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Abstract—In this paper, we propose a dynamic audit service for verifying the integrity of an untrusted and outsourced storage. Our

audit service is constructed based on the techniques, fragment structure, random sampling, and index-hash table, supporting provable

updates to outsourced data and timely anomaly detection. In addition, we propose a method based on probabilistic query and periodic

verification for improving the performance of audit services. Our experimental results not only validate the effectiveness of our

approaches, but also show our audit system verifies the integrity with lower computation overhead and requiring less extra storage for

audit metadata.
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1 INTRODUCTION

CLOUD computing provides a scalable environment for
growing amounts of data and processes that work on

various applications and services by means of on-demand
self-services. Especially, the outsourced storage in clouds
has become a new profit growth point by providing a
comparably low-cost, scalable, location-independent plat-
form for managing clients’ data. The cloud storage service
(CSS) relieves the burden for storage management and
maintenance. However, if such an important service is
vulnerable to attacks or failures, it would bring irretrievable
losses to the clients because their data or archives are stored
in an uncertain storage pool outside the enterprises. These
security risks come from the following reasons: First, the
cloud infrastructures are much more powerful and reliable
than personal computing devices, but they are still
susceptible to internal threats (e.g., via virtual machine)
and external threats (e.g., via system holes) that can damage
data integrity [1]; second, for the benefits of possession,
there exist various motivations for cloud service providers
(CSP) to behave unfaithfully toward the cloud users [2];
furthermore, disputes occasionally suffer from the lack of
trust on CSP because the data change may not be timely
known by the cloud users, even if these disputes may result
from the users’ own improper operations [3]. Therefore, it is

necessary for CSP to offer an efficient audit service to check
the integrity and availability of stored data [4].

Security audit is an important solution enabling trace-
back and analysis of any activities including data
accesses, security breaches, application activities, and so
on. Data security tracking is crucial for all organizations
that should comply with a wide range of federal
regulations including the Sarbanes-Oxley Act, Basel II,
HIPAA, and so on.1 Furthermore, compared to the
common audit, the audit services for cloud storages
should provide clients with a more efficient proof for
verifying the integrity of stored data. Unfortunately, the
traditional cryptographic technologies, based on hash
functions and signature schemes, cannot support for data
integrity verification without a local copy of data. In
addition, it is evidently impractical for audit services to
download the whole data for checking data validation
due to the communication cost, especially for large-size
files. Therefore, following security and performance
objectives should be addressed to achieve an efficient
audit for outsourced storage in clouds:

. Public auditability. To allow a third party auditor
(TPA) or clients with the help of TPA to verify the
correctness of cloud data on demand without
retrieving a copy of the whole data or introducing
additional online burden to cloud services;

. Dynamic operations. To ensure there is no attack to
compromise the security of verification protocol or
cryptosystem by using dynamic data operations;

. Timely detection. To detect data errors or losses in
outsourced storage, as well as anomalous behaviors
of data operations in a timely manner;

. Effective forensic. To allow TPA to exercise strict audit
and supervision for outsourced data, and offer
efficient evidences for anomalies; and
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. Lightweight. To allow TPA to perform audit tasks
with the minimum storage, lower communication
cost, and less computation overhead.

In this paper, we introduce a dynamic audit service for
integrity verification of untrusted and outsourced storages.
Constructed on interactive proof system (IPS) with the zero-
knowledge property, our audit service can provide public
auditability without downloading raw data and protect
privacy of the data. Also, our audit system can support
dynamic data operations and timely anomaly detection
with the help of several effective techniques, such as
fragment structure, random sampling, and index-hash table
(IHT). We also propose an efficient approach based on
probabilistic query and periodic verification for improving
the performance of audit services. A proof-of-concept
prototype is also implemented to evaluate the feasibility
and viability of our proposed approaches. Our experimen-
tal results not only validate the effectiveness of our
approaches, but also show that our system does not create
any significant computation cost and require less extra
storage for integrity verification.

We list the features of our scheme in Table 1. We also
make a comparison of related techniques, involving
provable data possession (PDP) [5], scalable PDP (SPDP)
[6], dynamic PDP (DPDP) [7], and compact proofs of
retrievability (CPOR) [8]. It clearly shows that our scheme
not only supports complete privacy protection and dynamic
data operations, but also enables significant savings in
computation and communication costs, as well as a high-
detection probability of disrupted blocks.

The rest of the paper is organized as follows: Section 2
describes the research background and related work.
Section 3 addresses our audit system architecture and main
techniques. Sections 4 and 5 describe the definition and
construction of corresponding algorithms, respectively. In
Sections 6, we present the security of our schemes along
with the performance of experimental results in Section 7.
Finally, we conclude this paper in Section 8.

2 BACKGROUND AND RELATED WORK

Traditional cryptographic technologies for data integrity
and availability, based on hash functions and signature
schemes [9], [10], [11], cannot work on the outsourced data
without a local copy of data. In addition, it is not a practical
solution for data validation by downloading them due to
the expensive communications, especially for large-size

files. Moreover, the ability to audit the correctness of data in
a cloud environment can be formidable and expensive for
cloud users. Therefore, it is crucial to realize public
auditability for CSS, so that data owners (DOs) may resort
to a TPA, who has expertise and capabilities that a common
user does not have, for periodically auditing the outsourced
data. This audit service is significantly important for digital
forensics and data assurance in clouds.

To implement public auditability, the notions of proof of
retrievability (POR) [2] and PDP [5] have been proposed by
some researchers. These approaches were based on a
probabilistic proof technique for a storage provider to
prove that clients’ data remain intact. For ease of use, some
POR/PDP schemes work on a publicly verifiable way, so
that anyone can use the verification protocol to prove the
availability of the stored data. Hence, they help accom-
modate the requirements from public auditability. POR/
PDP schemes evolved around an untrusted storage offer a
publicly accessible remote interface to check the tremen-
dous amount of data.

There exist some solutions for audit services on out-
sourced data. For example, Xie et al. [12] proposed an
efficient method on content comparability for outsourced
database, but it was not suitable for irregular data. Wang
et al. [13] also provided a similar architecture for public
audit services. To support their architecture, a public audit
scheme was proposed with privacy-preserving property.
However, the lack of rigorous performance analysis for a
constructed audit system greatly affects the practical
application of their scheme. For instance, in this scheme
an outsourced file is directly split into n blocks, and then
each block generates a verification tag. To maintain security,
the length of block must be equal to the size of
cryptosystem, that is, 160 bits, which is 20 bytes. This
means that 1M bytes file is split into 50,000 blocks and
generates 50,000 tags [8], and the storage of tags is at least
1M bytes. Therefore, it is inefficient to build an audit system
based on this scheme. To address such a problem, we
introduce a fragment technique to improve the system
performance and reduce the extra storage (see Section 3.1).

Another major concern is the security issue of dynamic
data operations for public audit services. In clouds, one of
the core design principles is to provide dynamic scalability
for various applications. This means that remotely stored
data might be not only accessed by the clients but also
dynamically updated by them, for instance, through block
operations such as modification, deletion and insertion.
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TABLE 1
Comparison of POR/PDP Schemes for a File Consisting of n Blocks



However, these operations may raise security issues in most
of existing schemes, e.g., the forgery of the verification
metadata (called as tags) generated by DOs and the leakage
of the user’s secret key. Hence, it is crucial to develop a
more efficient and secure mechanism for dynamic audit
services, in which a potential adversary’s advantage
through dynamic data operations should be prohibited.

3 ARCHITECTURE AND TECHNIQUES

We introduce an audit system architecture for outsourced
data in clouds as shown in Fig. 1. In this architecture, we
consider that a data storage service involves four entities:
DO, who has a large amount of data to be stored in the
cloud; CSP, who provides data storage service and has
enough storage space and computation resources; TPA,
who has capabilities to manage or monitor the outsourced
data under the delegation of DO; and authorized applica-
tions (AAs), who have the right to access and manipulate
the stored data. Finally, application users can enjoy various
cloud application services via these AAs.

We assume the TPA is reliable and independent through
the following audit functions: TPA should be able to make
regular checks on the integrity and availability of the
delegated data at appropriate intervals; TPA should be able
to organize, manage, and maintain the outsourced data
instead of DOs, and support dynamic data operations for
AAs; and TPA should be able to take the evidences for
disputes about the inconsistency of data in terms of
authentic records for all data operations.

To realize these functions, our audit service is comprised
of three processes:

. Tag generation. The client (DO) uses a secret key sk to
preprocess a file, which consists of a collection of n
blocks, generates a set of public verification para-
meters (PVPs) and IHT that are stored in TPA,
transmits the file and some verification tags to CSP,
and may delete its local copy (see Fig. 2a);

. Periodic sampling audit. By using an interactive proof
protocol of retrievability, TPA (or other applications)
issues a “random sampling” challenge to audit the
integrity and availability of the outsourced data in
terms of verification information (involving PVP and
IHT) stored in TPA (see Fig. 2b); and

. Audit for dynamic operations. An AA, who holds a
DO’s secret key sk, can manipulate the outsourced

data and update the associated IHT stored in TPA.
The privacy of sk and the checking algorithm ensure
that the storage server cannot cheat the AAs and
forge the valid audit records (see Fig. 2c).

In general, the AAs should be cloud application services
inside clouds for various application purposes, but they
must be specifically authorized by DOs for manipulating
outsourced data. Since the acceptable operations require
that the AAs must present authentication information for
TPA, any unauthorized modifications for data will be
detected in audit processes or verification processes. Based
on this kind of strong authorization-verification mechan-
ism, we assume neither CSP is trusted to guarantee the
security of stored data, nor a DO has the capability to collect
the evidence of CSP’s faults after errors have been found.

The ultimate goal of this audit infrastructure is to
enhance the credibility of CSSs, but not to increase DO’s
burden. Therefore, TPA should be constructed in clouds
and maintained by a CSP. To ensure the trust and security,
TPA must be secure enough to resist malicious attacks, and
it should be strictly controlled to prevent unauthorized
accesses even for internal members in clouds. A more
practical way is that TPA in clouds should be mandated by
a trusted third party (TTP). This mechanism not only
improves the performance of an audit service, but also
provides the DO with a maximum access transparency. This
means that DOs are entitled to utilize the audit service
without additional costs.

The aforementioned processes involve some procedures:
KeyGen, TagGen, Update, Delete, Insert algorithms, as well
as an Interactive Proof Protocol of Retrievability. We make use
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Fig. 1. Audit system architecture.

Fig. 2. Three processes of our audit system.



of the following techniques to construct corresponding
algorithms and protocols.

3.1 Fragment Structure and Secure Tags

To maximize the storage efficiency and audit performance,
our audit system introduces a general fragment structure
for outsourced storages. An instance for this framework,
which is used in our approach is shown in Fig. 3: An
outsourced file F is split into n blocks fm1;m2; . . . ;mng, and
each block mi is split into s sectors fmi;1;mi;2; . . . ;mi;sg. The
fragment framework consists of n block-tag pair ðmi; �iÞ,
where �i is a signature tag of a block mi generated by some
secrets � ¼ ð�1; �2; . . . ; �sÞ. We can use such tags and
corresponding data to construct a response in terms of the
TPA’s challenges in the verification protocol, such that this
response can be verified without raw data. If a tag is
unforgeable by anyone except the original signer, we call it
a secure tag.

Finally, these block-tag pairs are stored in CSP and the
encrypted secrets � (called as PVP) are in TTP. Although
this fragment structure is simple and straightforward, but
the file is split into n� s sectors and each block (s sectors)
corresponds to a tag, so that the storage of signature tags
can be reduced with the increase of s. Hence, this structure
can reduce the extra storage for tags and improve the
audit performance.

There exist some schemes for the convergence of s blocks
to generate a secure signature tag, e.g., MAC-based, ECC, or
RSA schemes [5], [8]. These schemes, built from collision-
resistance hash functions (see Section 5) and a random
oracle model, support the features of scalability, perfor-
mance, and security.

3.2 Periodic Sampling Audit

In contrast with “whole” checking, random “sampling”
checking greatly reduces the workload of audit services,
while still achieves an effective detection of misbehaviors.
Thus, a probabilistic audit on sampling checking is
preferable to realize the anomaly detection in a timely
manner, as well as to rationally allocate resources. The
fragment structure shown in Fig. 3 provides probabilistic
audit as well: Given a randomly chosen challenge (or query)
Q ¼ fði; viÞgi2I , where I is a subset of the block indices and
vi is a random coefficient, an efficient algorithm is used to

produce a constant-size response ð�1; �2; � � � ; �s; �0Þ, where
�i comes from all fmk;i; vkgk2I and �0 is from all f�k; vkgk2I .
Generally, this algorithm relies on homomorphic properties
to aggregate data and tags into a constant-size response,
which minimizes network communication costs.

Since the single sampling checking may overlook a small
number of data abnormality, we propose a periodic
sampling approach to audit outsourced data, which is
named as Periodic Sampling Audit. With this approach, the
audit activities are efficiently scheduled in an audit period,
and a TPA merely needs to access small portions of files to
perform audit in each activity. Therefore, this method can
detect exceptions periodically, and reduce the sampling
numbers in each audit.

3.3 Index-Hash Table

To support dynamic data operations, we introduce a
simple IHT to record the changes of file blocks, as well
as generate the hash value of each block in the verification
process. The structure of our IHT is similar to that of file
block allocation table in file systems. Generally, the IHT �
consists of serial number, block number, version number,
and random integer (see Table 2 in Section 5). Note that we
must assure all records in the IHT differ from one another
to prevent the forgery of data blocks and tags. In addition
to recording data changes, each record �i in the table is
used to generate a unique hash value, which in turn is
used for the construction of a signature tag �i by the secret
key sk. The relationship between �i and �i must be
cryptographically secure, and we make use of it to design
our verification protocol.

Although the IHT may increase the complexity of an
audit system, it provides a higher assurance to monitor the
behavior of an untrusted CSP, as well as valuable evidence
for computer forensics, due to the reason that anyone
cannot forge the valid �i (in TPA) and �i (in CSP) without
the secret key sk.

In practical applications, this architecture can be con-

structed into a virtualization infrastructure of cloud-based

storage service [14]. In Fig. 4, we show an example of

Hadoop distributed file system (HDFS),2 which is a

distributed, scalable, and portable file system [15]. HDFS’
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Fig. 3. Fragment structure and sampling audit.

TABLE 2
IHT with Random Values

2. Hadoop enables applications to work with thousands of nodes and
petabytes of data, and it has been adopted by currently mainstream cloud
platforms from Apache, Google, Yahoo, Amazon, IBM, and Sun.



architecture is composed of NameNode and DataNode,

where NameNode maps a file name to a set of indexes of

blocks and DataNode indeed stores data blocks. To

support dynamic audit, the IHT and the metadata of

NameNode should be integrated together to provide an

enquiry service for the hash value �
ð3Þ
i;k or index-hash record

�i. Based on these hash values, the clients or TPA can

implement a verification protocol via audit services. Hence,

it is easy to replace the common checksum algorithm with

our scheme for anomaly detection without downloading

data in current HDFS.

4 ALGORITHMS FOR AUDIT SYSTEM

In this section, we describe the construction of algorithms in
our audit architecture. First, we present the definitions for
the tag generation process as follows:

. KeyGen (1�) takes a security parameter � as an input,
and returns a public/secret keypair ðpk; skÞ; and

. T agGen (sk; F ) takes a secret key sk and a file F ,
and returns a triple ð�;  ; �Þ, where � denotes the
secret used to generate verification tags,  is a set of
PVPs u and IHT �, i.e.,  ¼ ðu; �Þ, and � denotes a
set of tags.

A DO or AAs only need to save the secret key sk—that is,
sk would not be necessary for the verification/audit
process. The secret of the processed file � can be discarded
after tags are generated due to PVPs u.

Fig. 5 demonstrates the workflow of our audit system.
Suppose a DO wants to store a file in a storage server, and
maintains a corresponding authenticated index structure at
a TPA. As shown in Fig. 5a, using KeyGenðÞ, the owner first
generates a public/secret keypair ðpk; skÞ by himself or the
system manager, and sends his public key pk to TPA. Note
that TPA cannot obtain the client’s secret key sk. Then,
the owner chooses a random secret � and invokes TagGenðÞ
to produce public verification information  ¼ ðu; �Þ and
signature tags �, where � is unique for each file and � is
an IHT. Finally, the owner sends  and ðF; �Þ to TPA and
CSP, respectively.

4.1 Supporting Periodic Sampling Audit

At any time, TPA can check the integrity of a file F as
follows: TPA first queries database to obtain the verification
information  and initializes an interactive protocol
ProofðCSP;ClientÞ; then, it performs a 3-move proof
protocol: Commitment, Challenge, and Response; and it finally
verifies the interactive data to get the results. In fact,
because our scheme is a publicly verifiable protocol, anyone
can run this protocol, but s/he is unable to get any
advantage to break the cryptosystem, even if TPA and
CSP cooperate for an attack. Let P ðxÞ denotes the subject P
holds the secret x and hP; V iðxÞ denotes both parties P and
V share a common data x in a protocol. This process can be
defined as follows:

Proof(CSP,TPA). is an interactive proof protocol between
CSP and TPA, that is, hCSP ðF; �Þ; TPAiðpk;  Þ, where a
public key pk and a set of public parameters  are the
common inputs between TPA and CSP, and CSP takes a
file F and a set of tags �. At the end of the protocol, TPA
returns f0j1g, where 1 means the file is correctly stored
on the server. tu

An audit service executes the verification process
periodically by using the above-mentioned protocol.
Fig. 5b shows such a two-party protocol between TPA and
CSP, i.e., ProofðCSP; TPAÞ, without the involvement of a
client (DO or AA). It also shows two verification processes.
To improve the efficiency of verification process, TPA
performs audit tasks based on a probabilistic sampling.
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Fig. 4. An example of hash index hierarchy in HDFS.

Fig. 5. Workflow of audit system: (a) tag generation and user’s verification, (b) periodic sampling audit, and (c) dynamic data operations and audit.



4.2 Supporting Dynamic Data Operations

To meet the requirements from dynamic scenarios, we
introduce following definitions for dynamic data operations:

. Update(sk; �i;m0i) is an algorithm run by AA to
update the block of a file m0i at the index i by using
sk, and it returns a new verification metadata
ð�0i; �0i;m0iÞ;

. Delete(sk; �i;mi) is an algorithm run by AA to delete
the blockmi of a filemi at the index i by using sk, and
it returns a new verification metadata ð�0i; �i; �0iÞ; and

. Insert(sk; �i;mi) is an algorithm run by AA to insert
the block of a file mi at the index i by using sk, and it
returns a new verification metadata ð�0i; �0i;m0iÞ.

To ensure the security, dynamic data operations are
available only to DOs or AAs, who hold the secret key sk.
Here, all operations are based on data blocks. Moreover, to
implement audit services, applications need to update the
IHTs. It is necessary for TPA and CSP to check the validity
of updated data. In Fig. 5c, we describe the process of
dynamic data operations and audit. First, an AA obtains the
public verification information  from TPA. Second, the
application invokes the Update, Delete, and Insert algo-
rithms, and then sends the new  0 and �0 to TPA and CSP,
respectively. Next, the CSP makes use of an algorithm
Check to verify the validity of updated data. Note that the
Check algorithm is important to ensure the effectiveness of
the audit. Finally, TPA modifies audit records after the
confirmation message from CSP is received and the
completeness of records is checked.

5 CONSTRUCTION FOR OUR SCHEME

We propose an efficient interactive POR (IPOR) scheme to
realize the integer verification of outsourced data. This

scheme includes a 3-move interactive proof protocol, which

also provides privacy protection property to ensure the

confidentiality of secret data.

5.1 Notations and Preliminaries

Let H ¼ fHkg be a keyed hash family of functions Hk :

f0; 1g� ! f0; 1gn indexed by k 2 K. We say that an algo-

rithmA has advantage � in breaking the collision-resistance of

H if Pr½AðkÞ ¼ ðm0;m1Þ : m0 6¼ m1; Hkðm0Þ ¼ Hkðm1Þ� � �,
where the probability is over random choice of k 2 K and
random bits of A. This hash function can be obtained from

hash function of BLS signatures [16].
We set up our systems using bilinear pairings proposed by

Boneh and Franklin [17]. Let GG and GGT be two multiplicative

groups using elliptic curve conventions with a large prime
order p. The function e be a computable bilinear map e :

GG�GG! GGT with the following properties: for any G;H 2
GG and all a; b 2 ZZp, we have: 1) Bilinearity: eðGa;HbÞ ¼
eðG;HÞab; 2) Nondegeneracy: eðG;HÞ 6¼ 1 unlessG orH ¼ 1;

and 3) Computability: eðG;HÞ is efficiently computable. A

bilinear map system is a tuple SS ¼ hp;GG;GGT ; ei composed of
the objects as described above.

5.2 Proposed Construction

We present our IPOR construction in Fig. 6. In our scheme,
each client holds a secret key sk, which can be used to

generate the tags of many files. Each processed file

produces a PVP  ¼ ðu; �Þ, where u ¼ ð�ð1Þ; u1; . . . ; usÞ, � ¼
f�igi2½1;n� is the IHT. We define �i ¼ ðBikVikRiÞ, where Bi is

a sequence number of block, Vi is a version number of

updates for this block, and Ri is a random integer to avoid
collision. The value �ð1Þ can be considered as the signature

of the secret �1; . . . ; �s. Note that it must assure that  s are

different for all processed files.
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Fig. 6. Proposed IPOR scheme for key generation, tag generation, and verification protocol.



In our construction, the verification protocol has a 3-move
structure: commitment, challenge, and response, as shown
in Fig. 7. This protocol is similar to Schnorr’s � protocol [18],
which is a zero-knowledge proof system. By using this
property, we ensure the verification process does not reveal
anything. To prevent the leakage of stored data and tags in
the verification process, the private data fmi;jg are protected
by a random 	j 2 ZZp and the tags f�ig are randomized by a

 2 ZZp. Furthermore, the values f	jg and 
 are protected by
the simple commitment methods, i.e., H


1 and u	ii 2 GG, to
prevent the adversaries from gaining those properties.

Moreover, it is obvious that this construction admits a
short constant-size response � ¼ ð�0; �Þ 2 GG� ZZsp without
being dependent on the size of challenge. That is extremely
important for large-size files.

5.3 Implementation of Dynamic Operations

To support dynamic data operations, it is necessary for TPA
to employ an IHT � to record the current status of the stored
files. Some existing index schemes for dynamic scenarios
are insecure due to replay attack on the same Hash values.
To solve this problem, a simple IHT � ¼ f�ig is used as
described in Table 2, which includes four columns: No.
denotes the real number i of data block mi, Bi is the original
number of block, Vi stores the version number of updates
for this block, and Ri is a random integer to avoid collision.

To ensure the security, we require that each �i ¼
‘‘BikVikRi’’ is unique in this table. Although the same
values of ‘‘BikVi’’ may be produced by repeating the insert
and delete operations, the random Ri can avoid this
collision. An alterative method is to generate an updated
random value by R0i  HRi

ð
Ps

j¼1 m
0
i;jÞ, where the initial

value is Ri  H�ð1Þ ð
Ps

j¼1 mi;jÞ and mi ¼ fmi;jg denotes the
ith data block. We show a simple example to describe the
change of IHT for different operations in Table 2, where an
empty record (i ¼ 0) is used to support the operations on
the first record. The “Insert” operation on the last record is
replaced with “Append” operation. It is easy to prove that
each �i is unique in � in our scheme.

Based on the construction of IHTs, we propose a simple
method to provide dynamic data modification as illustrated
in Fig. 8. All tags and the IHT should be renewed and
reorganized periodically to improve the performance.
Obviously, we can replace the sequent lists with dynamically
linked lists to improve the efficiency of updating the IHT.

6 SECURITY ANALYSIS

First, we prove the completeness of our construction: For
every available tag � 2 TagGenðsk; F Þ and a random
challenge Q ¼ ði; viÞi2I , the protocol always passes the
verification test, that is, Pr½hCSP ðF; �Þ; TPA�iðpk;  Þ ¼
1� ¼ 1. We can prove this equation holds by using

� � eð�0; hÞ ¼ eðg; hÞ

Ps

j¼1
�j�	j � e

Y
ði;viÞ2Q

ð�ð2Þi Þ
vi ; h

0
@

1
A
��


� eðg; hÞ
�

Ps

j¼1
ð�j�
P

ði;viÞ2Q
vi�mi;jÞ

¼ eðg; hÞ

Ps

j¼1
�j�	j � e

Y
ði;viÞ2Q

ð�ð2Þi Þ
vi ; h

0
@

1
A
��


� eðg; hÞ

Ps

j¼1
ð�j��j��j�	jÞ

¼ e
Y
ði;viÞ2Q

ð�ð2Þi Þ
vi ; h��


0
@

1
A �

Ys
j¼1

eðu�jj ; h
Þ:

ð1Þ

Next, to protect the confidentiality of checked data, we
are more concerned about the leakage of private information
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Fig. 7. Framework of a IPOR model.

Fig. 8. Algorithms for dynamic operations.



(which includes the verified data fmig and their tags f�ig) in
public verification process. To address this problem, we

introduce Zero-Knowledge property into our construction:

Definition 1 (Zero-knowledge). An interactive POR scheme

is computational zero knowledge if there exists a probabil-

istic polynomial-time algorithm S� (call a Simulator) such

that for every probabilistic polynomial-time (PPT) algorithm

D and V �, every polynomial pð�Þ, and all sufficiently large

s, it holds that

Pr½Dðpk;  ; S�ðpk;  ÞÞ ¼ 1��
Pr½Dðpk;  ; hP ðF; �Þ; V �iðpk;  ÞÞ ¼ 1�

����
���� � 1=pðsÞ;

where, S�ðpk;  Þ denotes the output of simulator S. That is,

for all � 2 TagGenðsk; F Þ, the ensembles S�ðpk;  Þ and

hP ðF; �Þ; V �iðpk;  Þ3 are computationally indistinguishable.

Actually, zero-knowledge is a property that captures P ’s

robustness against attempts to gain knowledge by interact-
ing with it. For our IPOR scheme, we make use of the zero-

knowledge property to guarantee the security of data blocks

and signature tags. We have the following theorem (see

Appendix A, which can be found on the Computer Society
Digital Library at http://doi.ieeecomputersociety.org/10.

1109/TSC.2011.51):

Theorem 1. Our IPOR scheme is a (computational) zero-

knowledge PDP (called as ZKPOR) with respect to the

polynomial-time simulators.

Then, we turn attention to the audit security for dynamic
operations. It is easy to discover that the security of our

scheme against dynamic operations is built on collision

resistant of all hash values �
ð2Þ
i ¼ H�ð1Þ ð�iÞ, where �ð1Þ ¼

H�ð00Fn00Þ, � ¼
Ps

i¼1 �iðmod pÞ and �i ¼ 00BikVikR00i 2 �. First,

in an IHT � ¼ f�ig and �i ¼ 00BikVikR00i , there exists no

identical records �i and �j for all dynamic operations only if

Bi 6¼ Bj, Vi 6¼ Vj, or Ri 6¼ R0j for any indexes i; j 2 IN.
Furthermore, the secrets f�1; . . . ; �sg 2 ZZsp are also used to

avoid a collision of files that have the same file name. For

both mechanisms, we can prove the following theorem (see
Appendix B, available in the online supplemental material):

Theorem 2. The hash values �
ð2Þ
i is ð";

ffiffiffiffiffiffiffiffiffiffiffiffi
2Lþ2p

p
ln 1

1�"Þ collision-

resistant in our scheme,4 even if a client generates
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p � ln 1

1�"

q

files with the same file name, and the client repeatsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Lþ1 � ln 1

1�"

q
times to modify, insert, and delete data blocks,

where the collision probability is at least ", �i 2 ZZp, and

jRij ¼ L.

Based on collision resistant of �, we consider a new

notion of security for our scheme on dynamic operations,

which is called dynamic existential unforgeability under an
adaptive chosen message attack [19], [20]. This kind of

security can be defined using the following game between a

challenger B and an adversary A:

1. Initial. Given a file F , the challenger B simulates
KeyGenð1�Þ and TagGenðsk; F Þ to generate the
public parameters pk and  , and sends them to the
adversary A.

2. Learning. A adaptively issues at most qt times queries
q1; . . . ; qt to learn the information of tags via dynamic
operations, as follows:

a. Update query ði;m0iÞ. B generates ð�0i; �0i;m0iÞ  
Updateðsk; �i;m0iÞ and sends it to A;

b. Delete query ðiÞ. B generates ð�0i; �i; �0iÞ  
Deteleðsk; �i;miÞ and sends it to A;

c. Insert query ði;m0iÞ. B generates ð�0i; �0i;m0iÞ  
Insertðsk; �i;miÞ and sends it to A;

At any time, A can query the hash values �
ð2Þ
i ¼

H�ð1Þ ð�iÞ on at most qh records of its choice f�ig and

B responds with random values.
3. Output. Eventually, A outputs a forgery ð��i ;m�i ; ��i Þ

and wins the game if:

a. ð��i ;m�i ; ��i Þ is not any of qt queries; and
b. ð��i ;m�i ; ��i Þ is a valid tag for �

ð2Þ
i , that is,

eð��i ; hÞ ¼ eð�
ð2Þ
i ; H1Þ � eð

Qs
j¼1 u

m�i;j
j ; H2Þ.

An adversary A is said to ð"; qt; qhÞ-break our scheme if A
makes at most qt tag queries for dynamic operations and qh
hash queries, as well as success probability of game with at

least ". A scheme is ð"; qt; qhÞ dynamically and existentially

unforgeable under an adaptively chosen message attack, if

there exists no forgery that is susceptible to ð"; qt; qhÞ-break.
We note that the above-mentioned definition captures a

stronger version of existential unforgeability than the

standard one on signature schemes, as it requires that the

adversary cannot even generate a new tag on a previously

signed message. Based on this game, we prove that our

scheme is ð"; qt; qhÞ dynamically and existentially unforge-

able for the Computational Diffie-Hellman (CDH) problem

(see Appendix C, available in the online supplemental

material), as follows:

Theorem 3. Given the ð"0; q0Þ-CDH in a cyclic group GG 2 SS

with an order p, our audit scheme is an ð"; qt; qhÞ-dynamically

existentially unforgeable to resist the attacks of tag forgery for

dynamic data operations with random oracle model, whenever

qt þ qh � q0 and all " satisfy " � "0=ð1� qt
pÞ if each �i is

collision resistant in IHT �.

7 PERFORMANCE AND EVALUATION

It is obvious that enormous audit activities would increase

the computation and communication overheads of our

audit service. However, the less frequent activities may not

detect anomalies in a timely manner. Hence, the scheduling

of audit activities is significant for improving the quality of

audit services. To detect anomalies in a low-overhead and

timely manner, we attempt to optimize the audit perfor-

mance from two aspects: Performance evaluation of

probabilistic queries and scheduling of periodic verifica-

tion. Our basic idea is to maintain a tradeoff between

overhead and accuracy, which helps us improve the

performance of audit systems.
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3. The output of the interactive machine V � after interacting with P ðF; �Þ
on common input ðpk;  Þ.

4. We use the terminology ð";QÞ to denote an algorithm with average-
case success probability ", in which the number of oracle queries made by
the algorithm is at most Q.



7.1 Probabilistic Queries Evaluation

The audit service achieves the detection of CSP servers’

misbehaviors in a random sampling mode to reduce the

workload on the server. The detection probability P of

disrupted blocks is an important parameter to guarantee

that these blocks can be detected in a timely manner.

Assume TPA modifies e blocks out of the n-block file. The

probability of disrupted blocks is �b ¼ e
n . Let t be the

number of queried blocks for a challenge in the protocol

proof. We have detection probability P ¼ 1� ðn�en Þ
t ¼

1� ð1� �bÞt. Hence, the number of queried blocks is t ¼
logð1�P Þ
logð1��bÞ 	

P �n
e for a sufficiently large n.5 This means that the

number of queried blocks t is directly proportional to the

total number of file blocks n for the constant P and e. In

Fig. 9, we show the results of the number of queried blocks

under different detection probabilities (from 0.5 to 0.99),

different number of file blocks n (from 10 to 10,000), and

constant number of disrupted blocks (10 for n < 1;000 and

100 for n � 1;000).

We observe the ratio of queried blocks in the total file

blocks w ¼ t
n under different detection probabilities. Based

on our analysis, it is easy to determine that this ratio holds

because w ¼ t
n ¼

logð1�P Þ
n�logð1��bÞ 	

P
e . However, the estimation of w

is not an accurate measurement. To clearly represent this

ratio, Fig. 10 plots w for different values of n, e, and P . It is

obvious that the ratio of queried blocks tends to be a

constant value for a sufficiently large n. For instance, in

Fig. 10a 100 disrupted blocks, the TPA asks for w ¼ 4:5 and

2.3 percent of n (n > 1;000) to achieve P of at least 99 and

90 percent, respectively. However, this ratio w is also

inversely proportional to the number of disrupted blocks e.

For example, in Fig. 10b if there exist 10 disrupted blocks,

the TPA needs to ask for w ¼ 45% and 23 percent of

n (n > 1;000) to achieve the same P , respectively. It

demonstrates our audit scheme is effective under the higher

probability of disrupted blocks.
Note that, instead of probability verification, our IPOR

scheme also supports an absolute integrity verification, in
which TPA checks all file blocks in a challenge query
Q ¼ fði; viÞgi2I , that is, I ¼ ½1; n�. Furthermore, to shorten

the length of challenge query Q, we simply send a random
seed to CSP, and then CSP generates the challenge index
coefficient pair ði; viÞ ¼ ði; HseedðiÞÞ for all i ¼ ½1; n�, where
Hkð�Þ is a collision-resistant hash function.

7.2 Schedule of Periodic Verification

Too frequent audits may waste the network bandwidth and
computing resources of TPA and CSPs. However, less
frequent audits would not be conducive to detect the
exceptions in a timely manner. Thus, it is necessary to
disperse the audit tasks (in which the total number of
queried blocks is evaluated, as we discussed in the previous
section) throughout the entire audit cycle so as to balance
the overload and increase the difficulty of attacks in a
relatively short period of time.

The sampling-based audit has the potential to signifi-
cantly reduce the workload on the servers and increase the
audit efficiency. First, we assume that each audited file has
an audit period T , which depends on how important it is
for the owner. For example, a common audit period may
be assigned as one week or one month, and the audit
period for important files may be set as one day. Of
course, these audit activities should be carried out at night
or on weekend.

Also, we make use of the audit frequency f to denote the

number of occurrences of an audit event. This means that

the number of TPA’s queries is T � f in an audit period T .

Our evaluation indicates the detection probability P ¼
1� ð1� �bÞn�w in each audit event. Let PT denotes the

detection probability in an audit period T . Hence, we have

the equation PT ¼ 1� ð1� P ÞT �f . Given 1� P ¼ ð1� �bÞn�w,

the detection probability PT can be denoted as PT ¼ 1 �
ð1� �bÞn�w�T �f . Based on this equation, TPA can obtain the

probability �b depending on the transcendental knowledge

of the cloud storage provider. Moreover, the audit period T

can be predefined by a DO in advance. Hence, the above

equation can be used to analyze the parameter values w and

f . It is obvious to obtain the equation f ¼ logð1�PT Þ
w�n�T �log ð1��bÞ .

This means that the audit frequency f is inversely
proportional to the ratio of queried blocks w. That is, with
the increase of verification frequency, the number of
queried blocks decreases at each verification process. In
Fig. 11, we show the relationship between f and w under
10 disrupted blocks for 10,000 file blocks. We can observe a
marked drop of w along with the increase of frequency.

In fact, the relationship between f and w is compara-

tively stable for PT , �b, and n due to f � w ¼ logð1�PT Þ
n�T �log ð1��bÞ . TPA

should choose an appropriate frequency to balance the

overhead. For example, if e ¼ 10 blocks in 10,000 blocks

(�b ¼ 0:1%), then TPA asks for 658 blocks and 460 blocks for

f ¼ 7 and 10 to achieve at least 99 percent of PT . Hence, an

appropriate audit frequency would greatly reduce the

sampling numbers, as well as computation and commu-

nication overheads of an audit service.

7.3 Implementation and Experimental Results

To validate our approaches, we have implemented a
prototype public audit service. Our prototype utilizes three
existing services/applications: Amazon Simple Storage
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5. In terms of ð1� e
nÞ
t ¼ 1� e�t

n , we have P ¼ 1� ð1� e�t
n Þ ¼ e�t

n .

Fig. 9. Number of queried blocks under different detection probabilities
and different numbers of file blocks.



Service (S3), which is an untrusted data storage server; a
local application server, which provides our audit service;
and an existing open source project called pairing-based
cryptography (PBC) library upon which to build our
prototype. We present some details about these three
components as follows:

. Storage service. Amazon Simple Storage Service (S3)
is a scalable, pay-per-use online storage service.
Clients can store a virtually unlimited amount of
data, paying for only the storage space and
bandwidth that they are using, without an initial
start-up fee. The basic data unit in S3 is an object,
and the basic container for objects in S3 is called a
bucket. In our example, objects contain both data
and metadata (tags). A single object has a size limit
of 5 GB, but there is no limit on the number of
objects per bucket. Moreover, a script on Amazon
Elastic Compute Cloud (EC2) is used to provide
the support for verification protocol and dynamic
data operations.

. Audit service. We used a local IBM server with two
Intel Core 2 processors at 2.16 GHz running
Windows Server 2003. Our scheme was deployed
in this server, and then the server performs the
integrity check in S3 storage, conforming the
assigned schedule via 250 MB/sec of network
bandwidth. A socket port was also opened to
support the applications’ accesses and queries for
the audit service.

. Prototype software. Using GMP and PBC libraries, we
have implemented a cryptographic library upon
which temporal attribute systems can be constructed.
These C libraries contain approximately 5,200 lines of
codes and were tested on both Windows and Linux
platforms. The elliptic curve utilized in our experi-
ments is a MNT curve, with a base field size 159 bits
and the embedding degree 6. The security level is
chosen to be 80 bits, which means jpj ¼ 160.

First, we quantified the performance of our audit scheme
under different parameters, such as file size sz, sampling
ratio w, and sector number per block s. Our analysis shows
that the value of s should grow with the increase of sz to
reduce computation and communication costs. Thus,
experiments were carried out as follows: the stored files
were chosen from 10 KB to 10 MB, the sector numbers were
changed from 20 to 250 in terms of the file size, and the
sampling ratios were also changed from 10 to 50 percent.
The experimental results are shown in Fig. 12a. These
results indicate that computation and communication costs
grow slowly with increase of file size and sampling ratio.

Next, we compared the performance of each activity in
our verification protocol. It is easy to derive theoretically
that the overheads of “commitment” and “challenge”
resemble one another, and the overheads of “response”
and “verification” also resemble one another. To validate
such theoretical results, we changed the sampling ratio w
from 10 to 50 percent for a 10-MB file and 250 sectors per
block. In Fig. 12b, we show the experiment results, in which
the computation and communication costs of “commit-
ment” and “challenge” are slightly changed for sampling
ratio, but those for “response” and “verification” grow with
the increase of sampling ratio.

Then, in the Amazon S3 service, we set that the size of
block is 4K bytes and the value of s is 200. Our experiments
also show that, in TagGen phase, the time overhead is
directly proportional to the number of blocks. Ideally, this
process is only executed when a file is uploaded into the S3
service. The verification protocol can be run in approxi-
mately constant time. Similarly, three dynamic data opera-
tions can be performed in approximately constant time for
any block.

Finally, reducing the communication overheads and
average workloads is extremely critical for an efficient
audit schedule. With probabilistic algorithm, our scheme is
able to realize the uniform distribution of verified sampling
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Fig. 11. Ratio of queried blocks in total file blocks under different audit
frequency for 10 disrupted blocks and 10,000 file blocks.

Fig. 10. Ratio of queried blocks under different detection probabilities and different number of disrupted blocks.



blocks based on the security requirements of clients, as well
as the dependabilities of storage services and running
environments. In our experiments, we make use of a simple
schedule to periodically manage all audit tasks. The results
show that audit services based on our scheme can support a
great deal of audit tasks, and the performance of scheduled
audits are more preferable than the straightforward
individual audit.

8 CONCLUSIONS

In this paper, we presented a construction of dynamic audit
services for untrusted and outsourced storages. We also
presented an efficient method for periodic sampling audit
to enhance the performance of TPAs and storage service
providers. Our experiments showed that our solution has a
small, constant amount of overhead, which minimizes
computation and communication costs.
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