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Cooperative Provable Data Possession for
Integrity Verification in Multi-Cloud Storage
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Abstract—Provable data possession (PDP) is a technique for ensuring the integrity of data in storage outsourcing. In this paper,
we address the construction of an efficient PDP scheme for distributed cloud storage to support the scalability of service and data
migration, in which we consider the existence of multiple cloud service providers to cooperatively store and maintain the clients’
data. We present a cooperative PDP (CPDP) scheme based on homomorphic verifiable response and hash index hierarchy.
We prove the security of our scheme based on multi-prover zero-knowledge proof system, which can satisfy completeness,
knowledge soundness, and zero-knowledge properties. In addition, we articulate performance optimization mechanisms for our
scheme, and in particular present an efficient method for selecting optimal parameter values to minimize the computation costs of
clients and storage service providers. Our experiments show that our solution introduces lower computation and communication
overheads in comparison with non-cooperative approaches.

Index Terms—Storage Security, Provable Data Possession, Interactive Protocol, Zero-knowledge, Multiple Cloud, Cooperative
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1 INTRODUCTION

IN recent years, cloud storage service has become a
faster profit growth point by providing a compara-

bly low-cost, scalable, position-independent platform
for clients’ data. Since cloud computing environment
is constructed based on open architectures and inter-
faces, it has the capability to incorporate multiple in-
ternal and/or external cloud services together to pro-
vide high interoperability. We call such a distributed
cloud environment as a multi-Cloud (or hybrid cloud).
Often, by using virtual infrastructure management
(VIM) [1], a multi-cloud allows clients to easily access
his/her resources remotely through interfaces such as
Web services provided by Amazon EC2.

There exist various tools and technologies for multi-
cloud, such as Platform VM Orchestrator, VMware
vSphere, and Ovirt. These tools help cloud providers
construct a distributed cloud storage platform (DCSP)
for managing clients’ data. However, if such an im-
portant platform is vulnerable to security attacks, it
would bring irretrievable losses to the clients. For
example, the confidential data in an enterprise may be
illegally accessed through a remote interface provided
by a multi-cloud, or relevant data and archives may
be lost or tampered with when they are stored into an
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uncertain storage pool outside the enterprise. There-
fore, it is indispensable for cloud service providers
(CSPs) to provide security techniques for managing
their storage services.

Provable data possession (PDP) [2] (or proofs of
retrievability (POR) [3]) is such a probabilistic proof
technique for a storage provider to prove the integrity
and ownership of clients’ data without download-
ing data. The proof-checking without downloading
makes it especially important for large-size files and
folders (typically including many clients’ files) to
check whether these data have been tampered with
or deleted without downloading the latest version of
data. Thus, it is able to replace traditional hash and
signature functions in storage outsourcing. Various
PDP schemes have been recently proposed, such as
Scalable PDP [4] and Dynamic PDP [5]. However,
these schemes mainly focus on PDP issues at un-
trusted servers in a single cloud storage provider and
are not suitable for a multi-cloud environment (see
the comparison of POR/PDP schemes in Table 1).

Motivation. To provide a low-cost, scalable, location-
independent platform for managing clients’ data, cur-
rent cloud storage systems adopt several new dis-
tributed file systems, for example, Apache Hadoop
Distribution File System (HDFS), Google File System
(GFS), Amazon S3 File System, CloudStore etc. These
file systems share some similar features: a single meta-
data server provides centralized management by a
global namespace; files are split into blocks or chunks
and stored on block servers; and the systems are
comprised of interconnected clusters of block servers.
Those features enable cloud service providers to store
and process large amounts of data. However, it is
crucial to offer an efficient verification on the integrity
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TABLE 1
Comparison of POR/PDP schemes for a file consisting of 𝑛 blocks.

Scheme Type CSP Client Comm. Frag. Privacy Multiple Prob. of
Comp. Comp. Clouds Detection

PDP[2] 𝐻𝑜𝑚𝑇 𝑂(𝑡) 𝑂(𝑡) 𝑂(1) ✓ ♯ 1− (1− 𝜌)𝑡

SPDP[4] 𝑀𝐻𝑇 𝑂(𝑡) 𝑂(𝑡) 𝑂(𝑡) ✓ ✓ 1− (1− 𝜌)𝑡⋅𝑠

DPDP-I[5] 𝑀𝐻𝑇 𝑂(𝑡 log 𝑛) 𝑂(𝑡 log 𝑛) 𝑂(𝑡 log 𝑛) ✓ 1− (1− 𝜌)𝑡

DPDP-II[5] 𝑀𝐻𝑇 𝑂(𝑡 log 𝑛) 𝑂(𝑡 log 𝑛) 𝑂(𝑡 log 𝑛) 1− (1− 𝜌)Ω(𝑛)

CPOR-I[6] 𝐻𝑜𝑚𝑇 𝑂(𝑡) 𝑂(𝑡) 𝑂(1) ♯ 1− (1− 𝜌)𝑡

CPOR-II[6] 𝐻𝑜𝑚𝑇 𝑂(𝑡+ 𝑠) 𝑂(𝑡 + 𝑠) 𝑂(𝑠) ✓ ♯ 1− (1− 𝜌)𝑡⋅𝑠

Our Scheme 𝐻𝑜𝑚𝑅 𝑂(𝑡+ 𝑐 ⋅ 𝑠) 𝑂(𝑡 + 𝑠) 𝑂(𝑠) ✓ ✓ ✓ 1−
∏

𝑃𝑘∈𝒫
(1− 𝜌𝑘)

𝑟𝑘⋅𝑡⋅𝑠

𝑠 is the number of sectors in each block, 𝑐 is the number of CSPs in a multi-cloud, 𝑡 is the number of sampling blocks,
𝜌 and 𝜌𝑘 are the probability of block corruption in a cloud server and 𝑘-th cloud server in a multi-cloud 𝒫 = {𝑃𝑘},
respective, ♯ denotes the verification process in a trivial approach, and 𝑀𝐻𝑇,𝐻𝑜𝑚𝑇,𝐻𝑜𝑚𝑅 denotes Merkle Hash tree,
homomorphic tags, and homomorphic responses, respectively.

and availability of stored data for detecting faults
and automatic recovery. Moreover, this verification
is necessary to provide reliability by automatically
maintaining multiple copies of data and automatically
redeploying processing logic in the event of failures.

Although existing schemes can make a false or true
decision for data possession without downloading
data at untrusted stores, they are not suitable for
a distributed cloud storage environment since they
were not originally constructed on interactive proof
system. For example, the schemes based on Merkle
Hash tree (MHT), such as DPDP-I, DPDP-II [2] and
SPDP [4] in Table 1, use an authenticated skip list to
check the integrity of file blocks adjacently in space.
Unfortunately, they did not provide any algorithms
for constructing distributed Merkle trees that are
necessary for efficient verification in a multi-cloud
environment. In addition, when a client asks for a file
block, the server needs to send the file block along
with a proof for the intactness of the block. However,
this process incurs significant communication over-
head in a multi-cloud environment, since the server
in one cloud typically needs to generate such a proof
with the help of other cloud storage services, where
the adjacent blocks are stored. The other schemes,
such as PDP [2], CPOR-I, and CPOR-II [6] in Table
1, are constructed on homomorphic verification tags,
by which the server can generate tags for multiple file
blocks in terms of a single response value. However,
that doesn’t mean the responses from multiple clouds
can be also combined into a single value on the
client side. For lack of homomorphic responses, clients
must invoke the PDP protocol repeatedly to check
the integrity of file blocks stored in multiple cloud
servers. Also, clients need to know the exact position
of each file block in a multi-cloud environment. In
addition, the verification process in such a case will
lead to high communication overheads and compu-
tation costs at client sides as well. Therefore, it is of
utmost necessary to design a cooperative PDP model
to reduce the storage and network overheads and
enhance the transparency of verification activities in
cluster-based cloud storage systems. Moreover, such a

cooperative PDP scheme should provide features for
timely detecting abnormality and renewing multiple
copies of data.

Even though existing PDP schemes have addressed
various security properties, such as public verifia-
bility [2], dynamics [5], scalability [4], and privacy
preservation [7], we still need a careful consideration
of some potential attacks, including two major cat-
egories: Data Leakage Attack by which an adversary
can easily obtain the stored data through verifica-
tion process after running or wiretapping sufficient
verification communications (see Attacks 1 and 3 in
Appendix A), and Tag Forgery Attack by which a
dishonest CSP can deceive the clients (see Attacks 2
and 4 in Appendix A). These two attacks may cause
potential risks for privacy leakage and ownership
cheating. Also, these attacks can more easily compro-
mise the security of a distributed cloud system than
that of a single cloud system.

Although various security models have been pro-
posed for existing PDP schemes [2], [7], [6], these
models still cannot cover all security requirements,
especially for provable secure privacy preservation
and ownership authentication. To establish a highly
effective security model, it is necessary to analyze the
PDP scheme within the framework of zero-knowledge
proof system (ZKPS) due to the reason that PDP
system is essentially an interactive proof system (IPS),
which has been well studied in the cryptography com-
munity. In summary, a verification scheme for data
integrity in distributed storage environments should
have the following features:

∙ Usability aspect: A client should utilize the
integrity check in the way of collaboration services.
The scheme should conceal the details of the storage
to reduce the burden on clients;

∙ Security aspect: The scheme should provide ad-
equate security features to resist some existing attacks,
such as data leakage attack and tag forgery attack;

∙ Performance aspect: The scheme should have
the lower communication and computation overheads
than non-cooperative solution.
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Related Works. To check the availability and integrity
of outsourced data in cloud storages, researchers have
proposed two basic approaches called Provable Data
Possession (PDP) [2] and Proofs of Retrievability
(POR) [3]. Ateniese et al. [2] first proposed the PDP
model for ensuring possession of files on untrusted
storages and provided an RSA-based scheme for a
static case that achieves the 𝑂(1) communication
cost. They also proposed a publicly verifiable version,
which allows anyone, not just the owner, to challenge
the server for data possession. This property greatly
extended application areas of PDP protocol due to the
separation of data owners and the users. However,
these schemes are insecure against replay attacks in
dynamic scenarios because of the dependencies on
the index of blocks. Moreover, they do not fit for
multi-cloud storage due to the loss of homomorphism
property in the verification process.

In order to support dynamic data operations, Ate-
niese et al. developed a dynamic PDP solution called
Scalable PDP [4]. They proposed a lightweight PDP
scheme based on cryptographic hash function and
symmetric key encryption, but the servers can deceive
the owners by using previous metadata or responses
due to the lack of randomness in the challenges. The
numbers of updates and challenges are limited and
fixed in advance and users cannot perform block
insertions anywhere. Based on this work, Erway et
al. [5] introduced two Dynamic PDP schemes with a
hash function tree to realize 𝑂(log 𝑛) communication
and computational costs for a 𝑛-block file. The basic
scheme, called DPDP-I, retains the drawback of Scal-
able PDP, and in the ‘blockless’ scheme, called DPDP-
II, the data blocks {𝑚𝑖𝑗}𝑗∈[1,𝑡] can be leaked by the re-
sponse of a challenge, 𝑀 =

∑𝑡
𝑗=1 𝑎𝑗𝑚𝑖𝑗 , where 𝑎𝑗 is a

random challenge value. Furthermore, these schemes
are also not effective for a multi-cloud environment
because the verification path of the challenge block
cannot be stored completely in a cloud [8].

Juels and Kaliski [3] presented a POR scheme,
which relies largely on preprocessing steps that the
client conducts before sending a file to a CSP. Un-
fortunately, these operations prevent any efficient ex-
tension for updating data. Shacham and Waters [6]
proposed an improved version of this protocol called
Compact POR, which uses homomorphic property
to aggregate a proof into 𝑂(1) authenticator value
and 𝑂(𝑡) computation cost for 𝑡 challenge blocks, but
their solution is also static and could not prevent
the leakage of data blocks in the verification process.
Wang et al. [7] presented a dynamic scheme with
𝑂(log 𝑛) cost by integrating the Compact POR scheme
and Merkle Hash Tree (MHT) into the DPDP. Further-
more, several POR schemes and models have been
recently proposed including [9], [10]. In [9] Bowers
et al. introduced a distributed cryptographic system
that allows a set of servers to solve the PDP problem.
This system is based on an integrity-protected error-

correcting code (IP-ECC), which improves the security
and efficiency of existing tools, like POR. However,
a file must be transformed into 𝑙 distinct segments
with the same length, which are distributed across 𝑙
servers. Hence, this system is more suitable for RAID
rather than a cloud storage.
Our Contributions. In this paper, we address the
problem of provable data possession in distributed
cloud environments from the following aspects: high
security, transparent verification, and high performance.
To achieve these goals, we first propose a verification
framework for multi-cloud storage along with two
fundamental techniques: hash index hierarchy (HIH)
and homomorphic verifiable response (HVR).

We then demonstrate that the possibility of con-
structing a cooperative PDP (CPDP) scheme without
compromising data privacy based on modern crypto-
graphic techniques, such as interactive proof system
(IPS). We further introduce an effective construction
of CPDP scheme using above-mentioned structure.
Moreover, we give a security analysis of our CPDP
scheme from the IPS model. We prove that this
construction is a multi-prover zero-knowledge proof
system (MP-ZKPS) [11], which has completeness,
knowledge soundness, and zero-knowledge proper-
ties. These properties ensure that CPDP scheme can
implement the security against data leakage attack and
tag forgery attack.

To improve the system performance with respect to
our scheme, we analyze the performance of proba-
bilistic queries for detecting abnormal situations. This
probabilistic method also has an inherent benefit in
reducing computation and communication overheads.
Then, we present an efficient method for the selection
of optimal parameter values to minimize the compu-
tation overheads of CSPs and the clients’ operations.
In addition, we analyze that our scheme is suitable for
existing distributed cloud storage systems. Finally, our
experiments show that our solution introduces very
limited computation and communication overheads.
Organization. The rest of this paper is organized as
follows. In Section 2, we describe a formal definition
of CPDP and the underlying techniques, which are
utilized in the construction of our scheme. We intro-
duce the details of cooperative PDP scheme for multi-
cloud storage in Section 3. We describes the security
and performance evaluation of our scheme in Section
4 and 5, respectively. We discuss the related work in
Section and Section 6 concludes this paper.

2 STRUCTURE AND TECHNIQUES
In this section, we present our verification framework
for multi-cloud storage and a formal definition of
CPDP. We introduce two fundamental techniques for
constructing our CPDP scheme: hash index hierarchy
(HIH) on which the responses of the clients’ chal-
lenges computed from multiple CSPs can be com-
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bined into a single response as the final result; and ho-
momorphic verifiable response (HVR) which supports
distributed cloud storage in a multi-cloud storage
and implements an efficient construction of collision-
resistant hash function, which can be viewed as a
random oracle model in the verification protocol.

2.1 Verification Framework for Multi-Cloud
Although existing PDP schemes offer a publicly acces-
sible remote interface for checking and managing the
tremendous amount of data, the majority of existing
PDP schemes are incapable to satisfy the inherent
requirements from multiple clouds in terms of com-
munication and computation costs. To address this
problem, we consider a multi-cloud storage service as
illustrated in Figure 1. In this architecture, a data stor-
age service involves three different entities: Clients
who have a large amount of data to be stored in
multiple clouds and have the permissions to access
and manipulate stored data; Cloud Service Providers
(CSPs) who work together to provide data storage
services and have enough storages and computa-
tion resources; and Trusted Third Party (TTP) who
is trusted to store verification parameters and offer
public query services for these parameters.

Fig. 1. Verification architecture for data integrity.

In this architecture, we consider the existence of
multiple CSPs to cooperatively store and maintain the
clients’ data. Moreover, a cooperative PDP is used to
verify the integrity and availability of their stored data
in all CSPs. The verification procedure is described as
follows: Firstly, a client (data owner) uses the secret
key to pre-process a file which consists of a collection
of 𝑛 blocks, generates a set of public verification
information that is stored in TTP, transmits the file
and some verification tags to CSPs, and may delete
its local copy; Then, by using a verification protocol,
the clients can issue a challenge for one CSP to check
the integrity and availability of outsourced data with
respect to public information stored in TTP.

We neither assume that CSP is trust to guarantee
the security of the stored data, nor assume that data
owner has the ability to collect the evidence of the
CSP’s fault after errors have been found. To achieve
this goal, a TTP server is constructed as a core trust
base on the cloud for the sake of security. We as-
sume the TTP is reliable and independent through
the following functions [12]: to setup and maintain
the CPDP cryptosystem; to generate and store data
owner’s public key; and to store the public parameters
used to execute the verification protocol in the CPDP
scheme. Note that the TTP is not directly involved in
the CPDP scheme in order to reduce the complexity
of cryptosystem

2.2 Definition of Cooperative PDP
In order to prove the integrity of data stored in
a multi-cloud environment, we define a framework
for CPDP based on interactive proof system (IPS)
and multi-prover zero-knowledge proof system (MP-
ZKPS), as follows:

Definition 1 (Cooperative-PDP): A cooperative prov-
able data possession 𝒮 = (𝐾𝑒𝑦𝐺𝑒𝑛, 𝑇𝑎𝑔𝐺𝑒𝑛, 𝑃𝑟𝑜𝑜𝑓)
is a collection of two algorithms (𝐾𝑒𝑦𝐺𝑒𝑛, 𝑇𝑎𝑔𝐺𝑒𝑛)
and an interactive proof system 𝑃𝑟𝑜𝑜𝑓 , as follows:
𝐾𝑒𝑦𝐺𝑒𝑛(1𝜅): takes a security parameter 𝜅 as input,

and returns a secret key 𝑠𝑘 or a public-secret key-
pair (𝑝𝑘, 𝑠𝑘);

𝑇𝑎𝑔𝐺𝑒𝑛(𝑠𝑘, 𝐹,𝒫): takes as inputs a secret key 𝑠𝑘, a
file 𝐹 , and a set of cloud storage providers 𝒫 =
{𝑃𝑘}, and returns the triples (𝜁, 𝜓, 𝜎), where 𝜁 is
the secret in tags, 𝜓 = (𝑢,ℋ) is a set of verification
parameters 𝑢 and an index hierarchy ℋ for 𝐹 , 𝜎 =
{𝜎(𝑘)}𝑃𝑘∈𝒫 denotes a set of all tags, 𝜎(𝑘) is the tag
of the fraction 𝐹 (𝑘) of 𝐹 in 𝑃𝑘 ;

𝑃𝑟𝑜𝑜𝑓 (𝒫 , 𝑉 ): is a protocol of proof of data possession
between CSPs (𝒫 = {𝑃𝑘}) and a verifier (V), that is,〈 ∑

𝑃𝑘∈𝒫

𝑃𝑘(𝐹
(𝑘), 𝜎(𝑘)) ←→ 𝑉

〉
(𝑝𝑘, 𝜓)

=

{
1 𝐹 = {𝐹 (𝑘)} is intact
0 𝐹 = {𝐹 (𝑘)} is changed

,

where each 𝑃𝑘 takes as input a file 𝐹 (𝑘) and a set
of tags 𝜎(𝑘), and a public key 𝑝𝑘 and a set of public
parameters 𝜓 are the common input between 𝑃
and 𝑉 . At the end of the protocol run, 𝑉 returns
a bit {0∣1} denoting false and true. Where,

∑
𝑃𝑘∈𝒫

denotes cooperative computing in 𝑃𝑘 ∈ 𝒫 .

A trivial way to realize the CPDP is to check the
data stored in each cloud one by one, i.e.,⋀

𝑃𝑘∈𝒫

⟨𝑃𝑘(𝐹
(𝑘), 𝜎(𝑘)) ←→ 𝑉 ⟩(𝑝𝑘, 𝜓),

where
⋀

denotes the logical AND operations among
the boolean outputs of all protocols ⟨𝑃𝑘, 𝑉 ⟩ for all
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𝑃𝑘 ∈ 𝒫 . However, it would cause significant commu-
nication and computation overheads for the verifier,
as well as a loss of location-transparent. Such a prim-
itive approach obviously diminishes the advantages
of cloud storage: scaling arbitrarily up and down on-
demand [13]. To solve this problem, we extend above
definition by adding an organizer(𝑂), which is one
of CSPs that directly contacts with the verifier, as
follows:〈 ∑

𝑃𝑘∈𝒫

𝑃𝑘(𝐹
(𝑘), 𝜎(𝑘)) ←→ 𝑂 ←→ 𝑉

〉
(𝑝𝑘, 𝜓),

where the action of organizer is to initiate and orga-
nize the verification process. This definition is con-
sistent with aforementioned architecture, e.g., a client
(or an authorized application) is considered as 𝑉 , the
CSPs are as 𝒫 = {𝑃𝑖}𝑖∈[1,𝑐], and the Zoho cloud is
as the organizer in Figure 1. Often, the organizer is
an independent server or a certain CSP in 𝒫 . The
advantage of this new multi-prover proof system is
that it does not make any difference for the clients
between multi-prover verification process and single-
prover verification process in the way of collaboration.
Also, this kind of transparent verification is able to
conceal the details of data storage to reduce the
burden on clients. For the sake of clarity, we list some
used signals in Table 2.

TABLE 2
The signal and its explanation.

Sig. Repression
𝑛 the number of blocks in a file;
𝑠 the number of sectors in each block;
𝑡 the number of index coefficient pairs in a query;
𝑐 the number of clouds to store a file;
𝐹 the file with 𝑛× 𝑠 sectors, i.e., 𝐹 = {𝑚𝑖,𝑗}

𝑖∈[1,𝑛]
𝑗∈[1,𝑠] ;

𝜎 the set of tags, i.e., 𝜎 = {𝜎𝑖}𝑖∈[1,𝑛];
𝑄 the set of index-coefficient pairs, i.e., 𝑄 = {(𝑖, 𝑣𝑖)};
𝜃 the response for the challenge 𝑄.

2.3 Hash Index Hierarchy for CPDP
To support distributed cloud storage, we illustrate
a representative architecture used in our cooperative
PDP scheme as shown in Figure 2. Our architecture
has a hierarchy structure which resembles a natural
representation of file storage. This hierarchical struc-
ture ℋ consists of three layers to represent relation-
ships among all blocks for stored resources. They are
described as follows:

1) Express Layer: offers an abstract representation
of the stored resources;

2) Service Layer: offers and manages cloud storage
services; and

3) Storage Layer: realizes data storage on many
physical devices.

We make use of this simple hierarchy to organize
data blocks from multiple CSP services into a large-
size file by shading their differences among these
cloud storage systems. For example, in Figure 2 the
resources in Express Layer are split and stored into
three CSPs, that are indicated by different colors, in
Service Layer. In turn, each CSP fragments and stores
the assigned data into the storage servers in Storage
Layer. We also make use of colors to distinguish
different CSPs. Moreover, we follow the logical order
of the data blocks to organize the Storage Layer.
This architecture also provides special functions for
data storage and management, e.g., there may exist
overlaps among data blocks (as shown in dashed
boxes) and discontinuous blocks but these functions
may increase the complexity of storage management.

Service Layer Express LayerStorage Layer

CSP1

CSP2

CSP3

Overlap

1

(1) (" ")s
ii

H Fn
�

�
��

�

(1)

(2)

1 (" ")H Cn
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(2)

3 (" ")H Cn
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(1)

(2)

2 (" ")H Cn
�
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( 2)
1

(3)

,1 ( )
i i

H
�
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Fig. 2. Index-hash hierarchy of CPDP model.

In storage layer, we define a common fragment
structure that provides probabilistic verification of
data integrity for outsourced storage. The fragment
structure is a data structure that maintains a set of
block-tag pairs, allowing searches, checks and updates
in 𝑂(1) time. An instance of this structure is shown in
storage layer of Figure 2: an outsourced file 𝐹 is split
into 𝑛 blocks {𝑚1,𝑚2, ⋅ ⋅ ⋅ ,𝑚𝑛}, and each block 𝑚𝑖 is
split into 𝑠 sectors {𝑚𝑖,1,𝑚𝑖,2, ⋅ ⋅ ⋅ ,𝑚𝑖,𝑠}. The fragment
structure consists of 𝑛 block-tag pair (𝑚𝑖, 𝜎𝑖), where
𝜎𝑖 is a signature tag of block 𝑚𝑖 generated by a
set of secrets 𝜏 = (𝜏1, 𝜏2, ⋅ ⋅ ⋅ , 𝜏𝑠). In order to check
the data integrity, the fragment structure implements
probabilistic verification as follows: given a random
chosen challenge (or query) 𝑄 = {(𝑖, 𝑣𝑖)}𝑖∈𝑅𝐼 , where
𝐼 is a subset of the block indices and 𝑣𝑖 is a ran-
dom coefficient. There exists an efficient algorithm to
produce a constant-size response (𝜇1, 𝜇2, ⋅ ⋅ ⋅ , 𝜇𝑠, 𝜎

′),
where 𝜇𝑖 comes from all {𝑚𝑘,𝑖, 𝑣𝑘}𝑘∈𝐼 and 𝜎′ is from
all {𝜎𝑘, 𝑣𝑘}𝑘∈𝐼 .

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 6

Given a collision-resistant hash function 𝐻𝑘(⋅), we
make use of this architecture to construct a Hash
Index Hierarchy ℋ (viewed as a random oracle),
which is used to replace the common hash function
in prior PDP schemes, as follows:

1) Express layer: given 𝑠 random {𝜏𝑖}
𝑠
𝑖=1 and the

file name 𝐹𝑛, sets 𝜉(1) = 𝐻∑
𝑠
𝑖=1 𝜏𝑖

(𝐹𝑛) and makes
it public for verification but makes {𝜏𝑖}𝑠𝑖=1 secret;

2) Service layer: given the 𝜉(1) and the cloud name
𝐶𝑘, sets 𝜉

(2)
𝑘 = 𝐻𝜉(1)(𝐶𝑘);

3) Storage layer: given the 𝜉(2), a block number 𝑖,
and its index record 𝜒𝑖 = “𝐵𝑖∣∣𝑉𝑖∣∣𝑅𝑖”, sets 𝜉

(3)
𝑖,𝑘 =

𝐻
𝜉
(2)
𝑘

(𝜒𝑖), where 𝐵𝑖 is the sequence number of a
block, 𝑉𝑖 is the updated version number, and 𝑅𝑖

is a random integer to avoid collision.
As a virtualization approach, we introduce a simple

index-hash table 𝜒 = {𝜒𝑖} to record the changes of
file blocks as well as to generate the hash value of
each block in the verification process. The structure
of 𝜒 is similar to the structure of file block allocation
table in file systems. The index-hash table consists of
serial number, block number, version number, random
integer, and so on. Different from the common index
table, we assure that all records in our index table
differ from one another to prevent forgery of data
blocks and tags. By using this structure, especially
the index records {𝜒𝑖}, our CPDP scheme can also
support dynamic data operations [8].

The proposed structure can be readily incorperated
into MAC-based, ECC or RSA schemes [2], [6]. These
schemes, built from collision-resistance signatures (see
Section 3.1) and the random oracle model, have the
shortest query and response with public verifiability.
They share several common characters for the imple-
mentation of the CPDP framework in the multiple
clouds: 1) a file is split into 𝑛×𝑠 sectors and each block
(𝑠 sectors) corresponds to a tag, so that the storage of
signature tags can be reduced by the increase of 𝑠;
2) a verifier can verify the integrity of file in random
sampling approach, which is of utmost importance
for large files; 3) these schemes rely on homomorphic
properties to aggregate data and tags into a constant-
size response, which minimizes the overhead of net-
work communication; and 4) the hierarchy structure
provides a virtualization approach to conceal the stor-
age details of multiple CSPs.

2.4 Homomorphic Verifiable Response for CPDP
A homomorphism is a map 𝑓 : ℙ → ℚ between two
groups such that 𝑓(𝑔1 ⊕ 𝑔2) = 𝑓(𝑔1) ⊗ 𝑓(𝑔2) for all
𝑔1, 𝑔2 ∈ ℙ, where ⊕ denotes the operation in ℙ and
⊗ denotes the operation in ℚ. This notation has been
used to define Homomorphic Verifiable Tags (HVTs)
in [2]: Given two values 𝜎𝑖 and 𝜎𝑗 for two messages
𝑚𝑖 and 𝑚𝑗 , anyone can combine them into a value
𝜎′ corresponding to the sum of the messages 𝑚𝑖 +
𝑚𝑗 . When provable data possession is considered as

a challenge-response protocol, we extend this notation
to the concept of Homomorphic Verifiable Responses
(HVR), which is used to integrate multiple responses
from the different CSPs in CPDP scheme as follows:

Definition 2 (Homomorphic Verifiable Response): A re-
sponse is called homomorphic verifiable response in a
PDP protocol, if given two responses 𝜃𝑖 and 𝜃𝑗 for two
challenges 𝑄𝑖 and 𝑄𝑗 from two CSPs, there exists an
efficient algorithm to combine them into a response 𝜃
corresponding to the sum of the challenges 𝑄𝑖

∪
𝑄𝑗 .

Homomorphic verifiable response is the key tech-
nique of CPDP because it not only reduces the com-
munication bandwidth, but also conceals the location
of outsourced data in the distributed cloud storage
environment.

3 COOPERATIVE PDP SCHEME
In this section, we propose a CPDP scheme for multi-
cloud system based on the above-mentioned struc-
ture and techniques. This scheme is constructed on
collision-resistant hash, bilinear map group, aggrega-
tion algorithm, and homomorphic responses.

3.1 Notations and Preliminaries
Let ℍ = {𝐻𝑘} be a family of hash functions 𝐻𝑘 :
{0, 1}𝑛 → {0, 1}∗ index by 𝑘 ∈ 𝒦. We say that
algorithm 𝒜 has advantage 𝜖 in breaking collision-
resistance of ℍ if Pr[𝒜(𝑘) = (𝑚0,𝑚1) : 𝑚0 ∕=
𝑚1, 𝐻𝑘(𝑚0) = 𝐻𝑘(𝑚1)] ≥ 𝜖, where the probability is
over the random choices of 𝑘 ∈ 𝒦 and the random
bits of 𝒜. So that, we have the following definition.

Definition 3 (Collision-Resistant Hash): A hash fam-
ily ℍ is (𝑡, 𝜖)-collision-resistant if no 𝑡-time adver-
sary has advantage at least 𝜖 in breaking collision-
resistance of ℍ.

We set up our system using bilinear pairings pro-
posed by Boneh and Franklin [14]. Let 𝔾 and 𝔾𝑇 be
two multiplicative groups using elliptic curve conven-
tions with a large prime order 𝑝. The function 𝑒 is a
computable bilinear map 𝑒 : 𝔾×𝔾 → 𝔾𝑇 with the fol-
lowing properties: for any 𝐺,𝐻 ∈ 𝔾 and all 𝑎, 𝑏 ∈ ℤ𝑝,
we have 1) Bilinearity: 𝑒([𝑎]𝐺, [𝑏]𝐻) = 𝑒(𝐺,𝐻)𝑎𝑏; 2)
Non-degeneracy: 𝑒(𝐺,𝐻) ∕= 1 unless 𝐺 or 𝐻 = 1; and
3) Computability: 𝑒(𝐺,𝐻) is efficiently computable.

Definition 4 (Bilinear Map Group System): A bilinear
map group system is a tuple 𝕊 = ⟨𝑝,𝔾,𝔾𝑇 , 𝑒⟩ com-
posed of the objects as described above.

3.2 Our CPDP Scheme
In our scheme (see Fig 3), the manager first runs algo-
rithm 𝐾𝑒𝑦𝐺𝑒𝑛 to obtain the public/private key pairs
for CSPs and users. Then, the clients generate the tags
of outsourced data by using 𝑇𝑎𝑔𝐺𝑒𝑛. Anytime, the
protocol 𝑃𝑟𝑜𝑜𝑓 is performed by a 5-move interactive

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.
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KeyGen(1𝜅): Let 𝕊 = (𝑝,𝔾,𝔾𝑇 , 𝑒) be a bilinear map group system with randomly selected generators 𝑔, ℎ ∈ 𝔾, where
𝔾,𝔾𝑇 are two bilinear groups of a large prime order 𝑝, ∣𝑝∣ = 𝑂(𝜅). Makes a hash function 𝐻𝑘(⋅) public. For a CSP,
chooses a random number 𝑠 ∈𝑅 ℤ𝑝 and computes 𝑆 = 𝑔𝑠 ∈ 𝔾. Thus, 𝑠𝑘𝑝 = 𝑠 and 𝑝𝑘𝑝 = (𝑔, 𝑆). For a user, chooses
two random numbers 𝛼, 𝛽 ∈𝑅 ℤ𝑝 and sets 𝑠𝑘𝑢 = (𝛼, 𝛽) and 𝑝𝑘𝑢 = (𝑔, ℎ,𝐻1 = ℎ𝛼,𝐻2 = ℎ𝛽).

TagGen(𝑠𝑘,𝐹,𝒫): Splits 𝐹 into 𝑛 × 𝑠 sectors {𝑚𝑖,𝑗}𝑖∈[1,𝑛],𝑗∈[1,𝑠] ∈ ℤ𝑛×𝑠
𝑝 . Chooses 𝑠 random 𝜏1, ⋅ ⋅ ⋅ , 𝜏𝑠 ∈ ℤ𝑝 as the

secret of this file and computes 𝑢𝑖 = 𝑔𝜏𝑖 ∈ 𝔾 for 𝑖 ∈ [1, 𝑠]. Constructs the index table 𝜒 = {𝜒𝑖}
𝑛
𝑖=1 and fills out the

record 𝜒𝑖
a in 𝜒 for 𝑖 ∈ [1, 𝑛], then calculates the tag for each block 𝑚𝑖 as{

𝜉(1) ← 𝐻∑
𝑠
𝑖=1 𝜏𝑖

(𝐹𝑛), 𝜉
(2)
𝑘 ← 𝐻𝜉(1) (𝐶𝑘),

𝜉
(3)
𝑖,𝑘 ← 𝐻

𝜉
(2)
𝑘

(𝜒𝑖), 𝜎𝑖,𝑘 ← (𝜉
(3)
𝑖,𝑘 )

𝛼 ⋅ (
∏𝑠

𝑗=1 𝑢
𝑚𝑖,𝑗

𝑗 )𝛽,

where 𝐹𝑛 is the file name and 𝐶𝑘 is the CSP name of 𝑃𝑘 ∈ 𝒫 . And then stores 𝜓 = (𝑢, 𝜉(1), 𝜒) into TTP, and
𝜎𝑘 = {𝜎𝑖,𝑗}∀𝑗=𝑘 to 𝑃𝑘 ∈ 𝒫 , where 𝑢 = (𝑢1, ⋅ ⋅ ⋅ , 𝑢𝑠). Finally, the data owner saves the secret 𝜁 = (𝜏1, ⋅ ⋅ ⋅ , 𝜏𝑠).

Proof(𝒫 , 𝑉 ): This is a 5-move protocol among the Provers (𝒫 = {𝑃𝑖}𝑖∈[1,𝑐]), an organizer (𝑂), and a Verifier (𝑉 ) with
the common input (𝑝𝑘, 𝜓), which is stored in TTP, as follows:

1) Commitment(𝑂 → 𝑉 ): the organizer chooses a random 𝛾 ∈𝑅 ℤ𝑝 and sends 𝐻 ′
1 = 𝐻

𝛾
1 to the verifier;

2) Challenge1(𝑂 ← 𝑉 ): the verifier chooses a set of challenge index-coefficient pairs 𝑄 = {(𝑖, 𝑣𝑖)}𝑖∈𝐼 and sends
𝑄 to the organizer, where 𝐼 is a set of random indexes in [1, 𝑛] and 𝑣𝑖 is a random integer in ℤ∗

𝑝;
3) Challenge2(𝒫 ← 𝑂): the organizer forwards 𝑄𝑘 = {(𝑖, 𝑣𝑖)}𝑚𝑖∈𝑃𝑘

⊆ 𝑄 to each 𝑃𝑘 in 𝒫 ;
4) Response1(𝒫 → 𝑂): 𝑃𝑘 chooses a random 𝑟𝑘 ∈ ℤ𝑝 and 𝑠 random 𝜆𝑗,𝑘 ∈ ℤ𝑝 for 𝑗 ∈ [1, 𝑠], and calculates a

response
𝜎
′

𝑘 ← 𝑆
𝑟𝑘 ⋅

∏
(𝑖,𝑣𝑖)∈𝑄𝑘

𝜎
𝑣𝑖
𝑖 , 𝜇𝑗,𝑘 ← 𝜆𝑗,𝑘 +

∑
(𝑖,𝑣𝑖)∈𝑄𝑘

𝑣𝑖 ⋅𝑚𝑖,𝑗 , 𝜋𝑗,𝑘 ← 𝑒(𝑢
𝜆𝑗,𝑘

𝑗 ,𝐻2),

where 𝜇𝑘 = {𝜇𝑗,𝑘}𝑗∈[1,𝑠] and 𝜋𝑘 =
∏𝑠

𝑗=1 𝜋𝑗,𝑘. Let 𝜂𝑘 ← 𝑔𝑟𝑘 ∈ 𝔾, each 𝑃𝑘 sends 𝜃𝑘 = (𝜋𝑘, 𝜎
′
𝑘, 𝜇𝑘, 𝜂𝑘) to the

organizer;
5) Response2(𝑂 → 𝑉 ): After receiving all responses from {𝑃𝑖}𝑖∈[1,𝑐], the organizer aggregates {𝜃𝑘}𝑃𝑘∈𝒫 into a

final response 𝜃 as
𝜎
′ ← (

∏
𝑃𝑘∈𝒫

𝜎
′

𝑘 ⋅ 𝜂
−𝑠
𝑘 )𝛾 , 𝜇

′

𝑗 ←
∑

𝑃𝑘∈𝒫

𝛾 ⋅ 𝜇𝑗,𝑘, 𝜋
′ ← (

∏
𝑃𝑘∈𝒫

𝜋𝑘)
𝛾
. (1)

Let 𝜇′ = {𝜇′
𝑗}𝑗∈[1,𝑠]. The organizer sends 𝜃 = (𝜋′, 𝜎′, 𝜇′) to the verifier.

Verification: Now the verifier can check whether the response was correctly formed by checking that

𝜋
′ ⋅ 𝑒(𝜎′

, ℎ)
?
= 𝑒(

∏
(𝑖,𝑣𝑖)∈𝑄

𝐻
𝜉
(2)
𝑘

(𝜒𝑖)
𝑣𝑖 ,𝐻

′

1) ⋅ 𝑒(
𝑠∏

𝑗=1

𝑢
𝜇′
𝑗

𝑗 ,𝐻2). (2)

a. For 𝜒𝑖 = “𝐵𝑖, 𝑉𝑖, 𝑅𝑖” in Section 2.3, we can set 𝜒𝑖 = (𝐵𝑖 = 𝑖, 𝑉𝑖 = 1, 𝑅𝑖 ∈𝑅 {0, 1}∗) at initial stage of CPDP scheme.

Fig. 3. Cooperative Provable Data Possession for Multi-Cloud Storage.

proof protocol between a verifier and more than one
CSP, in which CSPs need not to interact with each
other during the verification process, but an organizer
is used to organize and manage all CSPs.

This protocol can be described as follows: 1) the or-
ganizer initiates the protocol and sends a commitment
to the verifier; 2) the verifier returns a challenge set of
random index-coefficient pairs 𝑄 to the organizer; 3)
the organizer relays them into each 𝑃𝑖 in 𝒫 according
to the exact position of each data block; 4) each 𝑃𝑖

returns its response of challenge to the organizer;
and 5) the organizer synthesizes a final response
from received responses and sends it to the verifier.
The above process would guarantee that the verifier
accesses files without knowing on which CSPs or in
what geographical locations their files reside.

In contrast to a single CSP environment, our scheme
differs from the common PDP scheme in two aspects:

1) Tag aggregation algorithm: In stage of commit-
ment, the organizer generates a random 𝛾 ∈𝑅 ℤ𝑝

and returns its commitment 𝐻 ′
1 to the verifier. This

assures that the verifier and CSPs do not obtain the

value of 𝛾. Therefore, our approach guarantees only
the organizer can compute the final 𝜎′ by using 𝛾 and
𝜎′
𝑘 received from CSPs.

After 𝜎′ is computed, we need to transfer it
to the organizer in stage of “Response1”. In order
to ensure the security of transmission of data tags,
our scheme employs a new method, similar to the
ElGamal encryption, to encrypt the combination of
tags

∏
(𝑖,𝑣𝑖)∈𝑄𝑘

𝜎𝑣𝑖𝑖 , that is, for 𝑠𝑘 = 𝑠 ∈ ℤ𝑝 and
𝑝𝑘 = (𝑔, 𝑆 = 𝑔𝑠) ∈ 𝔾2, the cipher of message 𝑚
is 𝒞 = (𝒞1 = 𝑔𝑟, 𝒞2 = 𝑚 ⋅ 𝑆𝑟) and its decryption is
performed by 𝑚 = 𝒞2⋅𝒞

−𝑠
1 . Thus, we hold the equation

𝜎
′ =

⎛
⎝ ∏

𝑃𝑘∈𝒫

𝜎′
𝑘

𝜂𝑠
𝑘

⎞
⎠

𝛾

=

⎛
⎝ ∏

𝑃𝑘∈𝒫

𝑆𝑟𝑘 ⋅
∏

(𝑖,𝑣𝑖)∈𝑄𝑘
𝜎
𝑣𝑖
𝑖

𝜂𝑠
𝑘

⎞
⎠

𝛾

=

⎛
⎝ ∏

𝑃𝑘∈𝒫

⋅
∏

(𝑖,𝑣𝑖)∈𝑄𝑘

𝜎
𝑣𝑖
𝑖

⎞
⎠

𝛾

=
∏

(𝑖,𝑣𝑖)∈𝑄

𝜎
𝑣𝑖⋅𝛾
𝑖 .

2) Homomorphic responses: Because of the homo-
morphic property, the responses computed from CSPs
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in a multi-cloud can be combined into a single final
response as follows: given a set of 𝜃𝑘 = (𝜋𝑘, 𝜎

′
𝑘, 𝜇𝑘, 𝜂𝑘)

received from 𝑃𝑘, let 𝜆𝑗 =
∑

𝑃𝑘∈𝒫
𝜆𝑗,𝑘, the organizer

can compute

𝜇
′

𝑗 =
∑

𝑃𝑘∈𝒫

𝛾 ⋅ 𝜇𝑗,𝑘 =
∑

𝑃𝑘∈𝒫

𝛾 ⋅

⎛
⎝𝜆𝑗,𝑘 +

∑
(𝑖,𝑣𝑖)∈𝑄𝑘

𝑣𝑖 ⋅𝑚𝑖,𝑗

⎞
⎠

=
∑

𝑃𝑘∈𝒫
𝛾 ⋅ 𝜆𝑗,𝑘 + 𝛾 ⋅

∑
𝑃𝑘∈𝒫

∑
(𝑖,𝑣𝑖)∈𝑄𝑘

𝑣𝑖 ⋅𝑚𝑖,𝑗

= 𝛾 ⋅
∑

𝑃𝑘∈𝒫
𝜆𝑗,𝑘 + 𝛾 ⋅

∑
(𝑖,𝑣𝑖)∈𝑄

𝑣𝑖 ⋅𝑚𝑖,𝑗

= 𝛾 ⋅ 𝜆𝑗 + 𝛾 ⋅
∑

(𝑖,𝑣𝑖)∈𝑄
𝑣𝑖 ⋅𝑚𝑖,𝑗 .

The commitment of 𝜆𝑗 is also computed by

𝜋
′ = (

∏
𝑃𝑘∈𝒫

𝜋𝑘)
𝛾 = (

∏
𝑃𝑘∈𝒫

∏𝑠

𝑗=1
𝜋𝑗,𝑘)

𝛾

=
∏𝑠

𝑗=1

∏
𝑃𝑘∈𝒫

𝑒(𝑢
𝜆𝑗,𝑘

𝑗 ,𝐻2)
𝛾

=
∏𝑠

𝑗=1
𝑒(𝑢

∑
𝑃𝑘∈𝒫 𝜆𝑗,𝑘

𝑗 ,𝐻
𝛾
2 ) =

∏𝑠

𝑗=1
𝑒(𝑢

𝜆𝑗

𝑗 ,𝐻
′

2).

It is obvious that the final response 𝜃 received by
the verifiers from multiple CSPs is same as that in one
simple CSP. This means that our CPDP scheme is able
to provide a transparent verification for the verifiers.
Two response algorithms, Response1 and Response2,
comprise an HVR: Given two responses 𝜃𝑖 and 𝜃𝑗
for two challenges 𝑄𝑖 and 𝑄𝑗 from two CSPs, i.e.,
𝜃𝑖 = 𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒1(𝑄𝑖, {𝑚𝑘}𝑘∈𝐼𝑖 , {𝜎𝑘}𝑘∈𝐼𝑖), there exists
an efficient algorithm to combine them into a final
response 𝜃 corresponding to the sum of the challenges
𝑄𝑖

∪
𝑄𝑗 , that is,

𝜃 = 𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒1
(
𝑄𝑖

∪
𝑄𝑗 , {𝑚𝑘}𝑘∈𝐼𝑖

∪
𝐼𝑗
, {𝜎𝑘}𝑘∈𝐼𝑖

∪
𝐼𝑗

)
= 𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒2(𝜃𝑖, 𝜃𝑗).

For multiple CSPs, the above equation can be ex-
tended to 𝜃 = 𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒2({𝜃𝑘}𝑃𝑘∈𝒫). More importantly,
the HVR is a pair of values 𝜃 = (𝜋, 𝜎, 𝜇), which has a
constant-size even for different challenges.

4 SECURITY ANALYSIS
We give a brief security analysis of our CPDP
construction. This construction is directly derived
from multi-prover zero-knowledge proof system (MP-
ZKPS), which satisfies following properties for a given
assertion 𝐿:

1) Completeness: whenever 𝑥 ∈ 𝐿, there exists a
strategy for the provers that convinces the verifier that
this is the case;

2) Soundness: whenever 𝑥 ∕∈ 𝐿, whatever strategy
the provers employ, they will not convince the verifier
that 𝑥 ∈ 𝐿;

3) Zero-knowledge: no cheating verifier can learn
anything other than the veracity of the statement.

According to existing IPS research [15], these prop-
erties can protect our construction from various at-
tacks, such as data leakage attack (privacy leakage),
tag forgery attack (ownership cheating), etc. In details,
the security of our scheme can be analyzed as follows:

4.1 Collision resistant for index-hash hierarchy
In our CPDP scheme, the collision resistant of index-
hash hierarchy is the basis and prerequisite for the
security of whole scheme, which is described as being
secure in the random oracle model. Although the hash
function is collision resistant, a successful hash colli-
sion can still be used to produce a forged tag when
the same hash value is reused multiple times, e.g., a
legitimate client modifies the data or repeats to insert
and delete data blocks of outsourced data. To avoid
the hash collision, the hash value 𝜉

(3)
𝑖,𝑘 , which is used

to generate the tag 𝜎𝑖 in CPDP scheme, is computed
from the set of values {𝜏𝑖}, 𝐹𝑛, 𝐶𝑘, {𝜒𝑖}. As long as
there exists one bit difference in these data, we can
avoid the hash collision. As a consequence, we have
the following theorem (see Appendix B):

Theorem 1 (Collision Resistant): The index-hash hier-
archy in CPDP scheme is collision resistant, even if
the client generates

√
2𝑝 ⋅ ln 1

1−𝜀
files with the same

file name and cloud name, and the client repeats√
2𝐿+1 ⋅ ln 1

1−𝜀
times to modify, insert and delete data

blocks, where the collision probability is at least 𝜀,
𝜏𝑖 ∈ ℤ𝑝, and ∣𝑅𝑖∣ = 𝐿 for 𝑅𝑖 ∈ 𝜒𝑖.

4.2 Completeness property of verification
In our scheme, the completeness property implies
public verifiability property, which allows anyone, not
just the client (data owner), to challenge the cloud
server for data integrity and data ownership without
the need for any secret information. First, for every
available data-tag pair (𝐹, 𝜎) ∈ 𝑇𝑎𝑔𝐺𝑒𝑛(𝑠𝑘, 𝐹 ) and
a random challenge 𝑄 = (𝑖, 𝑣𝑖)𝑖∈𝐼 , the verification
protocol should be completed with success probability
according to the Equation (3), that is,

Pr

⎡
⎣〈 ∑

𝑃𝑘∈𝒫

𝑃𝑘(𝐹
(𝑘)

, 𝜎
(𝑘))↔ 𝑂 ↔ 𝑉

〉
(𝑝𝑘, 𝜓) = 1

⎤
⎦ = 1.

In this process, anyone can obtain the owner’s
public key 𝑝𝑘 = (𝑔, ℎ,𝐻1 = ℎ𝛼, 𝐻2 = ℎ𝛽) and the
corresponding file parameter 𝜓 = (𝑢, 𝜉(1), 𝜒) from
TTP to execute the verification protocol, hence this
is a public verifiable protocol. Moreover, for different
owners, the secrets 𝛼 and 𝛽 hidden in their public
key 𝑝𝑘 are also different, determining that a success
verification can only be implemented by the real
owner’s public key. In addition, the parameter 𝜓 is
used to store the file-related information, so an owner
can employ a unique public key to deal with a large
number of outsourced files.

4.3 Zero-knowledge property of verification
The CPDP construction is in essence a Multi-Prover
Zero-knowledge Proof (MP-ZKP) system [11], which
can be considered as an extension of the notion of

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.
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𝜋
′ ⋅ 𝑒(𝜎′

, ℎ) =
∏𝑠

𝑗=1
𝑒(𝑢

𝜆𝑗

𝑗 ,𝐻
′

2) ⋅ 𝑒(
∏

(𝑖,𝑣𝑖)∈𝑄

𝜎
𝑣𝑖⋅𝛾
𝑖 , ℎ)

=
∏𝑠

𝑗=1
𝑒(𝑢

𝜆𝑗

𝑗 ,𝐻
′

2) ⋅ 𝑒(
∏

(𝑖,𝑣𝑖)∈𝑄

((𝜉
(3)
𝑖,𝑘 )

𝛼 ⋅ (
∏𝑠

𝑗=1
𝑢
𝑚𝑖,𝑗

𝑗 )𝛽)𝑣𝑖⋅𝛾 , ℎ)

=
𝑠∏

𝑗=1

𝑒(𝑢
𝛾⋅𝜆𝑗

𝑗 ,𝐻2) ⋅ 𝑒(
∏

(𝑖,𝑣𝑖)∈𝑄

(𝜉
(3)
𝑖 )𝑣𝑖 , ℎ)𝛼𝛾 ⋅ 𝑒(

∏𝑠

𝑗=1
𝑢

∑

(𝑖,𝑣𝑖)∈𝑄

𝛾𝑚𝑖,𝑗𝑣𝑖

𝑗 , ℎ
𝛽)

= 𝑒(
∏

(𝑖,𝑣𝑖)∈𝑄

(𝜉
(3)
𝑖 )𝑣𝑖 ,𝐻 ′

1) ⋅
𝑠∏

𝑗=1

𝑒(𝑢
𝜇′
𝑗

𝑗 ,𝐻2). (3)

an interactive proof system (IPS). Roughly speak-
ing, in the scenario of MP-ZKP, a polynomial-time
bounded verifier interacts with several provers whose
computational powers are unlimited. According to a
Simulator model, in which every cheating verifier has
a simulator that can produce a transcript that “looks
like” an interaction between a honest prover and a
cheating verifier, we can prove our CPDP construction
has Zero-knowledge property (see Appendix C):

Theorem 2 (Zero-Knowledge Property): The verificat-
ion protocol 𝑃𝑟𝑜𝑜𝑓(𝒫 , 𝑉 ) in CPDP scheme is a com-
putational zero-knowledge system under a simulator
model, that is, for every probabilistic polynomial-time
interactive machine 𝑉 ∗, there exists a probabilistic
polynomial-time algorithm 𝑆∗ such that the ensem-
bles 𝑉 𝑖𝑒𝑤(⟨

∑
𝑃𝑘∈𝒫

𝑃𝑘(𝐹
(𝑘), 𝜎(𝑘)) ↔ 𝑂 ↔ 𝑉 ∗⟩(𝑝𝑘, 𝜓))

and 𝑆∗(𝑝𝑘, 𝜓) are computationally indistinguishable.

Zero-knowledge is a property that achieves the
CSPs’ robustness against attempts to gain knowledge
by interacting with them. For our construction, we
make use of the zero-knowledge property to preserve
the privacy of data blocks and signature tags. Firstly,
randomness is adopted into the CSPs’ responses in
order to resist the data leakage attacks (see Attacks 1
and 3 in Appendix A). That is, the random integer
𝜆𝑗,𝑘 is introduced into the response 𝜇𝑗,𝑘, i.e., 𝜇𝑗,𝑘 =
𝜆𝑗,𝑘+

∑
(𝑖,𝑣𝑖)∈𝑄𝑘

𝑣𝑖 ⋅𝑚𝑖,𝑗 . This means that the cheating
verifier cannot obtain 𝑚𝑖,𝑗 from 𝜇𝑗,𝑘 because he does
not know the random integer 𝜆𝑗,𝑘. At the same time,
a random integer 𝛾 is also introduced to randomize
the verification tag 𝜎, i.e., 𝜎′ ← (

∏
𝑃𝑘∈𝒫

𝜎′
𝑘 ⋅ 𝑅−𝑠

𝑘 )𝛾 .
Thus, the tag 𝜎 cannot reveal to the cheating verifier
in terms of randomness.

4.4 Knowledge soundness of verification
For every data-tag pairs (𝐹 ∗, 𝜎∗) ∕∈ 𝑇𝑎𝑔𝐺𝑒𝑛(𝑠𝑘, 𝐹 ), in
order to prove nonexistence of fraudulent 𝒫∗ and 𝑂∗,
we require that the scheme satisfies the knowledge
soundness property, that is,

Pr

⎡
⎣〈 ∑

𝑃𝑘∈𝒫∗

𝑃𝑘(𝐹
(𝑘)∗

, 𝜎
(𝑘)∗)↔ 𝑂

∗ ↔ 𝑉

〉
(𝑝𝑘, 𝜓) = 1

⎤
⎦ ≤ 𝜖,

where 𝜖 is a negligible error. We prove that our
scheme has the knowledge soundness property by

using reduction to absurdity 1: we make use of 𝒫∗

to construct a knowledge extractor ℳ [7,13], which
gets the common input (𝑝𝑘, 𝜓) and rewindable black-
box accesses to the prover 𝑃 ∗, and then attempts to
break the computational Diffie-Hellman (CDH) prob-
lem in 𝔾: given 𝐺,𝐺1 = 𝐺𝑎, 𝐺2 = 𝐺𝑏 ∈𝑅 𝔾, output
𝐺𝑎𝑏 ∈ 𝔾. But it is unacceptable because the CDH prob-
lem is widely regarded as an unsolved problem in
polynomial-time. Thus, the opposite direction of the
theorem also follows. We have the following theorem
(see Appendix D):

Theorem 3 (Knowledge Soundness Property): Our sch-
eme has (𝑡, 𝜖′) knowledge soundness in random oracle
and rewindable knowledge extractor model assum-
ing the (𝑡, 𝜖)-computational Diffie-Hellman (CDH) as-
sumption holds in the group 𝔾 for 𝜖′ ≥ 𝜖.

Essentially, the soundness means that it is infeasible
to fool the verifier to accept false statements. Often,
the soundness can also be regarded as a stricter notion
of unforgeability for file tags to avoid cheating the
ownership. This means that the CSPs, even if collusion
is attempted, cannot be tampered with the data or
forge the data tags if the soundness property holds.
Thus, the Theorem 3 denotes that the CPDP scheme
can resist the tag forgery attacks (see Attacks 2 and 4 in
Appendix A) to avoid cheating the CSPs’ ownership.

5 PERFORMANCE EVALUATION
In this section, to detect abnormality in a low-
overhead and timely manner, we analyze and op-
timize the performance of CPDP scheme based on
the above scheme from two aspects: evaluation of
probabilistic queries and optimization of length of
blocks. To validate the effects of scheme, we introduce
a prototype of CPDP-based audit system and present
the experimental results.

5.1 Performance Analysis for CPDP Scheme
We present the computation cost of our CPDP scheme
in Table 3. We use [𝐸] to denote the computation cost
of an exponent operation in 𝔾, namely, 𝑔𝑥, where 𝑥
is a positive integer in ℤ𝑝 and 𝑔 ∈ 𝔾 or 𝔾𝑇 . We ne-
glect the computation cost of algebraic operations and

1. It is a proof method in which a proposition is proved to be
true by proving that it is impossible to be false.
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simple modular arithmetic operations because they
run fast enough [16]. The most complex operation is
the computation of a bilinear map 𝑒(⋅, ⋅) between two
elliptic points (denoted as [𝐵]).

TABLE 3
Comparison of computation overheads between our
CPDP scheme and non-cooperative (trivial) scheme.

CPDP Scheme Trivial Scheme
KeyGen 3[𝐸] 2[E]
TagGen (2𝑛+ 𝑠)[𝐸] (2𝑛+ 𝑠)[𝐸]
Proof(𝒫) 𝑐[𝐵] + (𝑡 + 𝑐𝑠+ 1)[𝐸] 𝑐[𝐵] + (𝑡+ 𝑐𝑠− 𝑐)[𝐸]
Proof(V) 3[𝐵] + (𝑡+ 𝑠)[𝐸] 3𝑐[𝐵] + (𝑡+ 𝑐𝑠)[𝐸]

Then, we analyze the storage and communication
costs of our scheme. We define the bilinear pairing
takes the form 𝑒 : 𝐸(𝔽𝑝𝑚) × 𝐸(𝔽𝑝𝑘𝑚) → 𝔽∗

𝑝𝑘𝑚 (The
definition given here is from [17], [18]), where 𝑝 is a
prime, 𝑚 is a positive integer, and 𝑘 is the embedding
degree (or security multiplier). In this case, we utilize
an asymmetric pairing 𝑒 : 𝔾1×𝔾2 → 𝔾𝑇 to replace the
symmetric pairing in the original schemes. In Table 3,
it is easy to find that client’s computation overheads
are entirely irrelevant for the number of CSPs. Further,
our scheme has better performance compared with
non-cooperative approach due to the total of compu-
tation overheads decrease 3(𝑐− 1) times bilinear map
operations, where 𝑐 is the number of clouds in a multi-
cloud. The reason is that, before the responses are
sent to the verifier from 𝑐 clouds, the organizer has
aggregate these responses into a response by using
aggregation algorithm, so the verifier only need to
verify this response once to obtain the final result.

TABLE 4
Comparison of communication overheads between
our CPDP and non-cooperative (trivial) scheme.

CPDP Scheme Trivial Scheme
Commitment 𝑙2 𝑐𝑙2
Challenge1 2𝑡𝑙0 2𝑡𝑙0Challenge2 2𝑡𝑙0/𝑐
Response1 𝑠𝑙0 + 2𝑙1 + 𝑙𝑇 (𝑠𝑙0 + 𝑙1 + 𝑙𝑇 )𝑐Response2 𝑠𝑙0 + 𝑙1 + 𝑙𝑇

Without loss of generality, let the security param-
eter 𝜅 be 80 bits, we need the elliptic curve domain
parameters over 𝔽𝑝 with ∣𝑝∣ = 160 bits and 𝑚 = 1
in our experiments. This means that the length of
integer is 𝑙0 = 2𝜅 in ℤ𝑝. Similarly, we have 𝑙1 = 4𝜅
in 𝔾1, 𝑙2 = 24𝜅 in 𝔾2, and 𝑙𝑇 = 24𝜅 in 𝔾𝕋 for the
embedding degree 𝑘 = 6. The storage and communi-
cation costs of our scheme is shown in Table 4. The
storage overhead of a file with 𝑠𝑖𝑧𝑒(𝑓) = 1𝑀 -bytes is
𝑠𝑡𝑜𝑟𝑒(𝑓) = 𝑛 ⋅ 𝑠 ⋅ 𝑙0 + 𝑛 ⋅ 𝑙1 = 1.04𝑀 -bytes for 𝑛 = 103

and 𝑠 = 50. The storage overhead of its index table 𝜒
is 𝑛 ⋅ 𝑙0 = 20𝐾-bytes. We define the overhead rate as
𝜆 = 𝑠𝑡𝑜𝑟𝑒(𝑓)

𝑠𝑖𝑧𝑒(𝑓) − 1 = 𝑙1
𝑠⋅𝑙0

and it should therefore be kept
as low as possible in order to minimize the storage in
cloud storage providers. It is obvious that a higher

𝑠 means much lower storage. Furthermore, in the
verification protocol, the communication overhead of
challenge is 2𝑡 ⋅ 𝑙0 = 40 ⋅𝑡-Bytes in terms of the number
of challenged blocks 𝑡, but its response (response1 or
response2) has a constant-size communication over-
head 𝑠 ⋅ 𝑙0+ 𝑙1+ 𝑙𝑇 ≈ 1.3𝐾-bytes for different file sizes.
Also, it implies that client’s communication overheads
are of a fixed size, which is entirely irrelevant for the
number of CSPs.

5.2 Probabilistic Verification
We recall the probabilistic verification of common
PDP scheme (which only involves one CSP), in which
the verification process achieves the detection of CSP
server misbehavior in a random sampling mode in
order to reduce the workload on the server. The
detection probability of disrupted blocks 𝑃 is an
important parameter to guarantee that these blocks
can be detected in time. Assume the CSP modifies 𝑒
blocks out of the 𝑛-block file, that is, the probability
of disrupted blocks is 𝜌𝑏 = 𝑒

𝑛
. Let 𝑡 be the number

of queried blocks for a challenge in the verification
protocol. We have detection probability 2

𝑃 (𝜌𝑏, 𝑡) ≥ 1− (
𝑛 − 𝑒

𝑛
)𝑡 = 1− (1− 𝜌𝑏)

𝑡,

where, 𝑃 (𝜌𝑏, 𝑡) denotes that the probability 𝑃 is a
function over 𝜌𝑏 and 𝑡. Hence, the number of queried
blocks is 𝑡 ≈ log(1−𝑃 )

log(1−𝜌𝑏)
≈ 𝑃 ⋅𝑛

𝑒
for a sufficiently large 𝑛

and 𝑡 ≪ 𝑛.3 This means that the number of queried
blocks 𝑡 is directly proportional to the total number
of file blocks 𝑛 for the constant 𝑃 and 𝑒. Therefore,
for a uniform random verification in a PDP scheme
with fragment structure, given a file with 𝑠𝑧 = 𝑛 ⋅ 𝑠
sectors and the probability of sector corruption 𝜌,
the detection probability of verification protocol has
𝑃 ≥ 1 − (1 − 𝜌)𝑠𝑧⋅𝜔 , where 𝜔 denotes the sampling
probability in the verification protocol. We can obtain
this result as follows: because 𝜌𝑏 ≥ 1 − (1 − 𝜌)𝑠 is
the probability of block corruption with 𝑠 sectors in
common PDP scheme, the verifier can detect block
errors with probability 𝑃 ≥ 1 − (1 − 𝜌𝑏)

𝑡 ≥ 1 −
((1 − 𝜌)𝑠)𝑛⋅𝜔 = 1 − (1 − 𝜌)𝑠𝑧⋅𝜔 for a challenge with
𝑡 = 𝑛⋅𝜔 index-coefficient pairs. In the same way, given
a multi-cloud 𝒫 = {𝑃𝑖}𝑖∈[1,𝑐], the detection probability
of CPDP scheme has

𝑃 (𝑠𝑧, {𝜌𝑘, 𝑟𝑘}𝑃𝑘∈𝒫 , 𝜔)

≥ 1−
∏

𝑃𝑘∈𝒫
((1 − 𝜌𝑘)

𝑠)𝑛⋅𝑟𝑘⋅𝜔

= 1−
∏

𝑃𝑘∈𝒫
(1 − 𝜌𝑘)

𝑠𝑧⋅𝑟𝑘⋅𝜔,

where 𝑟𝑘 denotes the proportion of data blocks in the
𝑘-th CSP, 𝜌𝑘 denotes the probability of file corruption

2. Exactly, we have 𝑃 = 1− (1− 𝑒
𝑛
) ⋅ (1− 𝑒

𝑛−1
) ⋅ ⋅ ⋅ (1− 𝑒

𝑛−𝑡+1
).

Since 1− 𝑒
𝑛

≥ 1− 𝑒
𝑛−𝑖

for 𝑖 ∈ [0, 𝑡−1], we have 𝑃 = 1−
∏𝑡−1

𝑖=0(1−
𝑒

𝑛−𝑖
) ≥ 1−

∏𝑡−1
𝑖=0(1− 𝑒

𝑛
) = 1− (1− 𝑒

𝑛
)𝑡 .

3. In terms of (1− 𝑒
𝑛
)𝑡 ≈ 1− 𝑒⋅𝑡

𝑛
, we have 𝑃 ≈ 1−(1− 𝑒⋅𝑡

𝑛
) = 𝑒⋅𝑡

𝑛
.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 11

TABLE 5
The influence of 𝑠, 𝑡 under the different corruption probabilities 𝜌 and the different detection probabilities 𝑃 .

𝒫 {0.1,0.2,0.01} {0.01,0.02,0.001} {0.001,0.002,0.0001} {0.0001,0.0002,0.00001}
𝑟 {0.5,0.3,0.2} {0.5,0.3,0.2} {0.5,0.3,0.2} {0.5,0.3,0.2}

0.8 3/4 7/20 23/62 71/202
0.85 3/5 8/21 26/65 79/214
0.9 3/6 10/20 28/73 87/236
0.95 3/8 11/29 31/86 100/267
0.99 4/10 13/31 39/105 119/345

0.999 5/11 16/38 48/128 146/433

in the 𝑘-th CSP, and 𝑟𝑘 ⋅𝜔 denotes the possible number
of blocks queried by the verifier in the 𝑘-th CSP.
Furthermore, we observe the ratio of queried blocks
in the total file blocks 𝑤 under different detection
probabilities. Based on above analysis, it is easy to
find that this ratio holds the equation

𝑤 ≈
log(1 − 𝑃 )

𝑠𝑧 ⋅
∑

𝑃𝑘∈𝒫
𝑟𝑘 ⋅ log(1− 𝜌𝑘)

.

When this probability 𝜌𝑘 is a constant probability,
the verifier can detect sever misbehavior with a cer-
tain probability 𝑃 by asking proof for the number of
blocks 𝑡 ≈ log(1−𝑃 )

𝑠 ˙log(1−𝜌)
for PDP or

𝑡 ≈
log(1− 𝑃 )

𝑠 ⋅
∑

𝑃𝑘∈𝒫
𝑟𝑘 ⋅ log(1− 𝜌𝑘)

for CPDP, where 𝑡 = 𝑛 ⋅𝑤 = 𝑠𝑧⋅𝑤
𝑠

. Note that, the value
of 𝑡 is dependent on the total number of file blocks
𝑛 [2], because it is increased along with the decrease
of 𝜌𝑘 and log(1 − 𝜌𝑘) < 0 for the constant number of
disrupted blocks 𝑒 and the larger number 𝑛.
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Fig. 4. The relationship between computational cost
and the number of sectors in each block.

Another advantage of probabilistic verification
based on random sampling is that it is easy to identify
the tampering or forging data blocks or tags. The iden-
tification function is obvious: when the verification
fails, we can choose the partial set of challenge in-
dexes as a new challenge set, and continue to execute
the verification protocol. The above search process can
be repeatedly executed until the bad block is found.
The complexity of such a search process is 𝑂(log 𝑛).

5.3 Parameter Optimization
In the fragment structure, the number of sectors
per block 𝑠 is an important parameter to affect the
performance of storage services and audit services.
Hence, we propose an optimization algorithm for the
value of s in this section. Our results show that the
optimal value can not only minimize the computation
and communication overheads, but also reduce the
size of extra storage, which is required to store the
verification tags in CSPs.

Assume 𝜌 denotes the probability of sector corrup-
tion. In the fragment structure, the choosing of 𝑠 is ex-
tremely important for improving the performance of
the CPDP scheme. Given the detection probability 𝑃
and the probability of sector corruption 𝜌 for multiple
clouds 𝒫 = {𝑃𝑘}, the optimal value of 𝑠 can be com-
puted by min𝑠∈ℕ

{
log(1−𝑃 )∑

𝑃𝑘∈𝒫
𝑟𝑘⋅log(1−𝜌𝑘)

⋅ 𝑎
𝑠
+ 𝑏 ⋅ 𝑠 + 𝑐

}
,

where 𝑎 ⋅ 𝑡 + 𝑏 ⋅ 𝑠 + 𝑐 denotes the computational cost
of verification protocol in PDP scheme, 𝑎, 𝑏, 𝑐 ∈ ℝ,
and 𝑐 is a constant. This conclusion can be obtained
from following process: Let 𝑠𝑧 = 𝑛 ⋅ 𝑠 = 𝑠𝑖𝑧𝑒(𝑓)/𝑙0.
According to above-mentioned results, the sam-
pling probability holds 𝑤 ≥ log(1−𝑃 )

𝑠𝑧⋅
∑

𝑃𝑘∈𝒫
𝑟𝑘⋅log(1−𝜌𝑘)

=

log(1−𝑃 )
𝑛⋅𝑠⋅

∑
𝑃𝑘∈𝒫

𝑟𝑘⋅log(1−𝜌𝑘)
. In order to minimize the com-

putational cost, we have

min
𝑠∈ℕ

{𝑎 ⋅ 𝑡 + 𝑏 ⋅ 𝑠 + 𝑐}

= min
𝑠∈ℕ

{𝑎 ⋅ 𝑛 ⋅ 𝑤 + 𝑏 ⋅ 𝑠 + 𝑐}

≥ min
𝑠∈ℕ

{
log(1− 𝑃 )∑

𝑃𝑘∈𝒫
𝑟𝑘 ⋅ log(1 − 𝜌𝑘)

𝑎

𝑠
+ 𝑏 ⋅ 𝑠 + 𝑐

}
.

where 𝑟𝑘 denotes the proportion of data blocks in the
𝑘-th CSP, 𝜌𝑘 denotes the probability of file corruption
in the 𝑘-th CSP. Since 𝑎

𝑠
is a monotone decreasing

function and 𝑏 ⋅ 𝑠 is a monotone increasing function
for 𝑠 > 0, there exists an optimal value of 𝑠 ∈ ℕ in the
above equation. The optimal value of 𝑠 is unrelated
to a certain file from this conclusion if the probability
𝜌 is a constant value.

For instance, we assume a multi-cloud storage
involves three CSPs 𝒫 = {𝑃1, 𝑃2, 𝑃3} and the
probability of sector corruption is a constant value
{𝜌1, 𝜌2, 𝜌3} = {0.01, 0.02, 0.001}. We set the detection
probability 𝑃 with the range from 0.8 to 1, e.g.,
𝑃 = {0.8, 0.85, 0.9, 0.95, 0.99, 0.999}. For a file, the
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Fig. 5. Applying CPDP scheme in Hadoop distributed file system (HDFS).

proportion of data blocks is 50%, 30%, and 20% in
three CSPs, respectively, that is, 𝑟1 = 0.5, 𝑟2 = 0.3, and
𝑟3 = 0.2. In terms of Table 3, the computational cost
of CSPs can be simplified to 𝑡 + 3𝑠+ 9. Then, we can
observe the computational cost under different 𝑠 and
𝑃 in Figure 4. When 𝑠 is less than the optimal value,
the computational cost decreases evidently with the
increase of 𝑠, and then it raises when 𝑠 is more than
the optimal value.

TABLE 6
The influence of parameters under different detection
probabilities 𝑃 (𝒫 = {𝜌1, 𝜌2, 𝜌3} = {0.01, 0.02, 0.001},

{𝑟1, 𝑟2, 𝑟3} = {0.5, 0.3, 0.2}).

P 0.8 0.85 0.9 0.95 0.99 0.999
𝑠𝑧 ⋅ 𝑤 142.60 168.09 204.02 265.43 408.04 612.06

𝑠 7 8 10 11 13 16
𝑡 20 21 20 29 31 38

More accurately, we show the influence of parame-
ters, 𝑠𝑧 ⋅𝑤, 𝑠, and 𝑡, under different detection probabil-
ities in Table 6. It is easy to see that computational cost
raises with the increase of 𝑃 . Moreover, we can make
sure the sampling number of challenge with following
conclusion: Given the detection probability 𝑃 , the
probability of sector corruption 𝜌, and the number
of sectors in each block 𝑠, the sampling number of
verification protocol are a constant 𝑡 = 𝑛 ⋅ 𝑤 ≥

log(1−𝑃 )
𝑠⋅
∑

𝑃𝑘∈𝒫
𝑟𝑘⋅log(1−𝜌𝑘)

for different files.

Finally, we observe the change of 𝑠 under different
𝜌 and 𝑃 . The experimental results are shown in Table
5. It is obvious that the optimal value of 𝑠 raises with
increase of 𝑃 and with the decrease of 𝜌. We choose
the optimal value of 𝑠 on the basis of practical settings
and system requisition. For NTFS format, we suggest
that the value of 𝑠 is 200 and the size of block is 4K-
Bytes, which is the same as the default size of cluster
when the file size is less than 16TB in NTFS. In this
case, the value of 𝑠 ensures that the extra storage
doesn’t exceed 1% in storage servers.

5.4 CPDP for Integrity Audit Services

Based on our CPDP scheme, we introduce an audit
system architecture for outsourced data in multiple
clouds by replacing the TTP with a third party auditor
(TPA) in Figure 1. In this architecture, this architecture
can be constructed into a visualization infrastructure
of cloud-based storage service [1]. In Figure 5, we
show an example of applying our CPDP scheme in
Hadoop distributed file system (HDFS) 4, which a
distributed, scalable, and portable file system [19].
HDFS’ architecture is composed of NameNode and
DataNode, where NameNode maps a file name to
a set of indexes of blocks and DataNode indeed
stores data blocks. To support our CPDP scheme, the
index-hash hierarchy and the metadata of NameNode
should be integrated together to provide an enquiry
service for the hash value 𝜉

(3)
𝑖,𝑘 or index-hash record 𝜒𝑖.

Based on the hash value, the clients can implement the
verification protocol via CPDP services. Hence, it is
easy to replace the checksum methods with the CPDP
scheme for anomaly detection in current HDFS.

To validate the effectiveness and efficiency of our
proposed approach for audit services, we have imple-
mented a prototype of an audit system. We simulated
the audit service and the storage service by using two
local IBM servers with two Intel Core 2 processors at
2.16 GHz and 500M RAM running Windows Server
2003. These servers were connected via 250 MB/sec of
network bandwidth. Using GMP and PBC libraries,
we have implemented a cryptographic library upon
which our scheme can be constructed. This C library
contains approximately 5,200 lines of codes and has
been tested on both Windows and Linux platforms.
The elliptic curve utilized in the experiment is a
MNT curve, with base field size of 160 bits and the
embedding degree 6. The security level is chosen to
be 80 bits, which means ∣𝑝∣ = 160.

4. Hadoop can enable applications to work with thousands of
nodes and petabytes of data, and it has been adopted by currently
mainstream cloud platforms from Apache, Google, Yahoo, Amazon,
IBM and Sun.
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Fig. 6. Experimental results under different file size, sampling ratio, and sector number.

Firstly, we quantify the performance of our audit
scheme under different parameters, such as file size
𝑠𝑧, sampling ratio 𝑤, sector number per block 𝑠,
and so on. Our analysis shows that the value of 𝑠
should grow with the increase of 𝑠𝑧 in order to reduce
computation and communication costs. Thus, our ex-
periments were carried out as follows: the stored files
were chosen from 10KB to 10MB; the sector numbers
were changed from 20 to 250 in terms of file sizes; and
the sampling ratios were changed from 10% to 50%.
The experimental results are shown in the left side of
Figure 6. These results dictate that the computation
and communication costs (including I/O costs) grow
with the increase of file size and sampling ratio.

Next, we compare the performance of each activity
in our verification protocol. We have shown the the-
oretical results in Table 4: the overheads of “commit-
ment” and “challenge” resemble one another, and the
overheads of “response” and “verification” resemble
one another as well. To validate the theoretical results,
we changed the sampling ratio 𝑤 from 10% to 50% for
a 10MB file and 250 sectors per block in a multi-cloud
𝒫 = {𝑃1, 𝑃2, 𝑃3}, in which the proportions of data
blocks are 50%, 30%, and 20% in three CSPs, respec-
tively. In the right side of Figure 6, our experimental
results show that the computation and communi-
cation costs of “commitment” and “challenge” are
slightly changed along with the sampling ratio, but
those for “response” and “verification” grow with the
increase of the sampling ratio. Here, “challenge” and
“response” can be divided into two sub-processes:
“challenge1” and “challenge2”, as well as “response1”
and “response2”, respectively. Furthermore, the pro-
portions of data blocks in each CSP have greater
influence on the computation costs of “challenge” and
“response” processes. In summary, our scheme has
better performance than non-cooperative approach.

6 CONCLUSIONS
In this paper, we presented the construction of an
efficient PDP scheme for distributed cloud storage.

Based on homomorphic verifiable response and hash
index hierarchy, we have proposed a cooperative PDP
scheme to support dynamic scalability on multiple
storage servers. We also showed that our scheme
provided all security properties required by zero-
knowledge interactive proof system, so that it can
resist various attacks even if it is deployed as a public
audit service in clouds. Furthermore, we optimized
the probabilistic query and periodic verification to im-
prove the audit performance. Our experiments clearly
demonstrated that our approaches only introduce a
small amount of computation and communication
overheads. Therefore, our solution can be treated as
a new candidate for data integrity verification in
outsourcing data storage systems.

As part of future work, we would extend our
work to explore more effective CPDP constructions.
First, from our experiments we found that the per-
formance of CPDP scheme, especially for large files,
is affected by the bilinear mapping operations due
to its high complexity. To solve this problem, RSA-
based constructions may be a better choice, but this
is still a challenging task because the existing RSA-
based schemes have too many restrictions on the
performance and security [2]. Next, from a practical
point of view, we still need to address some issues
about integrating our CPDP scheme smoothly with
existing systems, for example, how to match index-
hash hierarchy with HDFS’s two-layer name space,
how to match index structure with cluster-network
model, and how to dynamically update the CPDP
parameters according to HDFS’ specific requirements.
Finally, it is still a challenging problem for the gener-
ation of tags with the length irrelevant to the size of
data blocks. We would explore such a issue to provide
the support of variable-length block verification.
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