Building Dynamic Remote Attestation Framework

Wenjuan Xu
UNC Charlotte
wxu2@uncc.edu

Xinwen Zhang
Computer Science Lab
Samsung Info. Sys. America

Xinwen.z@samsung.com

ABSTRACT

Remote attestation is an important mechanism to providétise
worthiness proof of a computing system by verifying its grtsy.
In this poster, we propose a dynamic remote attestationeinark
for efficiently attesting a target system based on an inftiona
flow-based integrity model. With this model, the high infggr
processes of a system are first verified through measureraedts
these processes are then protected from accesses intiiated
integrity processes. Also, our framework verifies the katbanges
in a system’s new state, instead of considering the ents&gyin-
formation. In addition, we adopt a graph-based method tessmt
integrity violations with a ranked violation graph, whichpports
intuitive reasoning of attestation results. We also déescaur ex-
periments and performance evaluation.

1. INTRODUCTION

In distributed computing environments, it is crucial to mi@®
whether remote parties run buggy, malicious applicaticaesoor
are improperly configured by rogue software. Normally, wa-an
lyze the integrity of remote systems to determine theirttvosthi-
ness. Trusted Computing Group (TCG) [1] introduces a harelwa
based approach called trusted platform module (TPM) whah c
securely store and provide integrity measurements of syste a
remote party. In addition, remote attestation mechanisawe heen
proposed to facilitate such capabilities of TPM at appiaratevel.
For instance, Integrity Measurement Architecture (IMA) iSan
implementation of TCG approach to provide verifiable eviden
with respect to the current runtime state of a measuredrayste

Typical attestation mechanisms are designed based on lthe fo
lowing steps. First, an attestation requesétieéter) sends a chal-
lenge to a target systenatfestee), which responds with the evi-
dence of integrity of its hardware and software compone&es-
ond, the attester derives runtime properties of the attiested de-
termines the trustworthiness of the attestee. By adoptiich an
intuitive approach, we can help reduce potential risks thay be
caused by the tampered remote systems. However, thesmgxist
approaches still need to cope with the challenges for attest
platform where itsystem state frequently changes due to system-
centric events such as updating security policies or ilstahew
software packages. In addition, the efficienct attestat@tha-
nism should be especially considered for dealing with sudiy-a
namic nature of systems since the frequency of system chamgke
the volume of system state information would be tremendgoiasl
creased due to the recent technological innovation ofidiged
computing. Consequently, it is necessary to have an efteatay
for presenting the attestation results and accommodatioly ee-
sults while resolving any identified security violations.

Gail-Joon Ahn

Arizona State University
gahn@asu.edu

Hongxin Hu
Arizona State University

hxhu@asu.edu

Jean-Pierre Seifert
Deutsche Telekom Lab and
Technical University of Berlin
jean—pierre.seifert@telekom.de

In this poster, we propose a framework for dynamic remote at-
testation to address the aforementioned issues. Our frarkes/
based on system integrity property wittdemain-based isolation
principle. The high integrity processes of a system arevfasfied
through measurements and these processes are then prétecte
accesses initiated by low integrity processes. Havinggtixiple
in place, our framework allows us to verify whether certap a
plications in the attestee satisfy integrity requiremeagspart of
system attestation. Also, our framework mainly verifies leite
est changes in a systenmisw state, instead of considering the en-
tire system information. Through these two tactics, wedweliour
framework can efficiently attest the target system. Alsoadept
a graph-based analysis methodology [7] for analyzing palio-
lations, which would help cognitively identify suspiciougorma-
tion flows in an attestee. Besides, our ranking scheme izedifor
prioritizing the policy violations. We also share our expent re-
sults to demonstrate the feasibility and practicality of approach
comparing to static attestation approaches.

2. DOMAIN-BASED ISOLATION

In a general-purpose computing system, an applicatiotégiity
not only depends on the integrity level of codes and dataalsot
relies on interactions between applications concurrantiying on
the platform. Considering this requirement, we develop malo-
based isolation model for integrity evaluation. In this raldve
mainly focus on identifying and protecting high integrifyopesses
(system TCB anddomain TCB).

System TCB is a concept that is the same as the concept of tra-
ditional TCB [2]. Reference monitor-based approach is pseg
to identify system TCB through the identification of subgefttnc-
tioning as the reference monitor in a system [3]. In pragtitker
than system TCB protection, an application or user-spacécse
is required to achieve integrity assurance as well by cdirtgoin-
formation flow among running processes. Hence, we introduce
concept calledlomain TCB. Letd be an information domain func-
tioning as a certain application or service through a setlafted
subjects and objects. We denote domain TCB of an information
domaind by TCB(d). TCB(d) is composed of a set of subjects
and objects in information domaieh which have the same level
of security sensitivity or similar protection requirem&niTCB(d)
can be initially identified through keywords and direct imfation
flows. With the identifications of system TCB and TCB(d), for a
information domaind, all other subjects in a system are catego-
rized as NON-TCB. To protect the integrity of system TCB and
TCB(d), we develop our domain-based isolation principlacivh
is similar to those in Clark-Wilson [6]. Domain-based id@a is
satisfied for an information domaiif (i) information flows are

- @

Attestee Measurements

Initial Trusted System
State

m(tsl) I m(cd)

System State !! T T

Changes 1" Subject 1 Code 1

Codes/Data
l m(p) I Verification Fingerprints

Rule 1

I
2 Subject 2 Code 2

Rule 2

Code 3

K

Updates
Authentication

Rule 3

Subject 3
New System State

Trusted Subject List (TSL) Code and Data

Policy Initial

Trusted
System

Attestee Updates

State

Policy Analysis

‘ Rule 1' ‘ ‘ Subject 1'

[Rue 2 | [subject2

Policy Updates

TSL Updates

Attestee

Figure 1: Dynamic remote attestation framework

from TCB(d); or (ii) information flows are from system TCB to
either TCB(d) or TCB(d) protected resources; or (iii) infation
flows are from NON-TCB to either TCB(d) or TCB(d) protected
resources via filter(s). Filters can be processes or imtesfahat
normally are distinct input information channels and asated by

a particular operation such apen(),accept (), or other calls
that enable data input. For exampsa) process allows a low in-
tegrity process (e.g., staff) to be a high integrity prodess., root)
by executingpasswd process, thupasswd can be regarded as a
filter for processes run by root privilege.

3. DYNAMIC REMOTE ATTESTATION
FRAMEWORK

Our framework includes several attestation processeshiohw
the attester verifies the differeggstem state of the attestee based
on domain-based isolation as shown in Figure 1. Here, the sys
tem state7; at time: is defined based on different information
flow-related conditions in an attestee, including a trustebject
list T'SL; (high integrity subjects belonging to system TCB and
TCB(d)), a set of codes and data for loading these subfeéds,
and a security policyPolicy;. The steps for verifying if system
stateT; in moment; satisfies domain-based isolation can be seen
as follows.

Measurements on Attestee (Step 1)in order to provide informa-
tion for the attester to verify integrity property, an ateesmeasures
stateT; and generates the measurement listincluding trusted
subject list "'SL;) measurement, codes and dafd¥;) measure-
ments, and policy Rolicy;) measurement. These measurements
are generated by comparing the hash values of correspoiteing
and added to the measurement list.

Attestee Updates (Step 2) The attestee only sends the updated
state information (typically TSL and/or policy) to the atier. Here,
we only explain how to identify policy updates. Normallyetht-
testee can change its policy by modifying several policgsubr
adding or removing a set of policy rules after installing ini
stalling software. To have a complete list of policy updates
require the new policy to be compared with the old policy. The
the changed policy with corresponding rule marks are added i
the updates and sent to the attester.

Codes and Data Verification (Step 3) From the received mea-
surementsi/;, the attester retrieves the hash value(ab; for
trusted subject lisT'S L;, and checks if it has corresponding known
good fingerprints.

Authenticating Updates (Step 4) To prove that the received up-

dated information is from the attestee, we authenticateipiated
information by verifying that all measurements and intggre-
porting subjects in the attestee are not altered by any reysfe
date. That is, the measurement components belofigstb;, and
its codes and data should be measured. Also, the informédwan
to these components must be restricted wifif\Z; subjects. Note
that these components can be updated but after any updabesef
components, the system should be fully measured and atfeste
boot time.

Policy Analysis (Step 5) To verify if there is integrity violation,
we analyze policy updates using a graph-based analysiothdth
this method, a policy file is first visualized into a graph. mhkis

policy graph is analyzed against our domain-based isolgtion-

ciple and a policy violation graph is generated from thislgsia

step. On the attester side, this graph-based policy asatysicon-
tinuously runs for performance consideration. Upon rengithe

updated information from the attestee, the attester aesljlzese
updates based on the previous violation graph.

Attestation Result Feedback (Step 6) The attester also sends a
snapshot of policy violation graph to the attestee for #isgighe
reconfiguration of its system configuration. Moreover, witis
policy violation graph, the attester prioritizes the viaas with
ranking [4] and the trustworthiness of the attestee.

4. POLICY VIOLATION ANALYSIS

In addition to the boolean-based response of existing tattes
tion solutions, we adopt a graph-based policy analysis ar@sh,
where a policy violation graph can be constructed for idwintj
all policy violations on the attester side and a ranking suhés
adopted to evaluate how severe the discovered policy icoksare.

Figure 2 (a) shows an example of policy violation graph which
examines information flows between NON-TCB and TCB(d). Five
direct violation paths are identified in this graphSis S1>, <S5,
Sa>, <S4, Se>, <84, S4>, and <S%, S4>, crossing all the bound-
aries between NON-TCB and TCB(d). Also, eight indirect aiol
tion paths exist. For exampleSs, S5> is a four-hop violation path
passing through other three TCB(d) subjegts.Ss, andSs.

In order to explore more features of policy violation graphsl
facilitate efficient policy violation detection and restn, we in-
troduce a scheme for ranking policy violation graphs. Thene
two major steps to rank a policy violation graph as follows:

Ranking Subjects in TCB(d) TCB(d) subjects in the policy vio-
lation graph are ranked based on dependency relationsmipsc
them. The rank of a TCB(d) subject shows reachable prolabfii

NON-TCB
@ @ @ Subject | SubjectRank| Path PathRank
1 I S1 0.2799 <S4, S4>| 0.2799
Sz 0.3999 <S5, S2>| 0.8104
@ e Sz 0.0799 <S5, S;>| 0.8104
© (sy) s, | 0.4319 <S4, Si>| 0.6048
e Ss 0.3456 <S'’s, S4>| 0.6048
TCB(d)
(2) A policy violation graph (b) SubjectRank in TCB(d) (c) PathRank between

NON-TCB and TCB(d)

Figure 2: Example policy violation graph and rank. The Sub-
jectRank and PathRank indicate the severity of violating pahs.

information flows from NON-TCB subjects. Our notation@fb-
jectRank (SR) in a policy violation graph is a criterion that indicate
the likelihood of information flows, which may come to a TCB(d
subject from NON-TCB subjects through direct or indireatlat
tion paths. Figure 2 (b) illustrates how our ranking scheare lwe
applied to the policy violation graph shown in Figure 2 (a).

Ranking Direct Violation Path Direct violation paths in the pol-
icy violation graph are evaluated based on the ranks of TEB(d
subjects to indicate severity of these paths which allow ilow
tegrity information to reach TCB(d) subjects. We furtheraduce
PathRank (PR) as the rank of a direct violation path. Direct vio-
lation paths are regarded as the entrances of low integgity t
TCB(d) in policy violation graph. Therefore, the ranks ofedit
violation paths give a guide for system administrator topadaiit-
able defense countermeasures for resolving identifiechtiois.
Figure 2 (c) shows the result using the ranking scheme talzdée
the PathRank of the example policy violation graph.

5. IMPLEMENTATION AND EVALUATION

Based on our framework, for the implementation of measure-
ment verification, we start with a legitimate attestee syssand
make measurements of the system for the later verificatiom. T
present system state information and attestation resulself ex-
planatory graphical user interface, the policy analysiglui® is
developed as GUI application. Several graph-based patialyais
tools are available from the literatures. We leverage oavipus
work [7] for this purpose, which has the capability of visgakries.
Our attestee platform is a Lenovo ThinkPad X61 with Intel &or
2Duo Processor L7500 1.6GHz, 2 GB RAM, Atmel TPMv1.2, and
is installed with Fedora Core 6. We enable SELinux with the de
fault policy based on the Fedora distribution.

To exam the scalability and efficiency of our framework, walev
uate its performance. Our performance analysis is basdtemys-
tem policy changes. We attest the performance on attesteasd
attester side separately (shown in Table 1 and Table 2). Base
our result, the increase of policy size requires more timafiesta-
tion on the attestee and attester side, and vice versa. iticaddve
also compare the overhead of our approach with a statidatitas
In the static approach, an attestee sends all system statmaz
tion to an attester, and the attester verifies all infornmasieep by
step. The results show that our dynamic approach can dreatigti
reduce the overhead compared to the static approach.

6. CONCLUSION

We have presented a dynamic remote attestation framework fo
efficiently attesting a target system. Our framework is Hase
an information flow-based domain isolation model to utilize in-
tegrity requirements and identify integrity violations afsystem.

Table 1: Attestation Performance For Dynamic Method (in see
onds)

Change Dynamic
Size attestee| attester| overhead
No change 0.23 0 0.23

-0.002MB (Reduction)| 0.122 0.94 1.06
-0.019MB (Reduction)[0.09 0.91 1.00
-0.024MB (Reduction)[0.06 0.90 0.96
0.012MB (Addition) 0.38 0.96 1.34
0.026MB (Addition) 0.60 1.07 1.67

Table 2: Attestation Performance For Static Method (in sec-
onds)

Change Static
Size attestee| attester| overhead
No change 14.76 90.13 104.89

-0.002MB (Reduction)| 14.76 90.11 104.87
-0.019MB (Reduction)| 14.74 89.97 104.34
-0.024MB (Reduction)| 14.74 89.89 104.23
0.012MB (Addition) 14.77 90.19 104.96
0.026MB (Addition) 14.78 90.33 105.11

We also adopted a graph-based methodology to represegtiinte
violations in an intuitive way with the ranking scheme. Ird#ibn,
our results showed that our dynamic approach can dranigtieal
duce the overhead compared to the static approach.

7. REFERENCES

[1] Trusted Computing Group.
https://www.trustedcomputinggroup.org/home.

[2] Trusted Computer System Evaluation Criteria. United States
Government Department of Defense (DOD), Profile Books,
1985.

[3] A. P. Anderson. Computer security technology planninglg.
Technical Report ESD-TR-73-51, 1l, 1972.

[4] S.Brinand L. Page. The anatomy of a large-scale
hypertextual Web search engir@@mputer networks and
ISDN systems, 30(1-7):107-117, 1998.

[5] R. Sailer, X. Zhang, T. Jaeger, and L. van Doorn. Desigh an
implementation of a tcg-based integrity measurement
architecture. Ir'SSYM’ 04: Proceedings of the 13th conference
on USENIX Security Symposium, pages 16—16, Berkeley, CA,
USA, 2004. USENIX Association.

[6] R.S. Sandhu. Lattice-based access control motekE
Computer, 26(11):9-19, 1993.

[7] W. Xu, M. Shehab, and G. Ahn. Visualization based policy
analysis: case study in SELinux. Rroceedings of the 13th
ACM symposium on Access control models and technologies,
pages 165-174. ACM New York, NY, USA, 2008.

