562 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 39, NO. 5, SEPTEMBER 2009

Security-Enhanced OSGi Service Environments

Gail-Joon Ahn, Senior Member, IEEE, Hongxin Hu, and Jing Jin

Abstract—Today’s home and local-area network environments
consist of various types of personal equipments, network devices,
and corresponding services. Since such prevalent home network
environments frequently deal with private and sensitive informa-
tion, it is crucial to legitimately provide access control for pro-
tecting such emerging environments. As a result, the open services
gateway initiative (OSGi) attempted to address this critical issue.
However, the current OSGi authorization mechanism is not rig-
orous enough to fulfill security requirements involved in dynamic
OSGi environments. In this paper, we provide a systematic way
to adopt a role-based access control (RBAC) approach in OSGi
environments. We demonstrate how our authorization framework
can achieve important RBAC features and enhance existing primi-
tive access control modules in OSGi service environments. Also, we
describe a proof-of-concept prototype of the proposed framework
to discuss the feasibility of our approach using an open source
implementation of OSGi framework known as Knopflerfish.

Index Terms—Authorization, OSGi service, role-based manage-
ment, security.

I. INTRODUCTION

S we find ourselves accustomed to the pervasiveness and
A prevalent availability of network services, the prolifera-
tion of inexpensive digital equipments and the Internet have
expedited such a rapid growth of availability to a scale scarcely
imagined a few years ago. However, with the continuous con-
nectivity to the Internet, home devices are exposed to various
attacks and threats. The traditional security technologies can-
not satisfy security requirements derived from a digital home
environment because of the diversity of wired and wireless net-
work, middleware modules, and restricted system resources of
home appliances. Also, the users in a digital home environment
mostly lack knowledge on security and network management
practices [10], [13]. Just as technological innovation has en-
abled tremendous availability for home network environments,
it is crucial to legitimately provide access control for protecting
devices and digital resources in such environments. In the net-
worked systems, access control can prescribe not only who or
what process has access to a specific system resource, but also
the type of access that should be granted.

Manuscript received August 24, 2008; revised January 7, 2009. First pub-
lished May 15, 2009; Current version published August 19, 2009. This work
was supported in part by the funds provided by the National Science Founda-
tion under Grant NSF-IIS-0242393 and the Department of Energy Early Career
Principal Investigator Award under Grant DE-FG02-03ER25565. This paper
was recommended by Associate Editor N. Wu.

G.-J. Ahn and H. Hu are with the Department of Computer Science and Engi-
neering, Ira A. Fulton School of Engineering, Arizona State University, Tempe,
AZ 85281-8809 USA (e-mail: gahn@asu.edu; hxhu@asu.edu).

J. Jin is with the Department of Software and Information Systems, Uni-
versity of North Carolina at Charlotte, Charlotte, NC 28223 USA (e-mail:
jiiln@uncc.edu).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TSMCC.2009.2020437

The open services gateway initiative (OSGi) provides a
framework to connect diverse devices in a local area network en-
vironment such as homes, offices, and automobiles. By defining
the standard execution environment and service interface, OSGi
promotes the dynamic discovery and collaboration of devices
and services from different sources [3]. Moreover, this frame-
work is designed to support connectivity to the outside users
allowing remote control and administrative management [23].
In OSGi service platform, the User Admin service provides user
authorization functionality. However, the User Admin service’s
authorization architecture in OSGi is not sufficient enough to
support the highly dynamic and open OSGi environments. Thus,
an enhanced access control mechanism is needed for achiev-
ing interoperability, extensibility, and ease of administration
and management. To overcome such issues, role-based access
control (RBAC) can be considered to simplify authorization
management by associating users with roles, and roles with
permissions [7], [19], [24]. Because the roles within an organi-
zation typically have overlapping permissions, RBAC supports
a hierarchical structure of roles to provide permission inheri-
tance, where a senior role can inherit all permissions assigned
to junior roles. As a fundamental aspect of RBAC, constraints
can also allow us to lay out higher level access control policies
(6], [11].

Recently, several research work [8], [9], [14] have addressed
access control issues in OSGi environments using RBAC model.
However, these research efforts did not consider the standard-
ized efforts of OSGi authorization. Such generic approaches
cannot accommodate all OSGi authorization requirements iden-
tified in the OSGi authorization standard [17], causing severe
compatibility issues with existing OSGi applications. In ad-
dition, they failed to address important RBAC features such
as constraints and role hierarchy construction related to OSGi
environments. In this paper, we propose a systematic way to
apply RBAC to OSGi environments. In our proposed approach,
the OSGi authorization mechanism is configured and mapped
to RBAC, demonstrating that OSGi authorization requirements
can be fully fulfilled by RBAC. Furthermore, we incorporate
important RBAC features, which were not addressed by cur-
rent OSGi authorization mechanism, to enhance existing access
control modules in OSGi service environments. Also, a proto-
type system is implemented to demonstrate the feasibility and
effectiveness of our proposed solution.

The rest of this paper is organized as follows. In Section II
we briefly describe OSGi service platform, OSGi authoriza-
tion mechanism, RBAC, and related work. Section III gives an
overview of our authorization framework. We also formalize
OSGi authorization mechanism and show how OSGi authoriza-
tion can be accommodated in RBAC. In addition, we discuss
the reconstruction of OSGi authorization from RBAC to verify
the completeness of our approach. The implementation of our

1094-6977/$25.00 © 2009 IEEE

Authorized licensed use limited to: Arizona State University. Downloaded on August 24, 2009 at 16:49 from IEEE Xplore. Restrictions apply.

AHN et al.: SECURITY-ENHANCED OSGi SERVICE ENVIRONMENTS

prototype is described in Section IV. Section V concludes the
paper and discusses the future work.

II. BACKGROUND AND RELATED WORK
A. OSGi Service Platform

OSGi specifies an open, common architecture for service
providers, developers, software venders, gateway operators, and
equipment vendors to develop, deploy, and manage services in
a cooperative fashion. In addition, OSGi service platform is an
extensible integration platform used to remotely and dynami-
cally deploy, provide, maintain, and manage applications and
services with multiple devices in networked environments [3].
We first overview the architecture of OSGi service platform.
The architecture of OSGi service platform is composed of a
set of bundles based on the OSGi framework that provides the
basic functionalities to perform OSGi functions through down-
loading and executing bundles. Each bundle is a software com-
ponent that contains algorithms and protocols for controlling a
device. When OSGi service gateway requests a bundle, it can
be read from local disk or retrieved from the repository and
then executed by the service gateway. In other words, OSGi
service platform allows bundles to be configured dynamically.
This feature enables a home network environment to download
and utilize the latest and most optimal bundles, and provides
customization of gateway functions for each user taking into
account individual profiles.

In OSGi service platform, the User Admin service provides
the authorization functionality [17]. All bundles should use the
User Admin service to find out if the users attempting to access
are authorized or not. In the User Admin service authorization
architecture, three components are defined as follows.

1) User—A user is a human being who can be identified
by credentials such as a password and other identity
attributes.

2) User Group—A user group is an aggregation of users
based on common properties. For example, all family
members belong to a user group named Residents.

3) Action Group—Every action that can be performed by a
bundle is associated with an action group. For example, if
a bundle could be used to control the alarm system, there
should be an action group named AlarmSystemControl.

In OSGi authorization, the authorization decision is made
based on the following two strategies.

1) ANY Strategy: A user could be allowed to carry out an
action if he/she belongs to Any member of the action
group. For example, the AlarmSystemControl action group
contains two user groups Administrators and Residents.
Elmer, Pepe, and Bugs belong to Administrators user
group, and Elmer, Pepe, and Daffy belong to Residents
user group as follows:

Administrators = { Elmer, Pepe, Foghorn }
Residents = { Elmer, Pepe, Daffy }

AlarmSystemControl = { Administrators, Residents }.

563

TABLE I
USER GROUPS WITH BASIC USER MEMBERS

[[Elmer | Fudd | Marvin | Pepe [Daffy | Foghorn |

Residents Basic - - Basic Basic -
Buddies - - - - Basic Basic
Children - - Basic Basic - -
Adults Basic Basic - - - Basic
Administrators Basic - - Basic - Basic
TABLE II
ACTION GROUPS WITH BASIC AND REQUIRED USER GROUP MEMBERS
[[Residents | Buddies | Children | Adults [Admins |
AlarmSystemControl | Basic - - - Required
InternetAccess Basic - Basic Basic -
TemperatureControl Required - - Required | -
WebCamAccess Basic Basic - Required | Required
PhotoAlbumView Basic Basic - - -

This ANY strategy allows any of four members, Elmer,
Pepe, Foghorn, and Daffy, to activate the alarm system
since all users are a member of user groups and these user
groups belong to one action group.

2) ALL Strategy: A user is allowed to carry out an action
if he/she belongs to All members of the action group. In
the aforementioned AlarmSystemControl example, only
Elmer and Pepe would be authorized to activate the alarm
system, since Daffy and Bugs are not members of both the
Administrators and Residents user groups.

The implementation of User Admin service in OSGi service
platform supports a combination of both strategies by introduc-
ing two member sets, namely the basic member set for the ANY
strategy and the required member set for ALL strategy. Basic
membership defines a set of members that can get access, and
required membership reduces this set by requiring the user to
be a required member of each action group.

To accommodate this, OSGi allows to assign a user to a
user group, and then, the user group is assigned to a specific
action group. Tables I and II show an authorization example to
demonstrate the assignment relationships, respectively.

The access decision is made based on the basic and required
assignment relationships. For example, in Table II, the action
group WebCamAccess has two basic members, Residents and
Buddies, and two required members, Adults and Administrators.
Thus, all users belonging to at least one of the basic members,
Residents and Buddies, and all required members, Adults and
Administrators, are able to carry out the webcam access action.
From Table I, we can see two users Elmer and Foghorn can meet
this authorization requirement.

B. Overview of RBAC Model

RBAC is an alternative policy to traditional mandatory access
control (MAC) and discretionary access control (DAC) [22].
As MAC is used in the classical defense arena, the policy of
access is based on the classification of objects such as security
clearance [21]. The main idea of DAC is that the owner of an
object has discretionary authority over the one who can access
that object [12], [20]. But RBAC policy is based on the role of
the subjects and can specify security policy in a way that maps
to an organization’s structure.

Authorized licensed use limited to: Arizona State University. Downloaded on August 24, 2009 at 16:49 from IEEE Xplore. Restrictions apply.

564 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 39, NO. 5, SEPTEMBER 2009

A general family of RBAC models called RBAC96 was de-
fined by Sandhu et al. [19]. Intuitively, a user is a human being or
an autonomous agent, a role is a job function or job title within
the organization with some associated semantics regarding the
authority and responsibility conferred on the user assigned to
the role, and a permission is an approval of a particular mode of
access to one or more objects in the system or some privilege
to carry out specified actions. Roles are organized in a partial
order >, so that if x > y, then role x inherits the permissions of
role y. Members of z are also implicitly members of y.

C. Related Work

Several related work studies the access control mechanism
for home network environments where the OSGi service plat-
form is operated. Cho et al. [8], [9] proposed an authorization
policy management framework based on RBAC for OSGi ser-
vice platform. Through the comparison of several access control
models, especially DAC and RBAC, they claimed that RBAC
model is flexible and more proper than DAC model for home
network environments operated by the OSGi service platform.
However, they did not consider the established authorization
mechanism in current OSGi standard and omitted how RBAC
can be effectively utilized to meet the OSGi authorization re-
quirements. Also, their approach disregarded important RBAC
features, such as role hierarchy and constraints. Our approach
formalizes current OSGi authorization mechanism, and presents
a systematic and comprehensive way to map OSGi authorization
mechanism to RBAC configuration so that OSGi authorization
requirements can be fully satisfied and enhanced by RBAC. Lim
et al. [14] presented a mechanism to bundle authentication and
authorization services using XML for the OSGi service plat-
form. Their proposed approach uses extensible access control
markup language (XACML) to specify RBAC polices for the
authorization of service bundles. However, they also ignored ex-
isting OSGi authorization mechanism and mainly attempted to
deploy the notion of roles in the OSGi platform directly without
considering essential RBAC features. To the best of our knowl-
edge, our approach illustrated in this paper is the first RBAC
authorization solution that is compatible to the existing OSGi
authorization standard, allowing the OSGi application develop-
ers and system administrators to better understand and manage
security policies.

III. OUR APPROACH

We witness that the current OSGi authorization mechanism
is not intuitive for authorization administration. Especially, cur-
rent OSGi mechanism is not suitable for satisfying all security
requirements for defining fine-grained access control policies in
a highly dynamic and open OSGi environment. Our objective is
to provide an efficient and effective authorization mechanism for
such network environments. To achieve this, we propose a role-
based authorization framework for OSGi service environments.
Our authorization framework consists of following processes.

1) Mapping OSGi authorization mechanism to RBAC: RBAC

is a powerful mechanism for reducing the management
complexity, administration cost, and potential configura-

tion error within the organization. To achieve such fea-
tures, it is inevitable to identify and derive RBAC compo-
nents from OSGi authorization requirements. This identi-
fication phase allows us to discover roles, role hierarchy,
assignment relations, and constraints. Those identified
components from OSGi authorization requirements are
used to construct a RBAC-based authorization environ-
ment that fully simulates the OSGi authorization environ-
ment, and provides more fine-grained and robust autho-
rization services.

2) Reconstructing OSGi authorization from RBAC: Through
mapping OSGi authorization mechanism to RBAC, the
complexity of OSGi authorization management is re-
duced and OSGi authorization can be enhanced by adopt-
ing important RBAC features. In addition, we need
to validate whether changes in the RBAC-based envi-
ronment can also be reflected in OSGi authorization
environment. In other words, our constructed RBAC
environment should be converted back to the OSGi
authorization environment, assuring those changes remain
intact.

We attempt to formally define components in the current
OSGi authorization mechanism, and these formal definitions
are used through the rest of this paper. There are three sets of
entities: users (U), user groups (UG), and action groups (AG).
The basic user-to-user group assignment (BUA) is a many-
to-many relation between U and UG. There are two kinds of
many-to-many relation between UG and AG. One is basic ac-
tion group-to-user group assignment (BAA) that reflects the
basic memberships for each action. Another is required action
group-to-user group assignment (RAA) that reflects the required
memberships for each action. The following definitions formally
summarize each component.

1) Uisasetofusers, U ={uj,...,up,}.

2) UG is a set of user groups, UG = {ug;,...,ug, }.

3) AG = AGgasic U AGRequired 18 a set of basic and required

action groups, AG = {ag,,...,ag, }.

4) BUA C U x UG, is a many-to-many basic user-to-user
group assignment relation.

5) BAA C AGg,sic X UG, is a many-to-many basic action
group-to-user group assignment relation.

6) RAA C AGgequired X UG, is a many-to-many required
action group-to-user group assignment relation.

7) users: UG — 2V is a function mapping each user group
ug; to a set of users users(ug;) = {u € Ul(u,ug;) €
BUA}.

8) user_groups: U — is a function mapping each user
u; to a set of user groups user_groups(u;) = {ug €
UG|(u;,ug) € BUA}.

9) ba_user_groups: AGpasic — 2UG is a function mapping
each basic action group ag; to a set of user groups,
ba_user_groups(ag;) = {ug € UG|(ag;,ug) € BAA}.
re_user_groups: AGrequired — 2UG s a function mapping
each required action group ag; to a set of user groups,
re_user_groups(ag;) = {ug € UG|(ag;,ug) € RAA}.
ba_action_groups: UG — 24Gsasic ig a function mapping
each user group ug, to a set of basic action groups,

2UG

10)

11)

Authorized licensed use limited to: Arizona State University. Downloaded on August 24, 2009 at 16:49 from IEEE Xplore. Restrictions apply.

AHN et al.: SECURITY-ENHANCED OSGi SERVICE ENVIRONMENTS

ba_action_groups(ug;)] = {ag € AGpasic|(ag,ug;) €
BAA}.

12) re_action_groups: UG — 24Greauired jg a function map-
ping each required user group ug; to a set of re-
quired action groups, re_action_groups(ug,) = {ag €
AGrRequired |(ag, ug;) € RAA}.

A. Construction of OSGi-Compliant RBAC

In this section, we demonstrate how RBAC components and
features can be utilized to support components of OSGi autho-
rization. We describe how we can identify basic RBAC compo-
nent, role hierarchy, and constraints to enforce OSGi authoriza-
tion requirements.

1) Basic RBAC Components Construction: The essence of
RBAC is the notion of roles [24] to abstract users and per-
missions. Permissions are grouped through roles, and users ob-
tain permissions by being assigned to roles. Users, roles, per-
missions, and the corresponding assignment relations are core
components in RBAC.

We noted that the user set (U) and the action group set (AG)
can essentially be treated as users and permissions in the RBAC
model, respectively. In addition, the user group set (UG) in OSGi
can be represented as roles such that actions are abstracted
through user groups, and these actions can be exercised by a
member of the specific user group. However, normally OSGi
uses two types of assignments, namely, the basic assignment
(BAA) and the required assignment (RAA) that can allow us to
achieve the abstraction of actions through user groups. However,
RBAC cannot accommodate this characteristic directly, so it
leads us to propose several properties to bridge this gap in the
course of OSGi-compliant RBAC construction.

First, we construct the role (R) by introducing a concept of
Private Membership. In particular, we treat the user groups in
OSGi as the private members of each role in role construction,
which can be further characterized as basic members and re-
quired members depending on the property of the OSGi BAA
relation and RAA relation. The detailed role construction pro-
cess is explained through an OSGi authorization example, as
shown in Fig. 1. In this example, Table (a) reflects the assignment
relation between U and UG, and Table (b) shows the assignment
relation between AG and UG. In Table (b), there are two types
of assignment relations, Basic and Required, to reflect BAA and
RAA relations, respectively. For a particular action group, we
identified that there exist three possible combinations on Basic
and Required assignments given as follows.

1) Case 1: Contains both basic assignments and
required ~ assignments, as shown in the row
of ag,, ba.user_groups(ag,) = {ug;,ug,} and

re_user_groups(ag;) = {ug,,ug;}.
2) Case 2 : Contains basic assignments only, as shown in the
row of ags, ba_user_groups(ag;) = {ug;,ug,,ug;}.
3) Case 3: Contains required assignments only as shown in
the row of ag,, re_user_groups(agz) = {ug;,ug,,ug; }.
As specified in the OSGi authorization rule, a user must be
assigned to ALL required user groups and ANY basic user groups
before he/she can exercise a particular action. Also, while ac-

565
wl w| w| w| u ug | ug [ug | ug | ugs
ug | B B B - - (ag B B R R J Case 1
ug | - - - B B (ag | R - R R) Case 3
ug | - - B - - (la| B[B[B -) case2
ugz| B B - - B ag; | B = R =
ugs| B - - - B ags| B - - R

(a) (b)

Fig. 1. OSGi authorization example. (a) USER-UG assignment. (b) AG-UG
assignment.

commodating the identified basic and required assignment pat-
terns, we define the following mapping rules on action group
basis.

Rule 1: Introduce one role and one permission-to-role assign-
ment (PA) for each OSGi basic action group-to-user group
assignment in BAA. The role contains only one basic pri-
vate member of the basic user group and ALL required
members of the required user groups. The particular ac-
tion group in BAA is constructed as one permission and
the permission is assigned to the role.

Rule 2: In case of no basic assignment, introduce one role
that contains ALL required members of the required user
groups and one PA by assigning the permission to the role.

Rule 3: In terms of user-to-role assignment, a user can be
assigned to a role when the corresponding user in OSGi
authorization is assigned to all the private members of that
role.

Now, we discuss how to use these three rules to construct
the RBAC for each case that we have identified. First, we map
all users and action groups in OSGi authorization to users and
permissions directly as RBAC components. As identified in
Case 1, the action group ag; has both basic member and required
member. Following Rule 1, we construct roles such as two roles
r1 and 7o for the action group ag; in our example. Role m
contains a basic member ug;, and two required members ug,
and ug;. Role ry is constructed by a basic member ug,, and
all required members ug, and ug,. Formally, members(r;) =
{ug,,ug,,ug; } and members(ry) = {ug,,ug,, ug; }. Using the
same rule, the permission p; corresponding to the action group
ag, is assigned to roles r; and ry. Following Rule 3, a user
is assigned to a role only if the user has been assigned to all
private members of this role. In the example, [see Fig. 1(a)], u;
is assigned to ug;, ug,, and ugs. Since ug,, ug,, and ug; are
private members of 71, u; should be assigned to r; in RBAC.
For the same reason, u; is assigned to ro. From Fig. 2, u; and
us can hold the same action group ag;, and u; and us own
the same permission p; via r; and r5, respectively. Hence, the
same authorization requirements are fulfilled through the RBAC
configuration process.

In Case 2, the action group has only three basic mem-
bers ugi, ug,, and ugs;. Using Rule 1, three roles 74, 75,
and 7 are constructed by these three basic members of ag;,
respectively, as shown in Fig. 2. Formally, members(ry) =
{ug,}, members(r;) = {ug,}, and members(r) = {ug;}.
Corresponding assignment relations based on Rules 1 and 3
are shown as well.

Authorized licensed use limited to: Arizona State University. Downloaded on August 24, 2009 at 16:49 from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 39, NO. 5, SEPTEMBER 2009

Roles Permissions

7ok 1
- - = — N U =
() (r2) () i T
\ o’ ~ I
/T\; ‘ /T =
1) Il il e €2)) i S SN
<z 1 L < 1 ¢ &) p2
G G @ G@ G @ G o @
7 N /\ ‘/" ‘/’\‘ /'\\
v o O)
‘ 1 / \ / N\ |
L I8 " [X :
N o B ! Sy
G) G G Ge) @) Ge) (@ o

<> basic member

<> required member

(a)

Overall process of constructing RBAC from an OSGi authorization. (a) Role construction. (b) Mapping to RBAC.

TABLE III
FUNCTIONS/PREDICATES USED IN THE PAPER

Function/predicate

Description

newRole(bm, RM)

Returns a new role constructed by a basic member hm and/or all required members from RAM.

addPA(p, r)

Returns True if permission p is assigned role r.

deletePA(p, r)

Returns True if assignment form permission p to role r is deleted.

addUA(u, r)

Returns True if user « is assigned role r.

isUA(u, r)

Returns True if user « has been assigned role r.

deleteUA(u, r)

Returns True if assignment form user u to role r is deleted.

isSenior(r;, ;)

Returns True if role r; is senior to role ;.

isJunior(ri, T;)

Returns True if role 7; is junior to role 7;.

allSenior(r) Returns the set of all senior of role r
allJunior(r) Returns the set of all junior of role »
parents(r) Returns the set of all immediate senior of role r
children(r) Returns the set of all immediate junior of role »

addParent(r;, ;)

Returns True if role 7; is added to role hierarchy as an immediate senior of role 7,

addChild(r;, ;)

Returns True if role r; is added to role hierarchy as an immediate junior of role r;

deleteParent(r;, T;)

Returns True if role r; is deleted from role hierarchy as an immediate senior of role r;

deleteChild(r;, r;)

Returns True if role r; is deleted from role hierarchy as an immediate junior of role r;

members(r)

Returns the set of all private members of role

ba_member(r)

Returns the set of the basic private member of role

re_members(r)

Returns the set of all required private members of role »

addBUA(u, ug)

Returns True if user « is assigned user group ug as a basic member.

deleteBUA(u, ug)

Returns True if basic assignment form user u to user group ug is deleted.

addBAA(ag, ug)

Returns True if action group ag is assigned user group ug as a basic member.

deleteBAA(ag, ug)

Returns True if basic assignment form action group ag to user group ug is deleted.

addRAA(ag, ug)

Returns True if action group ag is assigned user group ug as a required member.

deleteRAA(ag, ug)

Returns True if required assignment form action group ag to user group ug is deleted.

In Case 3, the action group has only required members. The
second row of the OSGi authorization example [see Fig. 1 (b)]
shows an action group ag, that has three required members
ug;, ug,, and ugs. Using Rule 2, one role r3 is constructed
that contains all three required members of ag,. Formally,
members(r;) = {ug;,ug,,ug; }. Fig. 2 depicts the role con-
struction and assignment relationships.

In addition to the elements and functions in both our for-
mal representation of OSGi authorization and the RBAC model,
Table I lists additional functions and predicates which are used
in the subsequent sections. To realize the basic RBAC construc-
tion from OSGi authorization, we develop a mapping algorithm,
which maps OSGi authorization to basic RBAC specification.
For the mapping algorithm in Fig. 3, let ny, nag, and npa4
denote the number of users, action groups, and basic assignment
relationships (between action groups and user groups), respec-
tively. The computational complexity of this mapping algorithm
is O(’I’LAGnBAATLU).

2) Building Role Hierarchies: We construct role hierarchy
using a NTree [18] structure to define an inheritance relation-
ship, reducing the cost of administration. For example, all man-

agers in the same organization may have a certain set of core
“management privileges,” even though they work in different
departments. This commonality can be exploited through a role
hierarchy that enables each department manager role to inherit
a generic “management” role. Role hierarchy allows the policy
designer to write generic access polices once and to simplify the
complexity of access control policies.

In our mapping approach, roles are constructed based on ba-
sic members and required members of action groups of OSGi
authorization mechanism. Considering the private member sets
of every role, we discover inclusion relations between them.
For example, in Fig. 4(a), r; is constructed by a basic pri-
vate member ug;, and two required private members ug, and
ug; . Formally, ba_member(r,) = {ug, } and re_members(r;) =
{ug,,ug; }; while r7 is constructed by a basic private member
ug, and a required private members ug,, i.e., ba_member(r7) =
{ug, } and re_members(r;) = {ug, }. Hence, the following con-
dition is true

(ba_member(r7) = ba_member(r;))A

(re_members(r7) C re_members(r)).

Authorized licensed use limited to: Arizona State University. Downloaded on August 24, 2009 at 16:49 from IEEE Xplore. Restrictions apply.

AHN et al.: SECURITY-ENHANCED OSGi SERVICE ENVIRONMENTS

567

Algorithm [Mapping]

Input: OSGi Authorization Specification

Output: RBAC Authorization Specification

Method:

(1) P <AG;

2) U < USER;

(3) FOReachp € PDO

“ BM = ba_user_groups(p);

) RM =re_user_groups(p);

©) IF (BM# @) /\ (RM# @) THEN
/* Case 1: Have both Basic Member and Required Member */

@ FOR each bm; € BM DO

®) r = newRole(bm; RM),

) IF (r ¢) THEN

(10) R.add(r),

(11) addPA(p, 1),

(12) FOR eachu € UDO

(13) IF (bm; € user groups(u)) /|
(RM C user_groups (u)) THEN

(14) addUA(u,),

(15) ELSE

(16) IF (BM # @) /A (RM = @) THEN

/* Case 2: Only have Basic Member */

(17) FOR each br; € BM DO

(18) r = newRole(bm;);,

(19) IF (r ¢ k) THEN

(20) R.add(r),

21 addPA(p, r),

(22) FOR eachu € UDO

(23) IF br; € user groups(u) THEN
(24) addUA(u, r);

(25) ELSE

(26) IF (BM = 0) /\ (RM # () THEN

/* Case 3: Only have Required Member */

27 r = newRole(RM),
(28) IF (r ¢ §) THEN
(29) R.add(r),
30) addPA(p, 1),
@31 FOR each# € UDO
(32) IF RM C user _groups(u) THEN
(33) addUA(u, r),
Fig. 3. Mapping algorithm from OSGi authorization to RBAC authorization.
D, ®
::> (re)
b @) s
©)
(a) ()

Fig. 4. Identifying role hierarchy relationships from role construction.
(a) Role construction. (b) Role hierarchies.

Since the private members of r; include all private members
of r7, a user who is assigned to r; should be assigned to r7 as
well according to Rule 3. Thus, a user assigned to r; should
have all permissions of 7. In other words, r; should possess all
permissions of r7, and r; is more powerful than r;. Therefore,
a role hierarchy relation can be build between r; and r7. As a

Algorithm [Building RH]

Input: The result of mapping OSGi authorization to RBAC
Output: RBAC authorization specification including role hierarchy
Method:

(1) FOReachr; € RDO

2 R Ar, .., ny

3) FOR eachr; ER’ DO

“ IF isSenior(r; r) /\ (r; & allSenior(r;)) THEN
/* Insert a senior role to role hierarchy */

5) insertSenior(r; ry);

©) IF isJunior(r, r) /A (r; & allJunior(r;)) THEN
/* Insert a junior role to role hierarchy */

@) insertJunior(r; 1y);

Procedure insertSenior(r; 7;)
Input: 7; r; are two roles in RBAC authorization specification
Output: role hierarchy in which 7; is a senior of 7;
Method:
() flag=1;
(2) FOReachr & parents(r) DO
3) IF isJunior(r; r) THEN
/* Insert r; between r and r; in role hierarchy */

©) IF eachr; ¢ parents(r;) THEN
5) addParent(r; 1y);

©) addChild(r;, r),

@) deleteParent(r, ry),

® flag = 0;

) IF isSenior(r; r) THEN
/* Insert r; into a sub-role hierarchy */
(10) insertSenior (7, 1),
(1n Slag = 0;
(12) IF flag = 1 THEN
/¥ Insert r; as a immediate senior of r; in role hierarchy */
(13) addParent(r;, 1)),

Fig. 5. Algorithm for building role hierarchy.

senior role, 1 inherits all permissions of ;. Commonly, if any
of the following two conditions is true, r; is senior to 7.

1) (ba_member(r;) # ¢) A (ba_member(r;) # ¢)
A (re_member(r;) # ¢)
A (ba_member(r;) = ba_member(r;))
A (re_members(7;) C re_members(r;))

2) (ba_member(r;) = ¢) A (re_member(r;) # ¢)
A (re_member(r;) # ¢)
A (re_members(r;) C re_members(r;)).

In the first condition, r; has both a basic member and required
members, and 7; has at least a basic member. When r; and r;
have same basic member, and the required member set of r;
(including empty set) is a subset of the required member set of
r;, r; is senior to 7;. In another condition, if ; contains only a
required member set, which is a subset of the required member
set of r;, 7; is a junior role of r;. With this methodology, two
role hierarchies can be identified, as shown in Fig. 4(b).

We now introduce an algorithm for building role hierar-
chies described in Fig. 5. The algorithm builds role hierarchies
through a series of continuous processes of adding a role to ex-
isting role hierarchies. The continuous processes are controlled
by two loops that are called to compare each role r; € R with
every role r; € {r1,...,mi_1} in the existing role hierarchies.

Authorized licensed use limited to: Arizona State University. Downloaded on August 24, 2009 at 16:49 from IEEE Xplore. Restrictions apply.

568 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 39, NO. 5, SEPTEMBER 2009

If r; is senior to r; and ; is not in role hierarchies, we can insert
r; torole hierarchies as a senior of r; by calling insertSenior
procedure. Another possible case is performing insertJunior
procedure when 7; is junior to 7;. The algorithm is illustrated in
Fig. 5.

Supposing there exits a role hierarchy and r; is in the hierar-
chy, then we need to insert r; to the hierarchy as a senior role of
r;j. There are three possible cases for the inserting process that
are given as follows.

1) If r; is junior to a role r € parents(r;), r; is inserted

between r and ;.

2) If r; is senior to a role r € parents(r;), r; should be
inserted into a subrole hierarchy and a recursive process
should be carried out.

3) If r; has no relations with all parent roles of r;, r; is added
into the role hierarchy as an immediate senior of r;.

There are two kinds of assignment relations in RBAC: explicit
assignment and implicit assignment. These assignments can re-
sult in redundant role memberships. To detect and eliminate the
redundancies, the following step is also taken into account: if a
user u has been assigned to a superior role r in role hierarchy,
all user-to-role assignments between u to junior roles of r are
examined.

3) Applying Well-Known Role-Based Constraints: RBAC is
a policy-oriented approach, and allows to specify well-known
security principles, such as separation of duty and least privilege.
These security principles can be defined as constraints in RBAC.
Also, we have proved that OSGi authorization requirements can
be satisfied by RBAC in the previous discussion.

B. Reconstructing OSGi Authorization From RBAC

In the previous section, we show that OSGi authorization
mechanism can be mapped to RBAC and it could be enhanced
by important RBAC features. In this section, we discuss how
we can reconstruct OSGi authorization mechanism from RBAC-
based authorization when we change PA and user-to-role assign-
ment (UA).! Note that in our approach, core RBAC components
are constructed from OSGi authorization components and some
OSGi authorization features are maintained in the constructed
RBAC components bound to the private memberships. Thus,
changes in RBAC components are constrained to maintain the
consistency with OSGi authorization components. For this rea-
son, we name RBAC, used in this paper, as an OSGi-compliant
RBAC.

1) PA Change: In RBAC, an administrator can change the
PA by adding or deleting an assignment relation. We first con-
sider the ADD operation. Suppose an administrator attempts to
assign a permission p to a role r in the OSGi-compliant RBAC.
If the permission p has not been assigned to any role, the ADD
operation is allowed. To reflect this change in OSGi authoriza-
tion, a new basic assignment (B in the AG-UG table) should be
created between the action group ag corresponding to p and the

ISome RBAC features, such as RBAC constraints, could not be recognized
during reconstruction, since the original OSGi authorization mechanism cannot
support these features. However, we attempt to apply such a crucial feature to
our approach.

user group ug as the basic private member of r. In addition, re-
quired assignments (R in the AG-UG table) between the action
group ag and all user groups as required private members of r
should be added as well.

If p already has been assigned to other roles, we note that
there are three potential cases from the previous construction
processes.

1) The roles assigned to p have both basic and required pri-
vate members. And the required private member set of
these roles should be the same. If p is assigned to an-
other role r, r should also have both basic and required
private members, and the required private members must
be the same as the roles that p has already been assigned
to. Otherwise, the assignment operation is not allowed.
In reflecting this new permission-role assignment, a basic
assignment relation between the action group ag corre-
sponding to p and the user group as the basic private
member of r should be created in OSGi authorization.

2) All roles of p have only a basic private member. If the
administrator assigns p to another role 7, this role r should
also have only a basic private member. The corresponding
basic assignment is created in OSGi authorization.

3) If p has been assigned to a role and the role has only
required private members, p cannot be further assigned to
other roles in RBAC.

Next, we consider the DELETE operation of an assignment
relation between a permission p and a role r in RBAC. There
are no constraints for revoking permission-role assignments in
RBAC. When we reconstruct OSGi authorization, if p has been
assigned to roles other than r, we delete the basic assignment
relation (B) between the action group ag corresponding to p and
the user group ug as the basic member of r. For other case,
if p has been assigned only to r, then all assignment relations
between the action group ag and the private members of r in
OSGi authorization are deleted. A detailed PA change algorithm
is given in Fig. 6. This algorithm is used to reconstruct OSGi
authorization when a PA is changed in RBAC. The complexity
of PA change algorithm is O(nyg), where ny represents the
number of user groups in OSGi authorization.

2) UA Change: Similar to the PA change, UA change in-
cludes adding and/or deleting a user-to-role assignment under
certain conditions in RBAC. When a user u is assigned to a
role r in RBAC, the corresponding user in OSGi authorization
should be assigned to all private members of the role in OSGi
authorization. Thus, the assignment relation between u and a
private member ug; € members(r) should be added if the user
u has not been assigned to ug; in OSGi authorization.

Since a user-to-role assignment in RBAC is build based on the
relations between the users and all private members of this role,
deleting any of such relations may cause the revocation of the
user-to-role assignment in RBAC. Thus, when an administrator
wants to delete a user-to-role assignment in RBAC, we cannot
just delete all relations between a particular user and all private
members of this role directly in OSGi, and this might result
in other UA changes to other roles. To reduce the complexity,
our UA change algorithm requires the administrator to select
the exact private members of the role that should be revoked.

Authorized licensed use limited to: Arizona State University. Downloaded on August 24, 2009 at 16:49 from IEEE Xplore. Restrictions apply.

AHN et al.: SECURITY-ENHANCED OSGi SERVICE ENVIRONMENTS

Algorithm [Changing PA]

Procedure ChangePA(p, r)

Input: p, » where p is a permission and 7 is a role in RBAC authorization
specification

Output: changed OSGi authorization specification

Method:

(1) IF addPA(p,) THEN

2) IF role(p) # ¢ THEN

/* Add a permission-to-role assignment */

3) IF (ba _member(r) = O) /\ (re_members(r).size() =
re_user_groups(p).size()) /\ (re_members(r) < re_user groups(p)) THEN
@) addBAA(p, ba_member(r)),
®) IF role(p) = @ THEN
©) IF ba member(r) # 0 THEN
0 addBAA(p, ba_member(r)),
®) IF re_members(r) # ¢ THEN
©) FOR each ug; € re_members(r) DO
(10) addRAA(p, ugy;
(11) IF deletePA(p, r) THEN /* Delete a permission-to-role assignment */
(12) IF role(p).size() = 1 THEN
(13) IF ba_member(r) # ¢ THEN
(14) deleteBAA(p, ba_member(r)),
(15) IF re_members(r) # @ THEN
(16) FOR each ug; € re members(r) DO
17 deleteRAA(p, ug),
(18) deleteRole(r);
(19) IF role(p).size() > I THEN
(20) deleteBAA(p, ba_member(r)),
Fig. 6. Algorithm for handling PA change.

Algorithm [Changing UA]

Procedure ChangeUA(x, 1)

Input: u, r where u is a user and r is a role in RBAC authorization specification
Output: changed OSGi authorization specification

Method:

(1) IF addUA(u,r) THEN /* Add a user-to-role assignment */

2) FOR each ug; € members(r) DO

3) IF u ¢ users(ug,) THEN

) addBUA(u, ugy);

%) FOR eachr; € RDO /* Rebuild other user-to- role assignments */
©6) IF members(r;) & user groups(u) THEN

@) addUA(u, r;)

(8) IF deleteUA(u, r) THEN
©) IF select all THEN

/* Delete a user-to-role assignment */

(10) FOR each ug; € members(r) DO
11 deleteBUA(u, ug),

(12) IF select ug; € members(r) THEN
(13) deleteBUA(u, ug);

(14) FOReachr; € role(u) DO

/* Rebuild other user-to- role assignments */

(15) IF members(r;) < user groups(u) THEN
(16) deleteUA(u, r)
Fig. 7. Algorithm for handling UA change.

The revocations are directly reflected in the user-to-user group
assignments in OSGi. Nevertheless, the changes of user-to-user
group assignments in OSGi authorization may also affect other
user-to-role assignments in RBAC. The user-to-role assignment
relations in RBAC should be rebuild to be consistent with OSGi
authorization changes. The rebuilding process can be performed
through checking all roles that the user is assigned to. The UA
change algorithm is shown in Fig. 7. Since the UA change
algorithm involves two assignment processes, the complexity of
the algorithm is O(nyg + ng), where nyg and ngp represent

569

the number of user groups and roles in the authorization systems,
respectively.

IV. IMPLEMENTATION AND PERFORMANCE EVALUATION

To prove the feasibility of our approach, we design a proto-
type system, which is based on an open source OSGi framework
implementation called Knopflerfish [2]. A security-enhanced
OSGi authorization architecture is depicted in Fig. 8. In our
implementation, a Web-based OSGi authorization management
tool is designed to support our policy management framework.
The tool is composed of two major GUIs: 1) OSGi authoriza-
tion management GUI communicates with OSGi authorization
engine to manage standard OSGi authorization policy® and 2)
RBAC authorization management GUI is used to manage RBAC
authorization through the RBAC authorization engine. Transfor-
mation handler is responsible for mapping OSGi authorization
to RBAC, building role hierarchies, and reconstructing OSGi
authorization by performing corresponding algorithms. In addi-
tion, the policy enforcement is based on the pull mode, in which
a policy enforcement point (PEP) collects the related informa-
tion of subjects and queries a policy decision point (PDP) for
policy decision. By integrating the Sun’s XACML library [4]
into OSGi service platform, the authorization service as the PDP
module interprets XACML polices and makes access decisions.
The User Admin service as the PEP module queries the autho-
rization service and enforces the relevant operations.

Finally, we give a scenario to illustrate the usage of our pro-
totype system. Supposing OSGi service platform is installed in
a home network, which has been integrated with the implemen-
tation of our authorization framework. Bob is an administrator
of the home network gateway. He defines an action group Ac-
cessWebCam, and two user groups, Residents, and Adults, as
a basic member and a required member of the action group
AccessWebCam, respectively. Then, when he uses our tool to
map the OSGi authorization to RBAC, a role Residents_Adults
is constructed and the permission corresponding to the ac-
tion group AccessWebCam is assigned to the role. In addition,
Bob defines several constraints for the role Residents_Adults.
For example, a constraint can be established to specify
“the user assigned to Residents_Adults role can perform the
AccessWebCam action when he/she is in his/her office between
9 amand 5 pm.” Now, Alice wants to access the webcam installed
in the home remotely. She logs into the home service gateway
and retrieves AccessWebCam bundle. If AccessWebCam bundle
does not exist in the service gateway, she requests the service
gateway to download AccessWebCam bundle from the bundle
repository and install it in the gateway. However, when Alice
tries to execute the AccessWebCam bundle, the system denies
her access request and indicates that she needs permission for
starting the bundle. There are two possible cases that cause such
access denials. One case would be that Bob has not assigned
the user Alice to the two user groups, Residents and Adults,
in OSGi authorization management or has not assigned Alice
to Residents_Adults role in RBAC authorization management.

2The current OSGi authorization mechanism can coexist with the OSGi-
compliant RBAC authorization mechanism.

Authorized licensed use limited to: Arizona State University. Downloaded on August 24, 2009 at 16:49 from IEEE Xplore. Restrictions apply.

570 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 39, NO. 5, SEPTEMBER 2009
% Bundles
@éﬁ&éﬁz@ @ Access Request ITITITI I Device Access E"
User User Admin Service
% (Policy Enforcement Point) =u=
Authorization Engine 5
| 8 s
: 5t 7l
o . . . | = 3 = g
o 0{ OSGi Authorization Engine J EEE EE
= =] ! < <
Qé\@: % % Transformation :
"%;, _g 8 Handler ‘ Authorization Service
Authorization g% (Policy Decision Point)
Administrator @ £ |
OSGi-Compliant RBAC '
"{ Engine] !
[XACML Policy Generator] [j Authorization Policy DB
Fig. 8. Security-enhanced OSGi authorization architecture.
ETRnapliriiah OSCTconsele - Wresol Inernel Bplorar BEx] 18 —— 71— r —T
| G- ©-R@ 6| pos trm 0|2 B UK ’ —0— RBAC With XACML Support
e — HBe emw __ 16 | —o— RBAC Without XACML Support |
g —4— Original OSGi Authorization
SI:I-CI)M Home Network control ;; L. Vi A———; EE————; —; T - ?
n
Role-Dassd A S Trformation 8 12 b e e s e e -
L] | i
Fathorzea P ¥ 10k O,)—’“‘MHHHH}
£ :
;ﬁ:,_:=ou flerish on Windows X9/5.1 logout % 8
2 g = scam U>)‘ |
& \" P g 6 SRS S Gheeeeeeen
5 |
o . p— T 4 ; : :
> H
o e £, . i] : :
= T ae—t—t———t—t—0 |
@ olb— T < 0y)
. U) 0 10 20 30 40 50 60 70 80
e - St Number of BAA
Fig. 9. Prototype system. Fig. 10. Performance evaluation of the system implementation.

Another possible case is that the constraints are violated by
Alice’s current conditions. Hence, for the former case, Alice
can ask Bob to set up the corresponding assignment relations,
while Alice can start AccessWebCam bundle when her situation
satisfies the location and time constraints for the latter case.
When all conditions are satisfied, Alice’s remote access request
to webcam is allowed, as shown in Fig. 9.

According to the rules for constructing OSGi-compliant
RBAC in our solution, the number of generated roles and the
number of PAs are determined by the number of basic assign-
ment relationships (BAAs) between action groups and user
groups. Obviously, BAA assignments in OSGi authorization
policies affect the response time for our RBAC authorization
system. Therefore, the number of BAA is chosen as the evalua-
tion metrics for our experiments. By randomly triggering OSGi
bundle access, we measure and compare the response time of
three authorization mechanisms, as shown in Fig. 10. The exper-
iments were performed on Intel Core 2 Duo CPU 3.00 GHz with
3.25 GB RAM running on Windows XP and Apache Tomcat.
Each result was measured in milliseconds and computed based

on the average over simulated runs. Compared to the original
OSGi authorization mechanism, RBAC authorization without
XACML shows better performance, since RBAC directly maps
users to permissions through roles. In other words, our exper-
iments prove that the proposed OSGi strategies are correctly
designed. When RBAC policies are specified in XACML, it in-
troduced about 9 ms overhead to RBAC authorization due to
XACML request generation and policy evaluation. However,
considering the potential benefits of XACML standard such as
extensibility and interoperability, we believe this overhead is
acceptable.

V. CONCLUSION AND FUTURE WORK

In this paper, we have formulated current OSGi authoriza-
tion mechanism and identified its inherent limitations. In addi-
tion, we have demonstrated how OSGi authorization mechanism
could be mapped to RBAC and how OSGi authorization require-
ments can be fulfilled to leverage important RBAC features in
the OSGi environment. Furthermore, we discussed possible en-
hancement of OSGi authorization with role-based constraints.

Authorized licensed use limited to: Arizona State University. Downloaded on August 24, 2009 at 16:49 from IEEE Xplore. Restrictions apply.

AHN et al.: SECURITY-ENHANCED OSGi SERVICE ENVIRONMENTS

A proof-of-concept prototype has been implemented to show
the feasibility of our approach with possible consideration of
interoperability and extensibility issues. Our future work would
attempt to specify and verify complicated access control policies
in OSGi environments, especially context-aware constraints in-
cluding tools for policy specification and analysis. Also, we
would study how our approach can be applied to universal
plug and play (UPnP) [5] and digital living network alliance
(DLNA) [1], which have similar security requirements as OSGi
in home network environments.

REFERENCES

[1] Digital Living Network Alliance. (2003). [Online]. Available: http://www.
dlna.org/home

[2] Knopflerfish. Knopflerfish Open Source OSGi. (2006). [Online]. Available:
http://www.knopflerfish.org/index.html

[3] OSGi Alliance. OSGi Initiative. (1999). [Online]. Available: http://www.
osgi.org.

[4] Sun Microsystems, Inc. Sun’s XACML implementation. (2004). [Online].
Available: http://sunxacml.sourceforge.net/

[5] UPnP Forum. UPnP Standards for Device Security and Security Con-
sole. (2003). [Online]. Available: http://www.upnp.org/standardizeddcps/
security.asp

[6] G.-J. Ahn and R. S. Sandhu, “Role-based authorization constraints spec-
ification,” ACM Trans. Inf. Syst. Security, vol. 3, no. 4, pp. 207-226,
Nov. 2000.

[7]1 E. Bertino, L. Khan, R. Sandhu, and B. Thuraisingham, “Secure knowl-
edge management: Confidentiality, trust, and privacy,” IEEE Trans. Syst.,
Man, Cybern. A, Syst., Humans, vol. 36, no. 3, pp. 429-438, May 2006.

[8] E.-A. Cho, C.-J. Moon, D.-H. Park, and D.-K. Baik, “Access control pol-
icy management framework based on RBAC in OSGi service platform,”
in Proc. 6th IEEE Int. Conf. Comput. Inf. Technol. (CIT 2006), IEEE
Computer Society, Washington, DC, 2006, pp. 161-166.

[9] E.-A. Cho, C.-J. Moon, D.-H. Park, and D.-K. Baik, “An effective policy

management framework using RBAC model for service platform based

on components,” in Proc. 4th Int. Conf. Softw. Eng. Res., Manage. Appl.

(SERA 2006), IEEE Computer Society, Washington, DC, 2006, pp. 281—

288.

C. M. Ellison, “Home network security,” Intel Technol. J., vol. 6, no. 4,

pp. 3748, 2002.

T. Jaeger, “On the increasing importance of constraints,” in Proc. 4th ACM

Workshop Role-based Access Contr., 1999, pp. 33-42.

S. Jajodia, P. Samarati, V. S. Subrahmanian, and E. Bertino, “A unified

framework for enforcing multiple access control policies,” in Proc. ACM

SIGMOD Int. Conf. Manage. Data, 1997, pp. 474-485.

C. Lee, D. Nordstedt, and S. Helal, “Enabling smart spaces with OSGi,”

IEEE Pervasive Comput., vol. 2, no. 3, pp. 94-98, Jul.-Sep. 2003.

H.-Y. Lim, Y.-G. Kim, C.-J. Moon, and D.-K. Baik, “Bundle authentica-

tion and authorization using XML security in the OSGi service platform,”

in Proc. 4th Annu. ACIS Int. Conf. Comput. Inf. Sci. (ICIS 2005), IEEE

Computer Society, Washington, DC, 2005, pp. 502-507.

M. Lorch, D. B. Adams, D. Kafura, M. S. R. Koneni, A. Rathi, and

S. Shah, “The prima system for privilege management, authorization and

enforcement in grid environments,” presented at the 4th Int. Workshop

Grid Comput., Phoenix, AR, 2003.

OASIS, XACML 2.0 Core: eXtensible Access Control Markup Language

(XACML) Version 2.0. (2005). [Online]. Available: http://docs.oasis-

open.org/xacml/2.0/access_control-xacml-2.0-core-spec-os.pdf

OSGi, User Admin Service Specification Version 1.1. (2006). [Online].

Available: http://www.osgi.org

R. Sandhu, “The ntree: A two dimension partial order for protec-

tion groups,” ACM Trans. Comput. Syst., vol. 6, no. 2, pp. 197-222,

May 1988.

R. Sandhu, E. Coyne, H. Feinstein, and C. Youman, “Role-based access

control model,” IEEE Comput., vol. 2, no. 29, pp. 38-47, Feb. 1996.

R. Sandhu and Q. Munawer, “How to do discretionary access control

using roles,” in Proc. 3rd ACM workshop Role-Based Access Contr.,

Aug. 1999, pp. 47-54.

[10]
(11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

571

[21] R. S. Sandhu, “Lattice-based access control models,” IEEE Comput.,
vol. 26, no. 11, pp. 9-19, Nov. 1993.

R. S. Sandhu and P. Samarati, “Access control: Principles and practice,”
IEEE Commun. Mag., vol. 32, no. 9, pp. 40-48, Sep. 1994.

C. Wu, C. Liao, and L. Fu, “Service-oriented smart-home architecture
based on OSGi and mobile-agent technology,” IEEE Trans. Syst., Man,
Cybern. C, Appl. Rev., vol. 37, no. 2, pp. 193-205, Mar. 2007.

H. Zhu and M. Zhou, “Roles in information systems: A survey,” IEEE
Trans. Syst., Man, Cybern. C, Appl. Rev., vol. 38, no. 3, pp. 377-396,
May 2008.

[22]

[23]

[24]

Gail-Joon Ahn (SM’07) received the Ph.D. degree
in information technology from George Mason Uni-
versity, Fairfax, Virgina, 2000.

He was an Associate Professor in the College of
Computing and Informatics, and the Founding Di-
rector of the Center for Digital Identity and Cyber
Defense Research, and Laboratory of Information
Integration, Security, and Privacy (LIISP), Univer-
sity of North Carolina at Charlotte, Charlotte. He is
currently an Associate Professor in the Department
of Computer Science and Engineering and the Di-
rector of Security Engineering for Future Computing (SEFCOM) Laboratory
at Arizona State University (ASU), Tempe. His current research interests in-
clude information and systems security, vulnerability and risk management,
access control, and security architecture for distributed systems. His research
has been supported by the U.S. National Science Foundation, National Security
Agency (NSA), U.S. Department of Defense (DoD), U.S. Department of Energy
(DoE), Bank of America, Hewlett Packard, Microsoft, and Robert Wood Johnson
Foundation.

Dr. Ahn is a recipient of the U.S. Department of Energy CAREER Award and
the Educator of the Year Award from the Federal Information Systems Security
Educators Association (FISSEA).

Hongxin Hu is currently working toward the Ph.D.
degree at the Department of Computer Science and
Engineering, Arizona State University, Tempe.

He is a member of the Security Engineering for
Future Computing (SEFCOM) Laboratory, Arizona
State University. His current research interest in-
cludes access control models and mechanisms, net-
work and distributed system security, secure software
engineering, and security in future home network.

Jing Jin is currently working toward the Ph.D. de-
gree at the College of Computing and Informatics,
University of North Carolina at Charlotte, Charlotte.

She is a member of the Laboratory of Information
Integration, Security, and Privacy (LIISP), Univer-
sity of North Carolina at Charlotte. Her current re-
search interests include access control and trust man-
agement, identity and privacy management, network
and distributed system security, and security in health
informatics.

Authorized licensed use limited to: Arizona State University. Downloaded on August 24, 2009 at 16:49 from IEEE Xplore. Restrictions apply.

