visualization interfaces, policy conflict viewer and policy
redundancy viewer, are designed to manage policy conflicts and
redundancies, respectively. The lower level of the architecture pro-
vides underlying functionalities addressed in our policy anomaly
4Note that we may need to further examine rules, which contain
some subspaces with correlated property, through a correlation
break mechanism.

Algorithm 2: Property Assignment of Rule Subspaces for Re-
dundancy Discovery

Input: A set of authorization space segment S of a policy p.
Output: A set of rules R with assigned property.
/* Process 1: handling non-overlapping segment */1
foreach s ∈ GetNonOverlapSegment(S) do2

sp ←− GetSegSubspace(s);3
sp.Property ←− SI ;4
AssginWI(FirstSubspace(sp));5

/* Process 2: handling conflicting overlapping segment */6
foreach s ∈ GetConflictSegment(S) do7

FirstSubspace(s).P roperty ←− SI ;8
AssginWI(FirstSubspace(s));9
foreach sp′ ∈ GetNonFirstSubspace(s) do10

sp′.P roperty ←− R ;11

/* Process 3: handling non-conflicting overlapping segment */12
foreach s ∈ GetNonConflictOverlapSegment(S) do13

SP ←− GetSegSubspace(s);14
if AnyWI(SP) = true then15

foreach sp′ ∈ WithoutWI(SP) do16
sp.Property ←− R ;17

else18
foreach sp ∈ SP do19

sp.Property ←− C ;20

/* Assigning week irremovable property */21
AssignWI(sp);22
SP ←− GetRuleSubspace(GetRule(sp));23
foreach sp′ ∈ SP do24

if sp′ 6= sp and sp′.P roperty 6= SI then25
sp′.P roperty ←− WI ;26

management framework and relevant resources including rule in-
formation, strategy repository, network asset information, and vul-
nerability information. In this section, we first discuss a few is-
sues related to the implementation of our management framework.
Then, we articulate the features of our visualization interfaces.

5.1 Implementation of Anomaly Management
Framework in FAME

FAME was implemented in Java. Based on our policy anomaly
management framework, it consists of six components: segmen-
tation module, correlation module, risk assessment module, action
constraint generation module, rule reordering module, and property
assignment module. The segmentation module takes firewall poli-
cies as an input and identifies the packet space segments by par-
titioning the packet space into disjoint subspaces. FAME utilizes
Ordered Binary Decision Diagrams (BDDs) 5 to represent firewall
rules and perform various set operations, such as unions (∪), in-
tersections (∩), and set differences (\), required by the segmenta-
tion algorithm. A BDD library called BuDDy [2] is employed by
FAME. Once the segmentation of packet space is identified, FAME
further identifies different kinds of segments and corresponding
correlation groups. In risk assessment module, Nessus [3] is uti-
lized as a vulnerability scanner to identify the vulnerabilities within
a conflicting segment. Network address space of each conflicting
5BDD has been demonstrated as an efficient data structure to deal
with a variety of network configuration analysis [7, 29].

Figure 7: Architecture of FAME.

segment is fed into Nessus to get the vulnerability information of
a given address space. Nessus produces the vulnerability informa-
tion in a “nbe” format. The risk assessment module utilizes tis-
synbe script [4] to parse the Nessus results and store the vulner-
ability information to a vulnerability database. A risk calculator
retrieves vulnerability information, such as CVSS base score and
asset importance value, to calculate the risk level of each conflict-
ing segment. The action constraint generation module takes con-
flicting segments as an input and generates action constraints for
each conflicting segment. Action constraints are generated based
on strategies assigned to each conflicting segment. The rule re-
ordering module takes conflict correlation groups and action con-
straints of conflicting segments as inputs and generates optimal or
near-optimal conflict resolution for policy conflicts using a com-
bined reordering algorithm in our framework. The property assign-
ment module takes segment correlation groups as inputs and au-
tomatically assigns corresponding properties to each rule subspace
covered by policy segments. The assigned properties are in turn
utilized to identify redundant rules.

5.2 Visualization Interfaces of FAME
FAME provides two policy viewers to visualize the outputs of

policy conflict analysis and policy redundancy analysis. Each viewer
offers two kinds of visualization interfaces: one interface shows an
entire snapshot of all anomalies; another interface shows a partial
snapshot only containing anomalies within one correlation group.

Figure 8 depicts interfaces of FAME conflict viewer. The grid
representation shows accurately how a set of rules interacts with
each other. FAME conflict viewer has the ability to show an overview
of the entire conflicts as well as portions of the policy conflicts,
that need to be examined in depth for conflict resolution, based on
correlation groups. As illustrated in Figure 8 (a), all conflicting
segments and conflict correlation groups are displayed along the
horizontal axis at the top of the interface. All conflicting rules are
shown along the vertical axis at the left of the interface. Each grid
cell represents a rule’s subspace. In our interface, the icons for con-

flicting segments indicate four different states with respect to con-
flicting resolution. One icon represents a conflicting segment with
the state of strategy-unassigned. Two other icons indicate conflict-
ing segments with the state of strategy-assigned with “Allow” ac-
tion constraint and strategy-assigned with “Deny” action constraint,
respectively. The fourth icon indicates a conflicting segment with
the state of conflict-unresolved. In addition, this interface allows
an administrator to set the risk level thresholds for automatically
assigning strategies.

Clicking on a group name box of the interface in Figure 8 (a),
another window as shown in Figure 8 (b) is displayed with the
targeted conflicts that an administrator needs to examine and re-
solve. In this interface, the number of visible entities is reduced
to display conflicting segments in only one correlation group and
a list of conflicting rules associated with this group. This signif-
icantly eliminates administrators’ workloads in resolving conflicts
by highlighting conflicts within a group. For resolution strategy se-
lection, the administrator needs to further examine rule information
for selecting suitable strategies for each conflicting segment. When
the administrator clicks the icon of a conflicting segment, the de-
tailed information related to the conflict is displayed in a window
as shown in Figure 8 (c). 6

We believe that the visualization interfaces in FAME will assist
administrators in viewing the outputs from policy anomaly analy-
sis and facilitate a more effective and efficient anomaly resolution
with following contributions: First, FAME helps the administra-
tor minimize the portions of the policy that they need to examine at
any given time. Second, the grid representation of policy anomalies
offers an intuitive and succinct view of the interactions of overlap-
ping rules and enables administrators to better understand policy
anomalies.

6. RELATED WORK
There exist a number of algorithms and tools designed to as-

sist system administrators in managing and analyzing firewall poli-
cies [5, 6, 8, 9, 20, 29]. Lumeta [28] and Fang [21] allow user
queries for the purpose of analysis and management of firewall
policies. Essentially, they introduced lightweight firewall testing
tools but could not provide a comprehensive examination of pol-
icy misconfigurations. Several other approaches presenting pol-
icy analysis tools with the goal of detecting policy anomalies are
closely related to our work. Al-Shaer and Hamed [5, 6] designed
a tool called Firewall Policy Advisor to detect pairwise anomalies
in firewall rules. A corresponding policy visualization tool called
PolicyVis [27] was developed as well. Yuan et al. [29] presented
FIREMAN, a toolkit to check for misconfigurations in firewall poli-
cies through static analysis. As we discussed previously, our tool,
FAME, overcomes the limitations of those tools by conducting a
complete anomaly detection and providing more accurate anomaly
diagnosis information. In particular, the key distinction of FAME
is its capability to perform an effective conflict resolution, which
has been ruled out in other firwall policy analysis tools.

There are several interfaces that have been developed to assist
users in creating and manipulating security policies. Expandable
Grid is a tool for viewing and authoring access control policies [24].
The representation in Expandable Grids is a matrix with subjects
shown along the rows, resources shown along the columns, and
effective accesses for the combinations of subjects and resources in
the matrix cells. The SPARCLE Policy Workbench allows policy

6Due to the space limitation, we elide the discussion of policy re-
dundancy viewer in this paper. Our redundancy viewer was also
developed in a similar fashion.

Figure 8: Interface of FAME Conflict Viewer.

authors to construct policies in a natural language interface, which
are in turn translated into machine-readable policies [12]. Even
though these tools are useful for authoring access control policies,
they cannot effectively represent the results of policy analysis for
firewalls.

Firewall policy engineering and design models have also attracted
a lot of attention [10, 11, 17, 19]. Firmato [10] supports policy
specification with respect to the information of a global entity re-
lationship; Bellovin et al. [11, 19] introduced a distributed firewall
model that supports centralized policy specification; and Gouda et
al. [17] devised a firewall decision diagram (FDD) to support con-
sistent, complete and compact firewall policy generation. Since
anomaly discovery and resolution are indispensable processes in
policy design and specification, all of those work are orthogonal to
our work.

7. CONCLUSIONS
In this paper, we have proposed a novel anomaly management

framework that facilitates systematic detection and resolution of
firewall policy anomalies. A rule-based segmentation technique
was introduced to achieve the goal of effective and efficient anomaly
analysis. In addition, we have described an implementation of our
anomaly management environment called FAME, clearly demon-
strating that our proposed anomaly analysis methodology is prac-
tical and useful for system administrators to enable an assurable
network management.

Our future work includes usability studies to evaluate functional-
ities and system requirements of our policy visualization approach
with subject matter experts. Also, we would explore how our anomaly
management framework and visualization approach can be applied
to other types of access control policies including Web access con-
trol policies such as XACML-based policies.

Acknowledgments
This work was partially supported by the grants from National Sci-
ence Foundation (NSF-IIS-0900970 and NSF-CNS-0831360) and
Department of Energy (DE-SC0004308 and DE-FG02-03ER25565).

8. REFERENCES
[1] A Systematic Approach for Conflict Resolution in Firewall

Policies. Technical Report ASU-SCIDSE-10-2, Arizona
State University, Tempe, May 2010. http:
//sefcom.asu.edu/confres/confres.pdf.

[2] Buddy version 2.4.
http://sourceforge.net/projects/buddy.

[3] TENABLE Network Security.
http://www.nessus.org/nessus.

[4] Tissynbe.py. http://www.tssci-security.com/
projects/tissynbe_py.

[5] E. Al-Shaer and H. Hamed. Firewall Policy Advisor for
anomaly discovery and rule editing. In Integrated Network
Management, 2003. IFIP/IEEE Eighth International
Symposium on, pages 17–30, 2003.

[6] E. Al-Shaer and H. Hamed. Discovery of policy anomalies in
distributed firewalls. In IEEE INFOCOM, volume 4, pages
2605–2616, 2004.

[7] E. Al-Shaer, W. Marrero, A. El-Atawy, and K. ElBadawi.
Network Configuration in A Box: Towards End-to-End
Verification of Network Reachability and Security. In
Proceedings of the 17th IEEE International Conference on
Network Protocols (ICNP), pages 123–132, 2009.

[8] J. Alfaro, N. Boulahia-Cuppens, and F. Cuppens. Complete
analysis of configuration rules to guarantee reliable network
security policies. International Journal of Information
Security, 7(2):103–122, 2008.

[9] F. Baboescu and G. Varghese. Fast and scalable conflict
detection for packet classifiers. Computer Networks,
42(6):717–735, 2003.

[10] Y. Bartal, A. Mayer, K. Nissim, and A. Wool. Firmato: A
novel firewall management toolkit. ACM Transactions on
Computer Systems (TOCS), 22(4):381–420, 2004.

[11] S. Bellovin. Distributed firewalls. Journal of Login,
24(5):37–39, 1999.

[12] C. Brodie, C. Karat, and J. Karat. An empirical study of
natural language parsing of privacy policy rules using the
SPARCLE policy workbench. In Proceedings of the second
symposium on Usable privacy and security, page 19. ACM,
2006.

[13] E. Chew, M. Swanson, K. Stine, N. Bartol, A. Brown, and
W. Robinson. Performance measurement guide for
information security. NIST Special Publication, pages
800–55, 2008.

[14] A. El-Atawy, K. Ibrahim, H. Hamed, and E. Al-Shaer. Policy
segmentation for intelligent firewall testing. In 1st Workshop
on Secure Network Protocols (NPSec 2005), 2005.

[15] A. El-Atawy, T. Samak, E. Al-Shaer, and H. Li. Using online
traffic statistical matching for optimizing packet filtering
performance. In IEEE INFOCOM 2007. 26th IEEE
International Conference on Computer Communications,
pages 866–874, 2007.

[16] M. Frigault, L. Wang, A. Singhal, and S. Jajodia. Measuring
network security using dynamic bayesian network. In
Proceedings of the 4th ACM workshop on Quality of
protection, pages 23–30. ACM, 2008.

[17] M. Gouda and X. Liu. Firewall Design: Consistency,
Completeness, and Compactness. In Proceedings of the 24th
International Conference on Distributed Computing Systems
(ICDCS’04), page 327. IEEE Computer Society, 2004.

[18] I. Herman, G. Melançon, and M. Marshall. Graph
visualization and navigation in information visualization: A
survey. IEEE Transactions on Visualization and Computer
Graphics, pages 24–43, 2000.

[19] S. Ioannidis, A. Keromytis, S. Bellovin, and J. Smith.
Implementing a distributed firewall. In Proceedings of the
7th ACM conference on Computer and communications
security, page 199. ACM, 2000.

[20] A. Liu and M. Gouda. Complete redundancy detection in
firewalls. Data and Applications Security XIX, pages
193–206, 2005.

[21] A. Mayer, A. Wool, and E. Ziskind. Fang: A firewall analysis
engine. In IEEE Symposium on Security and Privacy, pages
177–189. IEEE Computer Society, 2000.

[22] P. Mell, K. Scarfone, and S. Romanosky. A complete guide
to the common vulnerability scoring system version 2.0. In
Published by FIRST-Forum of Incident Response and
Security Teams, June, 2007.

[23] G. Misherghi, L. Yuan, Z. Su, C.-N. Chuah, and H. Chen. A
general framework for benchmarking firewall optimization
techniques. IEEE Transactions on Network and Service
Management, 5(4):227–238, Dec. 2008.

[24] R. Reeder, L. Bauer, L. Cranor, M. Reiter, K. Bacon,
K. How, and H. Strong. Expandable grids for visualizing and
authoring computer security policies. In Proceeding of the
twenty-sixth annual SIGCHI conference on Human factors in
computing systems, pages 1473–1482. ACM, 2008.

[25] M. Sahinoglu. Security meter: A practical decision-tree
model to quantify risk. IEEE security & privacy, pages
18–24, 2005.

[26] R. Sawilla and X. Ou. Identifying Critical Attack Assets in
Dependency Attack Gaphs. In 13th European Symposium on
Research in Computer Security (ESORICS). Springer, 2008.

[27] T. Tran, E. Al-Shaer, and R. Boutaba. PolicyVis: firewall
security policy visualization and inspection. In Proceedings
of the 21st conference on Large Installation System
Administration Conference, pages 1–16. USENIX
Association, 2007.

[28] A. Wool. Architecting the lumeta firewall analyzer. In
Proceedings of the 10th conference on USENIX Security
Symposium-Volume 10, page 7. USENIX Association, 2001.

[29] L. Yuan, H. Chen, J. Mai, C. Chuah, Z. Su, P. Mohapatra,
and C. Davis. Fireman: A toolkit for firewall modeling and
analysis. In 2006 IEEE Symposium on Security and Privacy,
page 15, 2006.

[30] L. Yuan, C. Chuah, and P. Mohapatra. ProgME: towards
programmable network measurement. ACM SIGCOMM
Computer Communication Review, 37(4):108, 2007.

