
Dynamic Audit Services for Integrity Verification
of Outsourced Storages in Clouds

Yan Zhu1,2, Huaixi Wang3, Zexing Hu1, Gail-Joon Ahn4, Hongxin Hu4, Stephen S. Yau4

1Institute of Computer Science and Technology, Peking University, Beijing 100871, China
2Key Laboratory of Network and Software Security Assurance (Peking University), Ministry of Education

3School of Mathematical Sciences, Peking University, Beijing 100871, China
4School of Computing, Informatics, and Decision Systems Engineering,

Arizona State University, Tempe, AZ 85287, USA
{yan.zhu,wanghx,huzx}@pku.edu.cn, {gahn,hxhu,yau}@asu.edu

ABSTRACT
In this paper, we propose a dynamic audit service for verify-
ing the integrity of untrusted and outsourced storage. Our
audit service, constructed based on the techniques, fragment
structure, random sampling and index-hash table, can sup-
port provable updates to outsourced data, and timely abnor-
mal detection. In addition, we propose an efficient approach
based on probabilistic query and periodic verification for im-
proving the performance of audit services. Our experimental
results not only validate the effectiveness of our approaches,
but also show our audit system has a lower computation
overhead, as well as a shorter extra storage for audit mete-
data.

Categories and Subject Descriptors
H.3.2 [Information Storage and Retrieval]: Information
Storage; E.3 [Data]: Data Encryption

General Terms
Design, Performance, Security

Keywords
Dynamic Audit, Storage Security, Integrity Verification

1. INTRODUCTION
Cloud computing provides a scalability environment for

growing amounts of data and processes that work on vari-
ous applications and services by means of on-demand self-
service. One of the strength of cloud computing is that data
are being centralized and outsourced in clouds. This kind of
outsourced storage in clouds has become a new profit growth
point by providing a comparably low-cost, scalable, location-
independent platform for managing clients’ data. The cloud
storage service (CSS) relieves the burden for storage man-
agement and maintenance. However, if such an important
service is vulnerable to attacks or failures, it would bring
irretrievable losses to the clients since their data or archives

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’11 March 21-25, 2011, TaiChung, Taiwan.
Copyright 2011 ACM 978-1-4503-0113-8/11/03 ...$10.00.

are stored in an uncertain storage pool outside the enter-
prises. These security risks come from the following reasons:
the cloud infrastructures are much more powerful and reli-
able than personal computing devices. However, they are
still facing all kinds of internal and external threats; for the
benefits of their possession, there exist various motivations
for cloud service providers (CSP) to behave unfaithfully to-
wards the cloud users; furthermore, the dispute occasionally
suffers from a lack of trust on CSP. Consequently, their be-
haviors may not be known by the cloud users, even if this
dispute may result from the users’ own improper operations.
Therefore, it is necessary for cloud service providers to offer
an efficient audit service to check the integrity and availabil-
ity of the stored data [10].

Security audit is an important solution enabling track-
ing and analysis of any activities including data accesses,
security breaches, application activities, and so on. Data
security tracking is crucial for all organizations that must
be able to comply with a range of federal laws including
the Sarbanes-Oxley Act, Basel II, HIPAA and other regu-
lations1. Furthermore, compared to the common audit, the
audit service for cloud storages should provide clients with
a more efficient proof of the integrity of stored data.

In this paper, we introduce a dynamic audit service for
integrity verification of untrusted and outsourced storages.
Our audit system, based on a novel audit system archi-
tecture, can support dynamic data operations and timely
abnormal detection with the help of several effective tech-
niques, such as fragment structure, random sampling, and
index-hash table. Furthermore, we propose an efficient ap-
proach based on probabilistic query and periodic verification
for improving the performance of audit services. A proof-
of-concept prototype is also implemented to evaluate the
feasibility and viability of our proposed approaches. Our
experimental results not only validate the effectiveness of
our approaches, but also show our system has a lower com-
putation cost, as well as a shorter extra storage for integrity
verification.

The rest of the paper is organized as follows. Section 2 de-
scribes the research background and related work. Section 3
and 4 address our audit system architecture and main tech-
niques, and the construction of corresponding algorithms,
respectively. In Section 5 we present the performance of our
schemes and the experimental results. Finally, we conclude
this paper in Section 6.

1http://www.hhs.gov/ocr/privacy/.

1

2. BACKGROUND AND RELATED WORK
The traditional cryptographic technologies for data in-

tegrity and availability, based on Hash functions and sig-
nature schemes [4, 11, 13], cannot work on the outsoucred
data without a local copy of data. In addition, it is not a
practical solution for data validation by downloading them
due to the expensive communications, especially for large-
size files. Moreover, the ability to audit the correctness of
the data in a cloud environment can be formidable and ex-
pensive for the cloud users. Therefore, it is crucial to realize
public auditability for CSS, so that data owners may re-
sort to a third party auditor (TPA), who has expertise and
capabilities that a common user does not have, for period-
ically auditing the outsourced data. This audit service is
significantly important for digital forensics and credibility
in clouds.

To implement public auditability, the notions of proof of
retrievability (POR) [5] and provable data possession (PDP) [1]
have been proposed by some researchers. Their approach
was based on a probabilistic proof technique for a storage
provider to prove that clients’ data remain intact. For ease
of use, some POR/PDP schemes work on a publicly verifi-
able way, so that anyone can use the verification protocol to
prove the availability of the stored data. Hence, this pro-
vides us an effective approach to accommodate the require-
ments from public auditability. POR/PDP schemes evolved
around an untrusted storage offer a publicly accessible re-
mote interface to check the tremendous amount of data.

There exist some solutions for audit services on outsourced
data. For example, Xie et al. [9] proposed an efficient method
on content comparability for outsourced database, but it
wasn’t suited for irregular data. Wang et al. [8] also pro-
vided a similar architecture for public audit services. To
support their architecture, a public audit scheme was pro-
posed with privacy-preserving property. However, lack of
rigorous performance analysis for constructed audit system
greatly affects the practical application of this scheme. For
instance, in this scheme an outsourced file is directly split
into n blocks, and then each block generates a verification
tag. In order to maintain security, the length of block must
be equal to the size of cryptosystem, that is, 160-bit=20-
Bytes. This means that 1M-Bytes file is split into 50,000
blocks and generates 50,000 tags [7], and the storage of tags
is at least 1M-Bytes. It is clearly inefficient to build an audit
system based on this scheme. To address such a problem,
a fragment technique is introduced in this paper to improve
performance and reduce extra storage (see Section 3.1).

Another major concern is the security issue of dynamic
data operations for public audit services. In clouds, one
of the core design principles is to provide dynamic scala-
bility for various applications. This means that remotely
stored data might be not only accessed but also dynamically
updated by the clients, for instance, through block opera-
tions such as modification, deletion and insertion. However,
these operations may raise security issues in most of exist-
ing schemes, e.g., the forgery of the verification metadata
(called as tags) generated by data owners and the leakage of
the user’s secret key. Hence, it is crucial to develop a more
efficient and secure mechanism for dynamic audit services,
in which possible adversary’s advantage through dynamic
data operations should be prohibited.

Note that this paper only addresses the problems of in-
tegrity checking and auditing. Other security services, such

as user authentication and data encryption, are orthogonal
to and compatible with audit services.

3. ARCHITECTURE AND TECHNIQUES
We introduce an audit system architecture for outsourced

data in clouds as shown in Figure 1. In this architecture, we
consider a data storage service involving four entities: data
owner (DO), who has a large amount of data to be stored in
the cloud; cloud service provider (CSP), who provides data
storage service and has enough storage space and computa-
tion resources; third party auditor (TPA), who has capabil-
ities to manage or monitor the outsourced data under the
delegation of data owner; and authorized applications (AA),
who have the right to access and manipulate stored data. Fi-
nally, application users can enjoy various cloud application
services via these authorized applications.

Figure 1: The audit system architecture.

We assume the TPA is reliable and independent through
the following audit functions: TPA should be able to make
regular checks on the integrity and availability of the dele-
gated data at appropriate intervals; TPA should be able to
organize, manage, and maintain the outsourced data instead
of data owners, and support the dynamic data operations
for authorized applications; and TPA should be able to take
the evidences for disputes about the inconsistency of data
in terms of authentic records for all data operations.

To realize these functions, our audit service is comprised
of three processes:

Tag Generation: the client (data owner) uses the secret
key sk to pre-process a file, which consists of a collection
of n blocks, generates a set of public verification param-
eters (PVP) and index-hash table (IHT) that are stored
in TPA, transmits the file and some verification tags to
CSP, and may delete its local copy (see Figure 2(a));

Periodic Sampling Audit: by using an interactive proof
protocol of retrievability, TPA (or other applications) is-
sues a“Random Sampling”challenge to audit the integrity
and availability of outsourced data in terms of the verifica-
tion information (involves PVP and IHT) stored in TPA
(see Figure 2(b));

Audit for Dynamic Operations: An authorized applica-
tions, who hold data owner’s secret key sk, can manipu-
late the outsourced data and update the associated index-
hash table (IHT) stored in TPA. The privacy of sk and
the checking algorithm ensure that the storage server can-
not cheat the authorized applications and forge the valid
audit records (see Figure 2(c)).

2

Figure 2: Three processes of audit system.

In general, the authorized applications should be cloud ap-
plication services inside clouds for various application pur-
poses, but they must be specifically authorized by data own-
ers for manipulating the outsourced data. Since the ac-
ceptable operations require that the authorized applications
must present authentication information for TPA, any unau-
thorized modifications for data will be detected in audit
processes or verification processes. Based on this kind of
strong authorization-verification mechanism, we neither as-
sume that CSP is trust to guarantee the security of stored
data, nor assume that a date owner has the capability to
collect the evidence of CSP’s faults after errors have been
found.

The ultimate goal of this audit infrastructure is to en-
hance the credibility of cloud storage services, but not to
increase data owner’s burden and overheads. For this pur-
pose, TPA should be constructed in clouds and maintained
by a cloud storage provider (CSP). In order to ensure the
trust and security, TPA must be secure enough to resist ma-
licious attacks, and it also should be strictly controlled to
prevent unauthorized access even for internal members in
clouds. A more practical way is that TPA in clouds should
be mandated by a trusted third party (TTP). This mecha-
nism not only improves the performance of audit services,
but also provides the data owner with a maximum access
transparency. This means that data owners are entitled to
utilize the audit service without further costs besides storing
a secret-key and some secret information.

The above processes involve some procedures: KeyGen,
TagGen, Update, Delete, Insert algorithms, as well as an
interactive proof protocol of retrievability (see Appendix
A). In order to improve security and performance, we make
use of following techniques to construct corresponding algo-
rithms and protocols.

3.1 Fragment Structure and Secure Tags
To maximize the storage efficiency and audit performance,

a general fragment structure is introduced into our audit sys-
tem for outsourced storage. An instance for this framework
which is used in this scheme is showed in Figure 3: an out-
sourced file F is split into n blocks {m1,m2, · · · ,mn}, and
each block mi is split into s sectors {mi,1,mi,2, · · · ,mi,s}.
The fragment framework consists of n block-tag pair (mi, σi),
where σi is a signature tag of block mi generated by some
secrets τ = (τ1, τ2, · · · , τs). Finally, these block-tag pairs are
stored in CSP and the encryption of the secrets τ (called as
PVP) are in TTP. Although this fragment structure is sim-
ple and straightforward, but the file is split into n×s sectors
and each block (s sectors) corresponds to a tag, so that the
storage of signature tags can be reduced with increase of s.
Hence, this structure can reduce extra storage for tags and
improve the audit performance.

There exist some schemes to convergence s blocks to gen-
erate a secure signature tag, e.g., MAC-based, ECC or RSA
schemes [1, 7]. These schemes, built from collision-resistance
signatures (see Appendix A) and the random oracle model,
have higher scalability, performance and security.

1s

2s

3s

ns

1v

2v

3v

nv

1t 2t st

1m 2m sm 's

Figure 3: Fragment structure and sampling audit.

3.2 Periodic Sampling Audit
In contract with“whole”checking, random“sampling”check-

ing greatly reduces the workload of audit services, while
still achieve an effective detection of misbehavior. Thus,
the probabilistic audit on sampling checking is preferable
to realize the abnormality detection in a timely manner, as
well as rationally allocate resources. The fragment struc-
ture shown in Figure 3 can provide the support of proba-
bilistic audit as well: given a random chosen challenge (or
query) Q = {(i, vi)}i∈I , where I is a subset of the block in-
dices and vi is a random coefficient, an efficient algorithm is
used to produce a constant-size response (µ1, µ2, · · · , µs, σ

′),
where µi comes from all {mk,i, vk}k∈I and σ′ is from all
{σk, vk}k∈I . Generally, this algorithm relies on homomor-
phic properties to aggregate data and tags into a constant
size response, which minimizes network communication.

Since the single sampling checking may overlook a very
small number of data abnormality, we propose a periodic
sampling approach to audit outsourcing data, which is called
as Periodic Sampling Audit. In this way, the audit activities
are efficiently scheduled in an audit period, and a TPA needs
merely access small portions of file to perform audit in each
activity. Therefore, this method can detect the exceptions
in time, and reduce the sampling numbers in each audit.

3.3 Index-Hash Table
In order to support dynamic data operations, we introduce

a simple index-hash table (IHT) to record the changes of file
blocks, as well as generate the hash value of block in the
verification process. The structure of our index-hash table

3

Third Party

Auditor(TPA)

Data Owner(DO)/

Authorized Applications(AA)

Cloud Service

Provider(CSP)

Third Party

Auditor(TPA)

Cloud Service

Provider(CSP)

()TagGeny ¬ ()TagGens ¬

Query y

y Initial Proof

Commitment()

Challenge()

Response()

Initial Proof

Commitment()

Challenge()

Response()

Verification()

Verification()

Initial Proof

Commitment()

Challenge()

Response()
Verification()

(a) Tag generation and user’s verification (b) Periodic sampling audit

Third Party

Auditor(TPA)

Data Owner(DO)/

Authorized Applications(AA)

Cloud Service

Provider(CSP)

Query y

y

Update(),

Delete(), Insert()

Updated y ¢

Updated s ¢

Check()

(c) Dynamic data operations and audit

Figure 4: The workflow of audit system.

is similar to that of file block allocation table in file systems.
Generally, the index-hash table χ consists of serial number,
block number, version number, random integer, and so on
(see Table 1 in Appendix A). Different from the common
index table, we must assure that all records in this kind of
table differ from one another to prevent the forgery of data
blocks and tags. In addition to record data changes, each
record χi in table is used to generate a unique Hash value,
which in turn is used for the construction of signature tag σi

by the secret key sk. This kind of relationship between χi

and σi must be cryptographic secure, and we can make use
of it to design our verification protocol depicted in Figure
2(b) and the checking algorithm in Figure 2(c).

Although the index-hash table may increases the complex-
ity of an audit system, it provides the strongest assurance
to monitor the behavior of untrusted CSP, as well as effi-
cient evidence of computer forensics, due to the reason that
anyone cannot forge the valid χi (in TPA) and σi (in CSP)
without the secret key sk. In practical applications, the
designer should consider that the index-hash table is kept
into the virtualization infrastructure of cloud-based storage
services.

4. ALGORITHMS FOR AUDIT SYSTEM
In this section we describe the construction of algorithms

in our audit architecture. A more detailed descriptions of
the our can be found in Appendix A. Firstly, we present the
definition of two algorithms for the tag generation process
as follows:

KeyGen (1κ): takes a security parameter κ as input, and
returns a public/secret keypair (pk, sk);

T agGen (sk, F): takes as inputs the secret key sk and a
file F , and returns the triple (τ, ψ, σ), where τ denotes
the secret used to generate the verification tags, ψ is a set
of public verification parameters u and index-hash table
χ, i.e., ψ = (u, χ), and σ denotes the set of tags.

Data owner or authorized applications only need to save the
secret key sk, moreover, sk would not be necessary for the
verification/audit process. The secret of the processed file
τ can be discarded after tags are generated due to public
verification parameters u.

In Figure 4 demonstrates the workflow of our audit sys-
tem. Suppose a data owner wants to store a file in a storage

server, and maintains a corresponding authenticated index
structure at a TPA. In Figure 4 (a), we describe this process
as follows: firstly, using KeyGen(), the owner generates a
public/secret keypair (pk, sk) by himself or the system man-
ager, and then sends his public key pk to TPA. Note that
TPA cannot obtain the client’s secret key sk; secondly, the
owner chooses the random secret τ and then invokes the
algorithm TagGen() to produce public verification informa-
tion ψ = (u, χ) and signature tags σ, where τ is unique for
each file. Finally, the owner sends ψ and (F, σ) to TPA and
CSP, respectively, where χ is an index-hash table.

4.1 Supporting Periodic Sampling Audit
At any time, TPA can check the integrity of F as fol-

lows: TPA first queries database to obtain the verification
information ψ; and then it initializes an interactive protocol
Proof(CSP, Client) and performs a 3-move proof protocol
in a random sampling way: Commitment, Challenge, and
Response; finally, TPA verifies the interactive data to get
the results. In fact, since our scheme is a publicly verifiable
protocol, anyone can run this protocol, but s/he is unable to
get any advantage to break the cryptosystem, even if TPA
and CSP cooperate for an attack. Let P (x) denotes the sub-
ject P holds the secret x and 〈P, V 〉(x) denotes both parties
P and V share a common data x in a protocol. This process
can be defined as follows:

Proof (CSP, TPA): is an interactive proof protocol be-
tween CSP and TPA, that is 〈CSP (F, σ), TPA〉(pk,ψ),
where a public key pk and a set of public parameters ψ
are the common inputs between TPA and CSP, and CSP
takes the inputs, a file F and a set of tags σ. At the end of
the protocol running, TPA returns {0|1}, where 1 means
the file is correctly stored on the server.

An audit service executes the verification process peri-
odically by using above-mentioned protocol. Figure 4(b)
shows such a two-party protocol between TPA and CSP, i.e.,
Proof(CSP, TPA), without the involvement of a client (DO
or AA). In Figure 4 (b) shows two verification processes. To
improve the efficiency of verification process, TPA should
work in a probabilistic sampling way. We articulate the re-
lationship among the detection probability, the corruption
probability, and the sampling number in Section 5.

4.2 Supporting Dynamic Data Operations

4

In order to meet the requirements from dynamic scenarios,
we introduce following definitions for dynamic algorithms:

Update(sk, ψ,m′

i): is an algorithm run by AA to update the
block of file m′

i at the index i by using sk, and it returns
a new verification metadata (ψ′, σ′);

Delete(sk, ψ,mi): is an algorithm run by AA to delete the
block mi of file at the index i by using sk, and it returns
a new verification metadata (ψ′);

Insert(sk, ψ,mi): is an algorithm run by AA to insert the
block of file mi at the index i by using sk, and it returns
a new verification metadata (ψ′, σ′).

To ensure the security, dynamic data operations are only
available to data owners or authorized applications, who
hold the secret key sk. Here, all operations are based on
data blocks. Moreover, in order to implement audit services,
applications need to update the index-hash table. It is nec-
essary for TPA and CSP to check the validity of updated
data. In Figure 4(c), we describe the process of dynamic
data operations and audit. First, the authorized application
obtains the public verification information ψ from TPA. Sec-
ond, the application invokes the Update, Delete, and Insert
algorithms, and then sends the new ψ′ and σ′ to TPA and
CSP, respectively. Finally, the CSP makes use of an efficient
algorithm Check to verify the validity of updated data. Note
that, the Check algorithm is important to ensure the effec-
tiveness of the audit materials.

5. PERFORMANCE AND EVALUATION
No doubt too frequent audit activities will increase the

computation and communication overheads of audit services.
However, less frequent activities may not detect abnormality
timely. Hence, the scheduling of audit activities is signifi-
cant for improving the quality of audit services. In order
to detect abnormality in a low-overhead and timely man-
ner, we optimize the audit performance from two aspects:
performance evaluation of probabilistic queries and sched-
ule of periodic verification. Our basic idea is to achieve an
overhead balance by verification dispatching, which is one
of efficient strategies to improve the performance of audit
systems.

5.1 Probabilistic Queries Evaluation
The audit service achieves the detection of CSP servers

misbehavior in a random sampling mode in order to reduce
the workload on the server. The detection probability P
of disrupted blocks is an important parameter to guaran-
tee that these blocks can be detected in time. Assume the
TPA modifies e blocks out of the n-block file. The proba-
bility of disrupted blocks is ρb = e

n
. Let t be the number

of queried blocks for a challenge in the protocol proof. We
have detection probability P = 1 − (n−e

n
)t = 1 − (1 − ρb)

t.

Hence, the number of queried blocks is t = log(1−P)
log(1−ρb)

≈ P ·n
e

for a sufficiently large n.2 This means that the number of
queried blocks t is directly proportional to the total number
of file blocks n for the constant P and e. In Fig. 5, we show
the results of the number of queried blocks under different
detection probabilities (from 0.5 to 0.99), different number
of file blocks (from 10 to 10,000), and constant number of
disrupted blocks (100).
2In terms of (1− e

n
)t = 1− e·t

n
, we have P = 1−(1− e·t

n
) = e·t

n
.

0 2000 4000 6000 8000 10000
0

100

200

300

400

500

Th
e

nu
m

be
r o

f q
ue

rie
d

bl
oc

ks

The number of file blocks (100 disrupted blocks)

 0.99
 0.90
 0.80
 0.70
 0.60
 0.50

Figure 5: The number of queried blocks under dif-
ferent detection probabilities and different numbers
of file blocks.

We observe the ratio of queried blocks in total file blocks
w = t

n
under different detection probabilities. Based on

the above analysis, it is easy to find that this ratio holds

since the equation w = t
n

= log(1−P)
n·log(1−ρb)

≈ P
e
. However, the

estimation of w is not an accurate measurement. To clearly
represent this ratio, Fig. 6 plots w for different values of n, e
and P . It is obvious that the ratio of queried blocks tends to
be a constant value for a sufficiently large n. For instance,
in Fig. 6 (Left) if there exist 100 disrupted blocks, the TPA
asks for w = 4.5% and 2.3% of n (n > 1, 000) in order to
achieve P of at least 99% and 90%, respectively. However,
this ratio w is also inversely proportional to the number of
disrupted blocks e. For example, in Fig. 6 (Right) if there
exist 10 disrupted blocks, the TPA needs to ask for w = 45%
and 23% of n (n > 1, 000) in order to achieve the same P ,
respectively. Hence, our audit scheme is very effective for
higher probability of disrupted blocks.

5.2 Schedule of Periodic Verification
The sampling-based audit has the potential to significantly

reduce the workload on the servers and increase the audit
efficiency. Firstly, we assume that each audited file has a
audit period T , which depends on how important it is for
the owner. For example, common audit period may be as-
signed as one week or one month, and the audit period for
important files may be set as one day. Of course, these audit
activities should be carried out at night or on weekend.

Assume we make use of the audit frequency f to denote
the number of occurrences of an audit event per unit time.
This means that the number of TPA’s queries is T ·f times in
an audit period T . According to the above analysis, we have
the detection probability P = 1− (1− ρb)

n·w in each audit
event. Let PT denotes the detection probability in an audit
period T . Hence, we have the equation PT = 1− (1−P)T ·f .
In terms of 1 − P = (1 − ρb)

n·w, the detection probability
PT can be denoted as PT = 1 − (1 − ρb)

n·w·T ·f . In this
equation, TPA can obtain the probability ρb depending on
the transcendental knowledge for the cloud storage provider.
Moreover, the audit period T can be appointed by a data
owner in advance. Hence, the above equation can be used to
analyze the parameter value w and f . It is obvious to obtain

the equation f = log(1−PT)
w·n·T ·log (1−ρb)

. This means that the audit

frequency f is inversely proportional to the ratio of queried
blocks w. That is, with the increase of verification frequency,
the number of queried blocks decreases at each verification
process. In Fig. 7, we show the relationship between f and
w under 10 disrupted blocks for 10,000 file blocks. we can

5

0 2000 4000 6000 8000 10000
0.00

0.01

0.02

0.03

0.04

0.05

 0.99
 0.90
 0.80
 0.70
 0.60
 0.50

Th
e

ra
tio

 o
f q

ue
rie

d
bl

oc
ks

 in
 to

ta
l f

ile
 b

lo
ck

s

The number of file blocks (100 disrupted blocks)
0 2000 4000 6000 8000 10000

0.0

0.1

0.2

0.3

0.4

0.5

Th
e

ra
tio

 o
f q

ue
rie

d
bl

oc
ks

 in
 to

ta
l f

ile
 b

lo
ck

s

The number of file blocks (10 disrupted blocks)

 0.99
 0.90
 0.80
 0.70
 0.60
 0.50

Figure 6: The ratio of queried blocks in total file blocks under different detection probabilities and different
number of disrupted blocks (100 disrupted blocks for left-side and 10 disrupted blocks for right-side).

observe a marked drop of w along with the increasing of
frequency.

1 2 3 4 5 6 7 8 9 10
0.0

0.1

0.2

0.3

0.4

0.5

Th
e

ra
tio

 o
f q

ue
rie

d
bl

oc
ks

 in
 to

ta
l f

ile
 b

lo
ck

s

The audit frequency(times/unit-time) (10 disrupted blocks)

 0.99
 0.90
 0.80
 0.70
 0.60
 0.50

Figure 7: The ratio of queried blocks in total file
blocks under different audit frequency for 10 dis-
rupted blocks and 10,000 file blocks.

In fact, this kind of relationship between f and w is a
comparatively stable value for certain PT , ρb, and n due to

f · w = log(1−PT)
n·T ·log (1−ρb)

. TPA should choose the appropriate

frequency to balance the overhead according to the above
equation. For example, if e = 10 blocks in 10,000 blocks
(ρb = 0.1%), then TPA asks for 658 blocks and 460 blocks
for f = 7 and 10 in order to achieve PT of at least 99%.
Hence, appropriate audit frequency would greatly reduce
sampling numbers, as well as computation and communi-
cation overheads of an audit service.

5.3 Implementation and Experimental Results
To validate our approaches, we have implemented a pro-

totype of public audit service. Our prototype utilizes three
existing services/applications: Amazon Simple Storage Ser-
vice (S3) is an untrusted data storage server; local applica-
tion server provides our audit service; and the prototype is
built on top of an existing open source project called Pairing-
Based Cryptography (PBC) library. We present some de-
tails about these three components as follows:

Storage service: Amazon Simple Storage Service (S3) is a
scalable, pay-per-use online storage service. Clients can
store a virtually unlimited amount of data, paying for
only the storage space and bandwidth that they are us-
ing, without initial start-up fee. The basic data unit in
S3 is an object, and the basic container for objects in S3
is called a bucket. In our example, objects contain both
data and meta-data (tags). A single object has a size limit
of 5 GB, but there is no limit on the number of objects

per bucket. Moreover, a small script on Amazon Elastic
Compute Cloud (EC2) is used to provide the support for
verification protocol and dynamic data operations.

Audit service: We used a local IBM server with two Intel
Core 2 processors at 2.16 GHz and 500M of RAM running
Windows Server 2003. Our scheme was deployed in this
server, and then it can implement the integrity checking
in S3 storage according to the assigned schedule via 250
MB/sec of network bandwidth. A socket port was also
opened to support the applications’ accesses and queries
for the audit service.

Prototype software: Using GMP and PBC libraries, we
have implemented a cryptographic library upon which
temporal attribute systems can be constructed. This C
library contains approximately 5,200 lines of codes and
has been tested on both Windows and Linux platforms.
The elliptic curve utilized in our experiments is a MNT
curve, with base field size of 159 bits and the embedding
degree 6. The security level is chosen to be 80 bit, which
means |p| = 160.

Firstly, we quantify the performance of our audit scheme
under different parameters, such as file size sz, sampling
ratio w, sector number per block s, and so on. Our analysis
shows that the value of s should grow with the increase of sz
in order to reduce computation and communication costs.
Thus, experiments were carried out as follows: the stored
files were chosen from 10KB to 10MB, the sector numbers
were changed from 20 to 250 in terms of the file sizes, and the
sampling ratios were also changed from 10% to 50%. The
experimental results were showed in the left side of Fig. 8.
These results indicate that computation and communication
costs (including I/O costs) grow with increase of file size and
sampling ratio.

Next, we compare the performance of each activity in our
verification protocol. It is easy to derive theoretically that
the overheads of “commitment”and“challenge” resemble one
another, and the overheads of “response” and “verification”
also resemble one another. To validate such theoretical re-
sults, we changed the sampling ratio w from 10% to 50%
for a 10MB file and 250 sectors per block. In the right
side of Fig. 8, we show the experiment results, in which
the computation and communication costs of “commitment”
and “challenge” are slightly changed for sampling ratio, but
those for “response”and“verification”grow with the increase
of sampling ratio.

Then, in the Amazon S3 service, we set that the size of
block is 4K-Bytes and the value of s is 200. Our experiments

6

10 100 1000 10000
0

30

60

90

120

150

180

(s=250)(s=100)(s=50)(s=20)

 ratio=50%
 ratio=40%
 ratio=30%
 ratio=20%
 ratio=10%

C
om

pu
ta

tio
n

an
d

co
m

m
un

ic
at

io
n

co
st

s.
 (s

)

The size of files. (K-Bytes)

0.1 0.2 0.3 0.4 0.5
0.01

0.1

1

10

100

C
om

pu
ta

tio
n

an
d

co
m

m
un

ic
at

io
n

co
st

s.
 (s

)

The ratio of queried blocks for total file blocks.(%)
(10M-Bytes, 250 sectors/blocks)

 Commitment
 Challenge
 Response
 Verification
 Total Time

Figure 8: The experiment results under different file size, sampling ratio, and sector number.

showed that, in TagGen phase, the time overhead is directly
proportional to the number of blocks. Fortunately, this pro-
cess is only executed when the file is uploaded into a S3 ser-
vice. The verification protocol can be run in approximate
constant time. Similarly, three dynamic data operations can
be performed in approximate constant time for any block.

Finally, reducing the communication overheads and aver-
age workloads are critical for an efficient audit schedule. In
view of probabilistic algorithm, our scheme is able to realize
the uniform distribution of verified sampling blocks accord-
ing to the security requirements of clients, as well as the
dependability of storage services and running environments.
In our experiments, we make use of a simple schedule to pe-
riodically manage all audit tasks. The results showed that
audit services based on our scheme can support a great deal
of batch auditing tasks, and the performance of scheduled
auditing can still be safely concluded as more preferable than
the straightforward individual auditing.

6. CONCLUSIONS
In this paper, we presented a construction of dynamic

audit services for untrusted and outsourced storage. We also
presented an efficient method for periodic sampling audit to
minimize the computation costs of third party auditors and
storage service providers. Our experiments showed that our
solution has a small, constant amount of overhead, which
minimizes computation and communication costs.

7. ACKNOWLEDGMENTS
The work of Y. Zhu, H. Wang, and Z. Hu was partially

supported by the grants from National Natural Science Foun-
dation of China (No.61003216). This work of Gail-J. Ahn
and Hongxin Hu was partially supported by the grants from
National Science Foundation (NSF-IIS-0900970 and NSF-
CNS-0831360).

8. REFERENCES
[1] G. Ateniese, R. C. Burns, R. Curtmola, J. Herring,

L. Kissner, Z. N. J. Peterson, and D. X. Song. Provable
data possession at untrusted stores. In Proceedings of the
2007 ACM Conference on Computer and Communications
Security, CCS 2007, pages 598–609, 2007.

[2] D. Boneh, X. Boyen, and H. Shacham. Short group
signatures. In In proceedings of CRYPTO’04, volume 3152
of LNCS, pages 41–55. Springer-Verlag, 2004.

[3] D. Boneh and M. Franklin. Identity-based encryption from
the weil pairing. In Advances in Cryptology (CRYPTO’01),
volume 2139 of LNCS, pages 213–229, 2001.

[4] H.-C. Hsiao, Y.-H. Lin, A. Studer, C. Studer, K.-H. Wang,
H. Kikuchi, A. Perrig, H.-M. Sun, and B.-Y. Yang. A study

of user-friendly hash comparison schemes. In ACSAC,
pages 105–114, 2009.

[5] A. Juels and B. S. K. Jr. Pors: proofs of retrievability for
large files. In Proceedings of the 2007 ACM Conference on
Computer and Communications Security, CCS 2007, pages
584–597, 2007.

[6] C.-P. Schnorr. Efficient signature generation by smart
cards. J. Cryptology, 4(3):161–174, 1991.

[7] H. Shacham and B. Waters. Compact proofs of
retrievability. In Advances in Cryptology - ASIACRYPT
2008, 14th International Conference on the Theory and
Application of Cryptology and Information Security, pages
90–107, 2008.

[8] C. Wang, Q. Wang, K. Ren, and W. Lou.
Privacy-preserving public auditing for data storage security
in cloud computing. In INFOCOM, 2010 Proceedings
IEEE, pages 1 –9, 14-19 2010.

[9] M. Xie, H. Wang, J. Yin, and X. Meng. Integrity auditing
of outsourced data. In C. Koch, J. Gehrke, M. N.
Garofalakis, D. Srivastava, K. Aberer, A. Deshpande,
D. Florescu, C. Y. Chan, V. Ganti, C.-C. Kanne, W. Klas,
and E. J. Neuhold, editors, VLDB, pages 782–793. ACM,
2007.

[10] A. A. Yavuz and P. Ning. Baf: An efficient publicly
verifiable secure audit logging scheme for distributed
systems. In ACSAC, pages 219–228, 2009.

[11] A. R. Yumerefendi and J. S. Chase. Strong accountability
for network storage. In FAST, pages 77–92. USENIX, 2007.

[12] Y. Zhu, H. Wang, Z. Hu, G.-J. Ahn, H. Hu, and S. S. Yau.
Cooperative provable data possession. Technical Report
PKU-CSE-10-04, http://eprint.iacr.org/2010/234.pdf,
Peking University and Arizona State University, April 2010.

[13] Y. Zhu, H. Wang, Z. Hu, G.-J. Ahn, H. Hu, and S. S. Yau.
Efficient provable data possession for hybrid clouds. In
Proceedings of the 17th ACM conference on Computer and
communications security, pages 756–758, 2010.

APPENDIX

A. CONSTRUCTION FOR OUR SCHEME
Let H = {Hk} be a collision-resistance hash family of

functions Hk : {0, 1}∗ → {0, 1}n indexed by k ∈ K. This
hash function can be obtained from hash function of BLS
signatures [2]. Further, we set up our systems using bilinear
map group system S = 〈p,G,GT , e〉 proposed in [3].

A.1 Proposed Construction
We present our IPOR construction in Figure 9. In our

scheme, each client holds a secret key sk, which can be used
to generate the tags of many files. Each processed file will
produce a public verification parameter ψ = (u, χ), where

u = (ξ(1), u1, · · · , us), χ = {χi}i∈[1,n] is the index-hash ta-
ble. We define χi = (Bi||Vi||Ri), where Bi is the sequence

7

number of block, Vi is the version number of updates for
this block, and Ri is a random integer to avoid collision.
The value ξ(1) can be considered as the signature of the se-
cret τ1, · · · , τs. Note that, it must assure that ψ’s is different
for all processed files. Moreover, it is clear that our scheme
admits short responses in verification protocol.

In our construction, the verification protocol has 3-move
structure: commitment, challenge and response. This pro-
tocol is similar to Schnorr’s Σ protocol [6], which is a zero-
knowledge proof system (Due to the space limitation, the
security analysis is omitted but can be found in [12]). By
using this property, we ensure the verification process does
not reveal anything.

KeyGen(1κ): Given a bilinear map group system S =
(p,G,GT , e) and a collision-resistant hash function Hk(·),
chooses a random α, β ∈R Zp and computes H1 = hα and

H2 = hβ ∈ G. Thus, the secret key is sk = (α, β) and the
public key is pk = (g, h,H1, H2).

TagGen(sk,F): Splits the file F into n × s sectors F =

{mi,j} ∈ Z
n×s
p . Chooses s random τ1, · · · , τs ∈ Zp as the

secret of this file and computes ui = gτi ∈ G for i ∈ [1, s]

and ξ(1) = Hξ(“Fn”), where ξ =
∑s

i=1 τi and Fn is the
file name. Builds an index-hash table χ = {χi}ni=1 and
fills out the item χi = (Bi = i, Vi = 1, Ri ∈R {0, 1}

∗) in

χ for i ∈ [1, n], then calculates its tag as σi ← (ξ
(2)
i)α ·

g
∑s

j=1 τj ·mi,j ·β ∈ G. where ξ
(2)
i

= H
ξ(1) (χi) and i ∈ [1, n].

Finally, sets u = (ξ(1), u1, · · · , us) and outputs ψ = (u, χ)
to TPA, and σ = (σ1, · · · , σn) to CSP.

Proof(CSP,TPA): This is a 3-move protocol between Prover
(CSP) and Verifier (TPA), as follows:

• Commitment(CSP → TPA): CSP chooses a random
γ ∈ Zp and s random λj ∈R Zp for j ∈ [1, s], and sends its
commitment C = (H′

1, π) to TPA, where H′

1 = H
γ
1 and

π ← e(
∏s

j=1 u
λj

j ,H2);

• Challenge(CSP ← TPA): TPA chooses a random chal-
lenge set I of t indexes along with t random coefficients
vi ∈ Zp. Let Q be the set {(i, vi)}i∈I of challenge index
coefficient pairs. TPA sends Q to CSP;

• Response(CSP → TPA): CSP calculates the response
θ, µ as σ′ ←

∏
(i,vi)∈Q σ

γ·vi
i , µj ← λj +γ ·

∑
(i,vi)∈Q vi ·

mi,j , where µ = {µj}j∈[1,s]. P sends θ = (σ′, µ) to TPA;

Check: The verifier TPA checks whether the response

is correct by π · e(σ′, h)
?
= e(

∏
(i,vi)∈Q(ξ

(2)
i)vi , H′

1) ·

e(
∏s

j=1 u
µj

j , H2).

Figure 9: The proposed IPOR scheme.

A.2 Implementation of Dynamic Operations
To support dynamic data operations, it is necessary for

TPA to employ an index-hash table χ to record the real-
time status of the stored files. This kind of index struc-
ture can also be used to generate the value of Hash function

ξ
(2)
i = Hξ(1) (χi) in our scheme. Some existing schemes in a

dynamic scenario are insecure due to replay attack on the
same Hash values. To solve this problem, a simple index-
hash table χ = {χi} used in the above-mentioned construc-
tion (see Figure 9) is described in Table 1, which includes
four columns: No. denotes the real number i of data block
mi, Bi is the original number of block, Vi stores the version
number of updates for this block, and Ri is a random integer
to avoid collision.

Table 1: The index-hash table with random values.
No. Bi Vi Ri

0 0 0 0

1 1 2 r
′

1

2 2 1 r2

3 4 1 r3

4 5 1 r5

5 5 2 r
′

5

.

.

.

.

.

.

.

.

.

.

.

.

n n 1 rn

n+1 n+1 1 rn+1

← Used to head

← Update

← Delete

← Insert

← Append

In order to ensure the security, we require that each χi =
“Bi||Vi||Ri” is unique in this table. Although the same val-
ues of “Bi||Vi” may be produced by repeating the insert
and delete operations, the random Ri can avoid this colli-
sion. An alterative method is to generate an updated ran-
dom value by R′

i ← HRi
(
∑s

j=1m
′

i,j), where the initial value

is Ri ← Hξ(1) (
∑s

j=1mi,j) and mi = {mi,j} denotes the i-
th data block. We show a simple example to describe the
change of index-hash table for the different operations in Ta-
ble 1, where an empty record (i = 0) is used to support the
operations on the first record. The “Insert” operation on the
last record is replaced with “Append” operation. It is easy
to prove the each χi is unique in χ in the above algorithms,
that is. In an index table χ = {χi} and χi = “Bi||Vi||Ri”,
there exists no two same records for dynamic data opera-
tions, if Ri 6= R′

j for any indexes i, j ∈ N.

Update(sk, ψ,m′

i): modifies the version number by Vi ←
maxBi=Bj

{Vj}+ 1 and chooses a new Ri in χi ∈ χ to get a

new ψ′; computes the new hash ξ
(2)
i = H

ξ(1) (“Bi||Vi||Ri”);

by using sk, computes σ′i = (ξ
(2)
i)α · (

∏s
j=1 u

m′

i,j

j)β , where

u = {uj} ∈ ψ, finally outputs (ψ′, σ′i, m
′

i).

Delete(sk, ψ,mi): computes the original σi by mi and com-

putes the new hash ξ
(2)
i = H

ξ(1) (“Bi||0||Ri”) and σ′i =

(ξ
(2)
i)α by sk; deletes i-th record to get a new ψ′; finally

outputs (ψ′, σi, σ
′

i).

Insert(sk, ψ,m′

i): inserts a new record in i-th position of the
index-hash table χ ∈ ψ, and the other records move back-
ward in order; modifies Bi ← Bi−1, Vi ← maxBi=Bj

{Vj}+

1, and a random Ri in χi ∈ χ to get a new ψ′; com-

putes the new hash ξ
(2)
i = H

ξ(1) (“Bi||Vi||Ri”) and σ′i =

(ξ
(2)
i)α · (

∏s
j=1 u

m′

i,j

j)β , where u = {uj} ∈ ψ, finally out-

puts (ψ′, σ′i, m
′

i).

Check: The application sends the above result to cloud store
provider P via secret channel. For Update or Insert opera-
tions, P must check the following equation for (ψ′, σ′i, m

′

i) in

terms of e(σ′i, h)
?
= e(ξ

(2)
i , H1) · e(

∏s
j=1 u

m′

i,j

j ,H2). For Delete

operation, P must check whether σi is equal to the stored σi

and e(σ′i, h)
?
= e(H

ξ(1) (“Bi||0||Ri”), H1). Further, TPA must

replace ψ by the new ψ′ and check the completeness of χ ∈ ψ.

Figure 10: The algorithms for dynamic operations.

According to the construction of index-hash tables, we
propose a simple method to provide dynamic data modifica-
tion in Figure 10. All tags and the index-hash table should
be renewed and reorganized periodically to improve the per-
formance. Of course, we can replace the sequent lists by the
dynamically linked lists to improve the efficiency of updating
index-hash table. Further, we omit the discuss of the head
and tail index items in χ, and they are easy to implement.

8

