
Building Dynamic Remote Attestation Framework

Wenjuan Xu
UNC Charlotte

wxu2@uncc.edu

Gail-Joon Ahn
Arizona State University

gahn@asu.edu

Hongxin Hu
Arizona State University

hxhu@asu.edu

Xinwen Zhang
Computer Science Lab

Samsung Info. Sys. America
xinwen.z@samsung.com

Jean-Pierre Seifert
Deutsche Telekom Lab and

Technical University of Berlin
jean−pierre.seifert@telekom.de

ABSTRACT
Remote attestation is an important mechanism to provide thetrust-
worthiness proof of a computing system by verifying its integrity.
In this poster, we propose a dynamic remote attestation framework
for efficiently attesting a target system based on an information
flow-based integrity model. With this model, the high integrity
processes of a system are first verified through measurementsand
these processes are then protected from accesses initiatedby low
integrity processes. Also, our framework verifies the latest changes
in a system’s new state, instead of considering the entire system in-
formation. In addition, we adopt a graph-based method to represent
integrity violations with a ranked violation graph, which supports
intuitive reasoning of attestation results. We also describe our ex-
periments and performance evaluation.

1. INTRODUCTION
In distributed computing environments, it is crucial to measure

whether remote parties run buggy, malicious application codes or
are improperly configured by rogue software. Normally, we ana-
lyze the integrity of remote systems to determine their trustworthi-
ness. Trusted Computing Group (TCG) [1] introduces a hardware-
based approach called trusted platform module (TPM) which can
securely store and provide integrity measurements of systems to a
remote party. In addition, remote attestation mechanisms have been
proposed to facilitate such capabilities of TPM at application level.
For instance, Integrity Measurement Architecture (IMA) [5] is an
implementation of TCG approach to provide verifiable evidence
with respect to the current runtime state of a measured system.

Typical attestation mechanisms are designed based on the fol-
lowing steps. First, an attestation requester (attester) sends a chal-
lenge to a target system (attestee), which responds with the evi-
dence of integrity of its hardware and software components.Sec-
ond, the attester derives runtime properties of the attestee, and de-
termines the trustworthiness of the attestee. By adopting such an
intuitive approach, we can help reduce potential risks thatmay be
caused by the tampered remote systems. However, these existing
approaches still need to cope with the challenges for attesting a
platform where itssystem state frequently changes due to system-
centric events such as updating security policies or installing new
software packages. In addition, the efficienct attestationmecha-
nism should be especially considered for dealing with such ady-
namic nature of systems since the frequency of system changes and
the volume of system state information would be tremendously in-
creased due to the recent technological innovation of distributed
computing. Consequently, it is necessary to have an effective way
for presenting the attestation results and accommodating such re-
sults while resolving any identified security violations.

In this poster, we propose a framework for dynamic remote at-
testation to address the aforementioned issues. Our framework is
based on system integrity property with adomain-based isolation
principle. The high integrity processes of a system are firstverified
through measurements and these processes are then protected from
accesses initiated by low integrity processes. Having thisprinciple
in place, our framework allows us to verify whether certain ap-
plications in the attestee satisfy integrity requirementsas part of
system attestation. Also, our framework mainly verifies thelat-
est changes in a system’snew state, instead of considering the en-
tire system information. Through these two tactics, we believe our
framework can efficiently attest the target system. Also, weadopt
a graph-based analysis methodology [7] for analyzing policy vio-
lations, which would help cognitively identify suspiciousinforma-
tion flows in an attestee. Besides, our ranking scheme is utilized for
prioritizing the policy violations. We also share our experiment re-
sults to demonstrate the feasibility and practicality of our approach
comparing to static attestation approaches.

2. DOMAIN-BASED ISOLATION
In a general-purpose computing system, an application’s integrity

not only depends on the integrity level of codes and data, butalso
relies on interactions between applications concurrentlyrunning on
the platform. Considering this requirement, we develop a domain-
based isolation model for integrity evaluation. In this model, we
mainly focus on identifying and protecting high integrity processes
(system TCB anddomain TCB).

System TCB is a concept that is the same as the concept of tra-
ditional TCB [2]. Reference monitor-based approach is proposed
to identify system TCB through the identification of subjects func-
tioning as the reference monitor in a system [3]. In practice, other
than system TCB protection, an application or user-space service
is required to achieve integrity assurance as well by controlling in-
formation flow among running processes. Hence, we introducea
concept calleddomain TCB. Letd be an information domain func-
tioning as a certain application or service through a set of related
subjects and objects. We denote domain TCB of an information
domaind by TCB(d). TCB(d) is composed of a set of subjects
and objects in information domaind which have the same level
of security sensitivity or similar protection requirements. TCB(d)
can be initially identified through keywords and direct information
flows. With the identifications of system TCB and TCB(d), for an
information domaind, all other subjects in a system are catego-
rized as NON-TCB. To protect the integrity of system TCB and
TCB(d), we develop our domain-based isolation principle which
is similar to those in Clark-Wilson [6]. Domain-based isolation is
satisfied for an information domaind if (i) information flows are

1

TPM

Policy Analysis

Rule 1

Rule 2

Rule 3

Code 1

Code 2

Code 3

Subject 1

Subject 2

Subject 3

Subject 1'

Subject 2'

Attester

Attestee Updates

Attestee Measurements

Trusted Subject List (TSL) Code and Data Policy

TSL Updates

m(tsl) m(cd) m(p)

Rule 1'

Rule 2'

Policy Updates

1

6

Known

Fingerprints

Attestee

3

4

5

Initial

Trusted

System

State

Codes/Data

Verification

2

IMA

Initial Trusted System

State

New System State

System State

Changes

Updates

Authentication

Figure 1: Dynamic remote attestation framework

from TCB(d); or (ii) information flows are from system TCB to
either TCB(d) or TCB(d) protected resources; or (iii) information
flows are from NON-TCB to either TCB(d) or TCB(d) protected
resources via filter(s). Filters can be processes or interfaces that
normally are distinct input information channels and are created by
a particular operation such asopen(), accept(), or other calls
that enable data input. For example,su process allows a low in-
tegrity process (e.g., staff) to be a high integrity process(e.g., root)
by executingpasswd process, thuspasswd can be regarded as a
filter for processes run by root privilege.

3. DYNAMIC REMOTE ATTESTATION
FRAMEWORK

Our framework includes several attestation processes, in which
the attester verifies the differentsystem state of the attestee based
on domain-based isolation as shown in Figure 1. Here, the sys-
tem stateTi at time i is defined based on different information
flow-related conditions in an attestee, including a trustedsubject
list TSLi (high integrity subjects belonging to system TCB and
TCB(d)), a set of codes and data for loading these subjectsCDi,
and a security policyPolicyi. The steps for verifying if system
stateTi in momenti satisfies domain-based isolation can be seen
as follows.

Measurements on Attestee (Step 1)In order to provide informa-
tion for the attester to verify integrity property, an attestee measures
stateTi and generates the measurement listMi including trusted
subject list (TSLi) measurement, codes and data (CDi) measure-
ments, and policy (Policyi) measurement. These measurements
are generated by comparing the hash values of correspondingitems
and added to the measurement list.

Attestee Updates (Step 2) The attestee only sends the updated
state information (typically TSL and/or policy) to the attester. Here,
we only explain how to identify policy updates. Normally, the at-
testee can change its policy by modifying several policy rules, or
adding or removing a set of policy rules after installing or unin-
stalling software. To have a complete list of policy updates, we
require the new policy to be compared with the old policy. Then
the changed policy with corresponding rule marks are added into
the updates and sent to the attester.

Codes and Data Verification (Step 3) From the received mea-
surementsMi, the attester retrieves the hash value ofCDi for
trusted subject listTSLi, and checks if it has corresponding known
good fingerprints.

Authenticating Updates (Step 4) To prove that the received up-

dated information is from the attestee, we authenticate theupdated
information by verifying that all measurements and integrity re-
porting subjects in the attestee are not altered by any system up-
date. That is, the measurement components belong toTSLi, and
its codes and data should be measured. Also, the informationflow
to these components must be restricted withinTSLi subjects. Note
that these components can be updated but after any updates ofthese
components, the system should be fully measured and attested from
boot time.

Policy Analysis (Step 5) To verify if there is integrity violation,
we analyze policy updates using a graph-based analysis method. In
this method, a policy file is first visualized into a graph. Then this
policy graph is analyzed against our domain-based isolation prin-
ciple and a policy violation graph is generated from this analysis
step. On the attester side, this graph-based policy analysis tool con-
tinuously runs for performance consideration. Upon receiving the
updated information from the attestee, the attester analyzes these
updates based on the previous violation graph.

Attestation Result Feedback (Step 6) The attester also sends a
snapshot of policy violation graph to the attestee for assisting the
reconfiguration of its system configuration. Moreover, withthis
policy violation graph, the attester prioritizes the violations with
ranking [4] and the trustworthiness of the attestee.

4. POLICY VIOLATION ANALYSIS
In addition to the boolean-based response of existing attesta-

tion solutions, we adopt a graph-based policy analysis mechanism,
where a policy violation graph can be constructed for identifying
all policy violations on the attester side and a ranking scheme is
adopted to evaluate how severe the discovered policy violations are.

Figure 2 (a) shows an example of policy violation graph which
examines information flows between NON-TCB and TCB(d). Five
direct violation paths are identified in this graph: <S′

1, S1>, <S′

2,
S2>, <S′

3, S2>, <S′

4, S4>, and <S′

5, S4>, crossing all the bound-
aries between NON-TCB and TCB(d). Also, eight indirect viola-
tion paths exist. For example, <S′

2, S5> is a four-hop violation path
passing through other three TCB(d) subjectsS2, S3, andS4.

In order to explore more features of policy violation graphsand
facilitate efficient policy violation detection and resolution, we in-
troduce a scheme for ranking policy violation graphs. Thereare
two major steps to rank a policy violation graph as follows:

Ranking Subjects in TCB(d) TCB(d) subjects in the policy vio-
lation graph are ranked based on dependency relationships among
them. The rank of a TCB(d) subject shows reachable probability of

2

Figure 2: Example policy violation graph and rank. The Sub-
jectRank and PathRank indicate the severity of violating paths.

information flows from NON-TCB subjects. Our notation ofSub-
jectRank (SR) in a policy violation graph is a criterion that indicates
the likelihood of information flows, which may come to a TCB(d)
subject from NON-TCB subjects through direct or indirect viola-
tion paths. Figure 2 (b) illustrates how our ranking scheme can be
applied to the policy violation graph shown in Figure 2 (a).

Ranking Direct Violation Path Direct violation paths in the pol-
icy violation graph are evaluated based on the ranks of TCB(d)
subjects to indicate severity of these paths which allow lowin-
tegrity information to reach TCB(d) subjects. We further introduce
PathRank (PR) as the rank of a direct violation path. Direct vio-
lation paths are regarded as the entrances of low integrity data to
TCB(d) in policy violation graph. Therefore, the ranks of direct
violation paths give a guide for system administrator to adopt suit-
able defense countermeasures for resolving identified violations.
Figure 2 (c) shows the result using the ranking scheme to calculate
thePathRank of the example policy violation graph.

5. IMPLEMENTATION AND EVALUATION
Based on our framework, for the implementation of measure-

ment verification, we start with a legitimate attestee system and
make measurements of the system for the later verification. To
present system state information and attestation result via self ex-
planatory graphical user interface, the policy analysis module is
developed as GUI application. Several graph-based policy analysis
tools are available from the literatures. We leverage our previous
work [7] for this purpose, which has the capability of visualqueries.
Our attestee platform is a Lenovo ThinkPad X61 with Intel Core
2Duo Processor L7500 1.6GHz, 2 GB RAM, Atmel TPMv1.2, and
is installed with Fedora Core 6. We enable SELinux with the de-
fault policy based on the Fedora distribution.

To exam the scalability and efficiency of our framework, we eval-
uate its performance. Our performance analysis is based on the sys-
tem policy changes. We attest the performance on attestee side and
attester side separately (shown in Table 1 and Table 2). Based on
our result, the increase of policy size requires more time for attesta-
tion on the attestee and attester side, and vice versa. In addition, we
also compare the overhead of our approach with a static attestation.
In the static approach, an attestee sends all system state informa-
tion to an attester, and the attester verifies all information step by
step. The results show that our dynamic approach can dramatically
reduce the overhead compared to the static approach.

6. CONCLUSION
We have presented a dynamic remote attestation framework for

efficiently attesting a target system. Our framework is based on
an information flow-based domain isolation model to utilizethe in-
tegrity requirements and identify integrity violations ofa system.

Table 1: Attestation Performance For Dynamic Method (in sec-
onds)

Change Dynamic
Size attestee attester overhead
No change 0.23 0 0.23
-0.002MB (Reduction) 0.122 0.94 1.06
-0.019MB (Reduction) 0.09 0.91 1.00
-0.024MB (Reduction) 0.06 0.90 0.96
0.012MB (Addition) 0.38 0.96 1.34
0.026MB (Addition) 0.60 1.07 1.67

Table 2: Attestation Performance For Static Method (in sec-
onds)

Change Static
Size attestee attester overhead
No change 14.76 90.13 104.89
-0.002MB (Reduction) 14.76 90.11 104.87
-0.019MB (Reduction) 14.74 89.97 104.34
-0.024MB (Reduction) 14.74 89.89 104.23
0.012MB (Addition) 14.77 90.19 104.96
0.026MB (Addition) 14.78 90.33 105.11

We also adopted a graph-based methodology to represent integrity
violations in an intuitive way with the ranking scheme. In addition,
our results showed that our dynamic approach can dramatically re-
duce the overhead compared to the static approach.

7. REFERENCES
[1] Trusted Computing Group.

https://www.trustedcomputinggroup.org/home.
[2] Trusted Computer System Evaluation Criteria. United States

Government Department of Defense (DOD), Profile Books,
1985.

[3] A. P. Anderson. Computer security technology planning study.
Technical Report ESD-TR-73-51, II, 1972.

[4] S. Brin and L. Page. The anatomy of a large-scale
hypertextual Web search engine.Computer networks and
ISDN systems, 30(1-7):107–117, 1998.

[5] R. Sailer, X. Zhang, T. Jaeger, and L. van Doorn. Design and
implementation of a tcg-based integrity measurement
architecture. InSSYM’04: Proceedings of the 13th conference
on USENIX Security Symposium, pages 16–16, Berkeley, CA,
USA, 2004. USENIX Association.

[6] R. S. Sandhu. Lattice-based access control models.IEEE
Computer, 26(11):9–19, 1993.

[7] W. Xu, M. Shehab, and G. Ahn. Visualization based policy
analysis: case study in SELinux. InProceedings of the 13th
ACM symposium on Access control models and technologies,
pages 165–174. ACM New York, NY, USA, 2008.

3

