
VNGuard: An NFV/SDN Combination Framework
for Provisioning and Managing Virtual Firewalls

Juan Deng†, Hongxin Hu†, Hongda Li†, Zhizhong Pan†,
Kuang-Ching Wang†, Gail-Joon Ahn‡, Jun Bi�, Younghee Park�

†Clemson University ‡Arizona State University �Tsinghua University �San Jose State University

Abstract—Network Function Virtualization (NFV) together
with cloud technology enables users to request creating flex-
ible virtual networks (VNs). Users also have specific security
requirements to protect their VNs. Especially, due to change-
able network perimeters, constant VM migrations, and user-
centric security needs, VNs require new security features that
traditional firewalls fail to provide, because traditional firewalls
rely greatly on restricted network topology and entry points to
provide effective security protection. To address this challenge,
we propose VNGuard, a framework for effective provision and
management of virtual firewalls to safeguard VNs, leveraging
features provided by NFV and Software Defined Networking
(SDN). VNGuard defines a high-level firewall policy language,
finds optimal virtual firewall placement, and adapts virtual
firewalls to VN changes. To demonstrate the feasibility of our
approach, we have implemented core components of VNGuard
on top of ClickOS. Our experimental results demonstrate the
effectiveness and efficiency of virtual firewalls built on VNGuard.

I. INTRODUCTION

Network function virtualization (NFV) was recently pro-

posed to decouple network functions (NFs), such as firewall,

load balancer, NAT, and web proxy, from dedicated hardware

and implement them as pure software instances on industrial

standard high-volume servers, networking and storage. NFV

calls for a carrier-grade cloud platform, leveraging de-facto

industry cloud management and standards [1]. NFV together

with cloud platforms allows a user to build flexible virtual
networks (VNs).

Users also have security requirements to protect their VNs,

more specifically, the applications or services running on the

VNs. Cloud providers, such as Google Cloud Platform [2],

have already allowed users to request protecting their ser-

vices. Unfortunately, traditional firewall technique lacks the

flexibility and adaptivity to meet the new security needs

arising with VNs.1 First of all, a traditional firewall depends

on restricted network topology and entry points to provide

effective security protection. However, due to the dispersion

of virtual machines (VMs) in VNs across racks and data

centers, and VM migrations for the purpose of resource

management and optimisation, the perimeter of VNs become

blurred and fluid [1]. Second, a user may have specific security

requirements for VNs, which require dedicated small firewalls

tailored to accommodate their requirements, while traditional

1In traditional networks, firewall functions are generally implemented on
vendor proprietary appliances or middleboxes. However, middleboxes usually
lack a general programming interface, and their flexibility and versatility are
also very limited [3].

firewalls are usually large proprietary appliances, and provi-

sioning customized appliances for each user is costly and im-

practical. Third, VNs change frequently and the changes take

effect fast. Changes may come from either users or the service

provider. For example, a user may issue VN changes because

s/he has needs to change or update the services running within

the VN, or the NFV provider decides to migrate VMs for the

purpose of resource management and optimization. This calls

for dynamic and fast firewall reconfiguration and replacement

to adapt to VN changes, which cannot be easily achieved by

traditional firewalls.

In NFV, a firewall, serving as a vital security network

function, is implemented as a software instance (a.k.a virtual-

ized firewall or virtual firewall). A virtual firewall offers the

necessary flexibility and mobility to effectively protect VNs.

With virtual firewalls, users are enabled to flexibly define

and manage customized firewalls to protect their own VNs.

Also, virtual firewalls break the dependency on fixed network

topology and entry points, since they can be placed on any

VM with great flexibility, as long as the VM can provide

the required resources. In addition, virtual firewalls, being

software instances, can be reconfigured and moved easily and

fast to adapt to VN changes.

The flexibility and mobility of virtual firewalls must rely on

the support of dynamic, fast and reliable traffic steering. As

virtual firewalls are no longer required to be placed at fixed

network entry points, underlying flexible traffic steering must

be in place to pass network traffic to virtual firewalls. The

migration of virtual firewalls also need a robust traffic steering

support to ensure no security holes during and after virtual

firewall migration. Software Defined Networking (SDN), rec-

ognized as complementary technology to NFV [4]–[8], is able

to provide the traffic engineering needed by virtual firewalls.

To this end, we propose VNGuard, a comprehensive frame-

work for effectively provisioning and managing virtual fire-
walls, leveraging both NFV and SDN techniques. VNGuard
enables users to readily define their security policies for the

VNs without concerning low-level VN deployment. VNGuard
can also automatically translate high-level security policies

into low-level firewall rules, and find an optimal virtual

firewall deployment solution while still respecting resource

and performance constraints. In addition, VNGuard enables

virtual firewall reconfiguration and replacement to adapt to VN

changes and ensures that the replacement remains optimal. To

the best of our knowledge, VNGuard is the first solution for

2015 IEEE Conference on Network Function Virtualization and Software Defined Network (NFV-SDN)

978-1-4673-6884-1/15/$31.00 ©2015 IEEE 107

systematic design and management of virtual firewalls based

on NFV and SDN. We summarize our contributions as follows:

• We introduce a high-level service-oriented policy lan-

guage in VNGuard that allows users to specify high-level

security policies without considering low-level concrete

VN deployment.

• We propose an approach based on Integer Programming

to find an optimal virtual firewall placement, which fulfils

resource constraints.

• We provide a mechanism for dynamic virtual firewall

adaption to protect the VNs, which can be frequently

changed and migrated.

• We implement core components of VNGuard on top

of ClickOS [23]. Our experiment results show that our

approach can efficiently and effectively provision and

manage virtual firewalls.

The rest of the paper is organized as follows. Section II

presents an overview of VNGuard framework. Section III

describes our high-level service-oriented policy language.

Section IV presents our solution for finding optimal virtual

firewall placement. Section V introduces our approach for

dynamic virtual firewall adaption. Section VI presents our

VNGuard implementation and the evaluation of VNGuard effi-

ciency. We overview related work in Section VII. Section VIII

discusses several important issues. Conclusion and future work

are addressed in Section IX.

II. VNGuard FRAMEWORK

In designing VNGuard, we achieve the following design

goals:

• High-Level Service-Oriented Policy Language. A user

has specific security requirements to protect the services

running on the VNs, but s/he may lack the expertise and

experience to be able to write low-level firewall rules

that are associated with VN deployment. Besides, VN

deployment information may not be readily available to

users, because the service provider who provisions VNs

may intentionally hide the deployment information to

protect the infrastructure. Therefore, a new firewall policy

language is desirable and should be high-level, service-
oriented, and user-centric for a user to easily specify

his/her security requirements.

• Optimal Virtual Firewall Placement. A user’s security

requirements need to be translated to firewall rules that

are associated with VN deployment. There may exist

thousands of firewall rules for a user. Placing all rules

in one virtual firewall instance may not be applicable,

considering that rule overload causes firewall perfor-

mance degradation, as suggested in Figure 5. Obviously,

more resources can help achieve higher performance.

However, resources in cloud are valuable, and must be

utilized optimally. Given a set of firewall rules, finding a

placement solution that meets the optimization goal while

respecting to both performance and resource constraints

is a bin packing problem, which is typically combinatorial

NP-hard.

SDN Controller

SDN
Switches

OpenFlow

FW Instances

VNGuard

Firewall
Placement

Firewall
Adaption

Policy
Language

Policy
Transformation

Policy Specification

Firewall
Provision

Fig. 1. VNGuard framework.

• Dynamical Virtual Firewall Adaption. VNs are more

flexible than traditional networks and face changes more

frequently. VN changes require virtual firewalls to be

properly reconfigured and replaced, so that VNs receive

the same protection during and after changes. A mech-

anism should be design to dynamically adapt virtual

firewalls to VN changes.

We design VNGuard as shown in Figure 1, which is an

SDN application [6]. VNGuard has four major components:

Policy Specification, Firewall Placement, Firewall Adaption,

and Firewall Provision. Policy Specification defines a high-

level service-oriented Policy Language for a user to specify

security policies. Policy Transformation transfers high-level

security policies to low-level firewall rules. These rules are

then processed by Firewall Placement to find an optimal

virtual firewall placement. Firewall Adaption is responsible

for virtual firewall adaption with respect to VN changes and

migrations. Firewall Provision is responsible for provisioning

virtual firewalls and also maintains a database on the deploy-

ment information of virtual firewalls.

III. HIGH-LEVEL SERVICE-ORIENTED POLICY LANGUAGE

Our purpose to design a high-level, service-oriented, and

user-centric policy specification language is to enable users to

easily specify their security policies without the knowledge of

low-level VN deployment information.

Our policy language defines several basic components as

shown in Table I. V = {v1, v2, ...} is a set of VNs that a user

has. Each VN hosts multiple services. A service is defined as

a combination of VNs that host the service, and the protocol

and the port number that the service uses. For example, an

http service running in VN v1 is described as

〈v1, 80, tcp〉
Using such a definition, a user can define different security

policies for the same service in different VNs. For example,

a user may allow incoming SSH connections to one VN, but

ban them to another.

An object is a communication end point. It is defined as a

combination of hosts and ports. Hosts are uniquely represented

2015 IEEE Conference on Network Function Virtualization and Software Defined Network (NFV-SDN)

108

TABLE I
BASIC COMPONENTS OF OUR HIGH-LEVEL POLICY LANGUAGE

P = {p1, p2, ...} P is a finite set of ports that services use.

T = {tcp, udp, icmp, ...} T is a finite set of protocols that services use.

V = {v1, v2, ...} V is a finite set of VNs that a user has.

s ::= 〈V̄ , p, t〉 A service s has three members with V̄ being a subset of a user’s VNs that
run s (that is, V̄ ⊆ V), p ∈ P being the port number used by s, and t ∈ T
being the protocol used by s. s can call its members by s.1 = V̄ , s.2 = p
and, s.3 = t.

Z = {s1, s2, ..}, and for all s(i).1 = v A security zone Z is a finite set of services {s1, s2, ...} in the same virtual
network.

a ::= 〈accept | deny | delete〉 An action a is one of accept, deny and delete. delete is used in the virtual
firewall adaption.

o ::= 〈IP | domain name | V N name, p〉 An object o has two members with the first being either an IP address, a
domain name, or the name of a VN, and the second element p ∈ P being a
port number.

policy ::= 〈s, a, o〉 A policy defines the access right of object o on service s. A policy can call
its members by using policy.1 = service, policy.2 = r, and policy.3 =
o. We also allow consecutive member calling. For example policy.1.1 =
V̄ , andpolicy.3.2 = p.

by either IP addresses, a domain name, or the name of a

VN. Hosts may exist inside or outside of a user’s VNs. Hosts

outside of a user’s VNs are identified by either IP addresses

or a domain name. Hosts inside a user’s VNs are usually

identified by either IP addresses or the name of a VN.

Our language can supports a wide card representation of

policies. For example,

〈∗, 80, tcp〉
describes an http service exiting in all virtual networks of a

user.

A policy is formalized as

〈s, a, o〉
that defines access right of object o on service s. For example,

〈〈v1, 80, tcp〉, deny, 〈v2, ∗〉〉
states that traffic from a virtual network v2 is denied to access

the http service in a virtual network v1.

Our policy language can easily support the definitions of

global policies, group policies, and local policies by simply

manipulating member V̄ in the service definition 〈V̄ , p, t〉. A

global policy is defined as

〈〈∗, p, t〉, a, o〉
that states that the service defined by port p and protocol t
in ALL of a user’s VNs deny/accept traffic from object o. A

group policy is defined as

〈〈V̄ , p, t〉, a, o〉〉 where (V̄ ⊂ V)

that states that the service defined by port p and protocol t in

the subset of a user’s VNs, V̄ , deny/accept traffic from object

o. Naturally, a local policy is defined as

〈〈v, p, t〉, a, o〉
that states that the service defined by port p and protocol t
in a user’s VN, v, deny/accept traffic from object o.

With our policy language, users are able to write high-level

policies easily without knowing low-level VN deployment.

Policy Transformation (Figure 1) translates the high-level

polices to low-level firewall rules that are associated with the

low-level VN deployment. To do so, Policy Translation needs

to retrieve VN deployment information, which is maintained

by Firewall Provision. For example, for a policy

〈〈v1, 80, tcp〉, deny, 〈v2, ∗〉〉
Policy Transformation retrieves the deployment information of

v1 and v1, and finds the IP address (10.10.1.2) of the VM in

v1 that hosts the http service and IP addresses (130.127.24.*)

of v2, and generates a firewall rule as 2

〈130.127.24.∗, 10.10.1.2, 80, tcp, deny〉
Note that Policy Transformation in VNGuard can also detect

and resolve rule conflicts by using the conflict detection and

resolution mechanism introduced in our previous work [18].

IV. OPTIMAL VIRTUAL FIREWALL PLACEMENT

Figure 2 shows the process of virtual firewall placement

in VNGuard. User-specified security policies are processed by

Policy Transformation and transformed to low-level firewall

rules. Rule Database keeps a copy of the rules for each user,

which will be used later for virtual firewall adaption. The

rules are then sent to Firewall Placement. Firewall placement

subjects to resource constraints, which are stored in Resource

2A firewall rule is normally specified as a 6-tuple of 〈source address, source
port, destination address, destination port, protocol, action〉.

2015 IEEE Conference on Network Function Virtualization and Software Defined Network (NFV-SDN)

109

Firewall
Placement

2. Rules

4. Firewall
placement

3. Resource
constraints

Policy
Transformation

1. Policies

Rule
Database

2. Rules

5. Resource updates

 Resource
Constraints
Database Firewall

Provision

Fig. 2. Firewall Placement Digram.

Constraints Database. Firewall Placement retrieves the con-

straints and works out an optimal placement solution. The

solution is sent to the Firewall Provision for creating and

running virtual firewall instances. We consider two resource

constraints on virtual firewall rule placement:

• NFV service provider limits the number of virtual firewall

instances that a user can have.

• NFV service provider limits the resource that each virtual

firewall instance can have. Hence, there is a cap on the

number of rules that a virtual firewall instance can hold.

To achieve the optimization goal of virtual firewall placement,

Firewall Placement in VNGuard uses an Integer Programming

based solution to find the optimal placement.

Integer Programming Based Solution Integer Program-

ming is a method for the optimization of a linear objective

function, subjecting to linear constraints. We model the re-

source constraints as

• Let F = {f1, ..., fN} be a set of virtual firewall instances

that a user can have.

• Let C = {c1, ..., cN} with ci be the number of firewall

rules that an instance fi can hold.

These constraints are stored in Resource Constraints Database.

Let R = {r1, r2, ..., rM} be the set of rules to be placed.

Each rule is to be placed on only one instance, because virtual

firewall performance degrades as the number of rules loaded

on it increases (Figure 5). Let vij ∈ {0, 1} be an indicator of

placing rule ri on instance fj . If vij = 1, it indicates that rule

ri is placed on instance fj . Otherwise, the rule is placed on

another instance.
Definition: A placement V = {v11, ..., vMN} is feasible if it

satisfies the following conditions:

condition(1):
∑

i vij ≤ cj for each j
condition(2):

∑
j vij = 1 for each i

condition(3): vi,j ∈ {0, 1} for each i, j

Condition (1) states that the number of firewall rules placed on

each instance fj must not exceed its capacity. Condition (2)

guarantees that a firewall rule is placed on only one instance.
We denote the objective function that a service provider

wants to optimize as G(V), a function of placement V .

Our Integer Programming formulization for virtual firewall

placement problem is:

min: G(V)

1. Service
delete policy

Rule
Database

4. Resource
updates

Resource
Constraints
Database Policy

Transformation

2. Rules

Firewall
Adaption

3. Rules 3. Rule
updatesFirewall

Provision

Fig. 3. Firewall Adaption to Service Deletion.

Firewall
Adaption

Rule
Database

3. old
rules

Firewall
Placement

4. rules to
bedeleted

5. resource updates
due to rule deletion

Policy
Transformation

2.rules

1. policies

9. rule
updates

Resource
Constraints
Database

4. rules to
be added

6. resource
constraints

7. placement

8. resource updates
due to rule
placement

Firewall
Provision

Fig. 4. Firewall Adaption to Policy Update.

s.t. condition(1), condition(2), condition(3)

Solving the above problem gives a feasible placement V .

Integer Programming deals with linear objective functions

and constraints. For the firewall placement formulization,

the constraints are always linear, but the objective functions

may be nonlinear. For example, if we consider the objec-

tive function to be the number of firewall instances, then

G(V) =
∑

j min(1,
∑

i vij). In this case, non-linear Integer

Programming [19] should be used.

Resource Updates Firewall Provision creates the firewall

instances according to the optimal solution provided by

Firewall Placement. Then it updates Resource Constraints
Database. For the instances in F that have rules placed,

decrease their corresponding c values by the number of rules

placed on them. The updated c values reflect the number of

new rules that can be placed on these instances in the future.

The update of Resource Constraints Database is crucial for

the virtual firewall adaption.

V. DYNAMIC VIRTUAL FIREWALL ADAPTION

VNs are relatively easy to be changed. VN changes may be

initiated by either a user or an NFV service provider. In this

paper, we consider three types of VN changes.

• Type I: A user adds or deletes services in a VN.

• Type II: A user updates security policies for a VN.

• Type III: VM migration and scaling out/in.

The changes of a VN require reconfiguring and replacing

virtual firewalls to ensure that the VN receives the same

protection during and after changes. We describe below how

VNGuard adapts virtual firewalls to VN changes.

Type I. When a service is deleted, the corresponding fire-

wall rules protecting that service should be located and safely

2015 IEEE Conference on Network Function Virtualization and Software Defined Network (NFV-SDN)

110

deleted, to save resource. We are aware that one firewall

rule may be applied to multiple services. Analysis should be

conducted so that the rule deletion will not affect services other

than the deleted one. Figure 3 shows the process of firewall

adaption to service deletion. A user specifies the services to

be deleted using our policy language, with action setting to

delete:

〈s, delete, o〉
Policy Transformation translates the service deletion policies

to firewall rules with action setting to delete, and sends

them to Firewall Adaption. Firewall Adaption sends the rules

to Firewall Provision, and deletes them in Rule Database.

Firewall Provision locates the firewall instances that have

these rules and then deletes them. After rule deletion, Firewall
Provision updates Resource Constraints Database. For the

instances in F who have rules deleted, their c values will

be added by the number of deleted rules, because after the

rule deletion, the instances release room for new rules in the

future.

When a user adds a new service, s/he also specifies the

security policies for that service. The policies will be trans-

formed to firewall rules and placed as we have discussed in

Section IV.

Type II. A user may update security policies for a VN.

Policy update may result in some old firewall rules to be

deleted, and/or some new rules to be added. Figure 4 shows

the process of firewall adaption to security policy updates.

Policy Transformation generates the new rules for the updated

security policies, and sends them to Firewall Adaption. Fire-
wall Adaption retrieves from Rule Database the old rules,

compares new rules with old ones, and finds (1) old rules to

be deleted and (2) new rules to be added. Rules to be deleted

are sent to Firewall Provision. Rules to be added are sent to

Firewall Placement, which works out a placement solution

and then sends the solution to Firewall Provision. Firewall
Provision will perform rule deletion and placement operations.

At last, Firewall Provision will update Resource Constraints
Database.

Type III. Changes occur to VMs in a VN often. Common

changes include VM migration and scaling out/in [22]. Virtual

firewalls protecting the VN must adapt to these VM changes. A

VM may be migrated from one rack to another, due to resource

maintenance. In this case, the old firewall placement may no

longer be optimal and the placement must be conducted again.

In scaling out, new copies of existing VMs are created. New

firewall rules must be added so as to protect these new copies.

In scaling in, a VM is deleted. Then, the firewall rules that

are associated with the VM must be located and deleted. We

further discuss some safety issues caused by Type III changes

in Section VIII and would explore solutions in our future work.

VI. IMPLEMENTATION AND EVALUATION

We implemented the core components of VNGuard on

top of ClickOS [23] for provisioning and managing virtual

firewalls. ClickOS is a Xen-based software platform optimized

Fig. 5. The average processing time per packet of the virtual firewalls with
different numbers of rules. The incoming traffic rate is set to 90Mbps and
packet size varies from 64-byte to 1024-byte.

Fig. 6. The average processing time per packet of the virtual firewall with
different number of rules. Packet size is set to1024-byte and throughput varies
from 10Mbps to 90Mbps.

for fast provision of virtual network functions at large scale.

A virtual network function instance created in ClickOS can be

as small as 5MB, and can be booted within 30 milliseconds.

It only takes around 220 milliseconds to create and boot

400 instances. ClickOS adopts Click [24] for the virtual

network function development. Click provides large numbers

of simple, well-known networking processing elements for

building virtual network functions. However, ClickOS does not

offer the necessary features to support virtual firewall adaption.

In particular, ClickOS does not allow firewall rules on a

virtual firewall to be updated without rebooting the firewall. To

solve this problem, we developed three new Click elements:

1) FirewallTable; 2) FirewallMatch; and 3) FirewallManager.

The FirewallTable element acts as the basic storage of fire-

wall rules. The FirewallMatch element receives and forwards

packets according to the firewall rules in FirewallTable. The

FirewallManager element is designed to send messages to

update firewall rules in FirewallTable. Firewall administrators

can specify a network interface in a virtual machine and

send messages encapsulated by IP packets via that network

interface. For the virtual firewall placement, VNGuard makes

use of a Matlab Integer Programming solver.

We designed experiments to evaluate three key aspects

2015 IEEE Conference on Network Function Virtualization and Software Defined Network (NFV-SDN)

111

Fig. 7. Firewall Placement Performance.

Fig. 8. The average time of firewall rule addition.

Fig. 9. The average time of firewall rule deletion.

of VNGuard: (1) the packet processing performance of the

virtual firewalls provisioned by VNGuard; (2) the performance

of virtual firewall placement; and (3) the performance of

virtual firewall adaption. Our experiments are conducted using

CloudLab [25], a platform providing computing infrastructure

that enables experimenters to run cloud software stacks such

as OpenStack and CloudStack.

Experiment 1. The packet processing performance of a

virtual firewall is influenced by (1) the number of firewall

rules, (2) the packet size, and (3) the rate of incoming packets.

To test the performance, we set up a client generating traffic

in varied sizes and rates to a server, and the traffic was passed

to and processed by a virtual firewall provisioned by our

VNGuard. We measured the processing time per packet of

the virtual firewall. The client and server are two VMs on

CloudLab, and each with two Intel E5-2660 V2 10-core CPUs

at 2.20GHz,16x 16GB DDR4 RAM and Dual-port Intel 10be

NIC. The virtual firewall created by VNGuard had 1 CPU and

40 MB memory. Figure 5 shows the average processing time

per packet with 90Mbps incoming packet rate. The observation

indicates an approximately line-rate increase of the average

processing time per packet as we added up to 2100 firewall

rules. With the same number of rules, the processing time

appears to increase as the packet size grows. Figure 6 shows

the average processing time of each packet, with the packets

size setting to 1024 bytes, and the throughput varing from

10Mbps to 90Mbps. As the number of rules increases, we

can see a steady, line-rate increase of the average processing

time per packet. However, with the same number of firewall

rules, the throughput appears to have little effect on the average

processing time per packet.

Experiment 2. We adopted an Integer Programming based

approach for virtual firewall placement in VNGuard. The

performance of the approach is influenced by (1) the number

of rules (M) to be placed, and (2) the number of instances (N)

to place the rules in. In our experiment, we measured the time

to find an optimal placement solution for different M and N
values. Figure 7 shows our experiment results. Larger M and

N are longer it takes to find an optimal placement. According

to the study conducted by [26], the average number of firewall

rules in real networks is around 793. We have tested our

approach with the maximum of 2100 rules in our experiments.

Even though there are 7 instances, our system takes less

than 0.2 second to find an optimal placement solution, which

indicates that our approach is pretty efficient.

Experiment 3. To adapt to VN changes, two operations are

essential: firewall rule addition and deletion. We tested the

average time of these two operations on a virtual firewall

created by our VNGuard. Figure 8 shows the average time

used to add firewall rules to a virtual firewall. As the number

of firewall rules increases, the time consumed to add the rules

increases. The addition is pretty efficient, as it took less than

300ms to add as many as 450 firewall rules. Figure 9 shows

the average time used to delete firewall rules from a virtual

firewall, which demonstrates the efficiency of rule deletion.

VII. RELATED WORK

ClickOS [23] has been developed as a high-performance

platform to support the development of virtual network func-

tions. Virtual machines built on ClickOS are small (5MB)

and boot quickly (around 30 milliseconds). Also, ClickOS can

run tens of them concurrently. Our VNGuard implementation

leverages some features provided by ClickOS for building vir-

tual firewalls. However, the virtual network functions created

by ClickOS lack adaptivity, since they cannot be dynamically

updated without rebooting the system. We have addressed this

2015 IEEE Conference on Network Function Virtualization and Software Defined Network (NFV-SDN)

112

critical problem by developing several new Click elements in

VNGuard for more effective provision of virtual firewalls.

Hu et al. [28] proposed a comprehensive framework, called

FlowGuard, for building robust SDN firewalls, which are

actually SDN applications running on top of SDN controllers.

Challenges in designing SDN firewalls were identified and

solved in FlowGuard. However, the work in this paper at-

tempts to investigate solutions for effectively provisioning and

managing virtual firewalls in context of NFV.

Zhang et al. [20] demonstrated that careless policy updates

may result in security volitions. They presented safe and

efficient policy update algorithms for firewall policy updates.

However, the proposed algorithms are only able to deal with

policy updates on a single firewall. The policy adaption mech-

anism in VNGuard coordinates policy updates across multiple
virtual firewalls.

Different network function control frameworks have

been recently proposed [3], [7], [9]–[13]. In particular,

Split/Merge [13] is a control framework to achieve virtual

middlebox elasticity, providing the ability to create or delete

virtual middlebox replicas on demand. Split/Merge identifies

the internal and external states of a virtual middlebox, and

provides APIs for copying the internal states from the virtual

middlebox to its replica. OpenNF [7] is another framework for

controlling the internal states of virtual middleboxes. OpenNF

provides APIs for richer controls, including copy, move, and

some other operations. OpenNF also solves the race condition

problem when some internal state is being moved, packets

might arrive at the source instance after the move starts, or

at the destination instance before the state transfer completes.

Both Split/Merge and OpenNF can be applied to help solve the

race condition problem in virtual firewall adaption, since it also

needs to move internal states (firewall rules) from one virtual

firewall to another. Some other network function control

frameworks, including Slick [9], FlowTags [10], Stratos [11],

and SIMPLE [12], mainly provide controls over traffic steering

among network functions.

VIII. DISCUSSION

In this work, we employed an Integer Programming based

approach to find optimal virtual firewall placement. In building

the Integer Programming model, we have considered resource

constraints. However, service level agreements (SLAs) on

performance should be also satisfied in reality. Hence, perfor-

mance constraints may need to be considered when determin-

ing virtual firewall placement. The performance depends on

the number of rules held in a virtual firewall instance and the

resources (e.g. CPU, memory, etc.) assigned to the instance.

We would explore a new model with respect to various

network performance factors for virtual firewall placement in

the future.

We have demonstrated the efficiency of the Integer Pro-

gramming based approach for virtual firewall placement in

Section VI. Some other optimization algorithms could be also

explored for the policy placement. For example, Moshref et
al [15] proposed a heuristic algorithm to place network flow

rules in data centers. It would be interesting to compare the

Integer Programming based approach with other approaches

for virtual firewall placement.

Virtual firewall scaling in/out are other important problems

that should be addressed in VNGuard. In virtual firewall

scaling out, a new instance is created, and some rules in

the old firewall instance will be moved to the new instance

with the network traffic being moved alongside. This situ-

ation could cause two safety implications. One is the race

condition that has been discussed in [7]. The “lost-free”

and “order-preserving” move algorithms have been proposed

in [7] to solve the race condition problem. However, there

are limitations with those algorithms, because they rely on

buffering network traffic at the SDN controller side during

moving network states, which significantly consumes valuable

bandwidth between SDN controller and switches. Thus, a new

solution should be investigated to address the virtual firewall

scaling in/out problems in VNGuard.

IX. CONCLUSION AND FUTURE WORK

In this paper, we have proposed VNGuard, an NFV/SDN

combination framework for effectively provisioning and man-

aging virtual firewalls to safeguard VNs. VNGuard defines

a high-level firewall policy language, finds optimal virtual

firewall placement, and adapts virtual firewalls to VN changes.

Our experimental results have demonstrated the efficiency and

effectiveness of virtual firewalls built on VNGuard. In the

future, we will expand our VNGuard framework for building

robust stateful virtual firewalls, especially considering the

safety state migration management for virtual firewalls. We

also plan to implement VNGuard in other popular open-source

NFV platforms, such as OPNFV [27].

ACKNOWLEDGMENTS

This work was partially supported by the grants from

National Science Foundation (NSF-IIS-1527421, NSF-CNS-

1537924 and NSF-CNS-1531127).

REFERENCES

[1] P. Busschbach, “Network functions virtualisation - chal-
lenges and solutions,” Alcatel-Lucent Corp., France,
Strategic White Paper, 2013. [Online]. Available: http:
//www.tmcnet.com/tmc/whitepapers/documents/whitepapers/2013/
9377-network-functions-virtualization-challenges-solutions.pdf

[2] Google Cloud Platform. [Online]. Available: https://cloud.google.com/
compute/docs/networking#firewalls

[3] S. Rajagopalan, D. Williams, and H. Jamjoon, “Pico replication: A high
availability framework for middleboxes,” in SoCC’13, Santa Clara, CA,
2013.

[4] J. Machi. (2013, December 17). NFV said to SDN: I’ll be
there for you. [Online]. Available: https://www.sdncentral.com/market/
nfv-said-sdn-ill/2013/12/

[5] S. K. N. Rao, “SDN and its use-cases-NV and NFV,” NEC Technologies
India Limited, White Paper, 2014. [Online]. Available: http://www.
nectechnologies.in/en TI/pdf/NTI whitepaper SDN NFV.pdf

[6] Open Networking Foundation (ONF), “OpenFlow-enabled SDN and
network function virtualisation,” Tech. Rep., Feb., 2014. [Online].
Available: https://www.opennetworking.org/images/stories/downloads/
sdn-resources/solution-briefs/sb-sdn-nvf-solution.pdf

2015 IEEE Conference on Network Function Virtualization and Software Defined Network (NFV-SDN)

113

[7] A. Gember-Jacobson, R. Viswanathan, C. Prakash, R. Grandl, J. Khalid,
S. Das, and A. Akella, “OpenNF: enabling innovation in networking
function control,” in SIGCOMM’14, Chicago, IL: ACM, 2014, pp. 163-
174.

[8] F. Paganelli, M. Ulema, and B. Martini, “Context-aware service compo-
sition and delivery in NGSONs over SDN,” in IEEE Communications
Magazine, vol. 52, issue 8, 2014, pp. 97-105.

[9] B. Anwer, T. Benson, N. Feamster, D. Levin, and J. Rexford, “A slick
control plane for network middleboxes,” in HotSDN’13, HongKong,
China: ACM, 2013, pp. 147-148.

[10] S. K. Fayazbakhsh, V. Sekar, M. Yu, and J. C. Mogul, “FlowTags:
Enforcing network-wide policies in the presence of dynamic middlebox
actions using flow tags,” in HotSDN’13, HongKong, China: ACM, 2013,
pp. 19-24.

[11] A. Gember, R. Viswanathan, C. Prakash, R. Grandl, J. Khalid, S. Das,
and A. Akella, “Stratos: A network-aware orchestration layer for virtual
middleboxes in clouds,” in arXiv preprint arXiv:1305.0209, 2013.

[12] Z. A. Qazi, C. Tu, L. Chiang, R. Miao, V. Sekar, and M. Yu ,
“SIMPLE fying middlebox enforcement using SDN,” in SIGCOMM’13,
HongKong, China: ACM 2013, pp. 27-38.

[13] S. Rajagopalan, D. Williams, H. Jamjoon, and A. Warfield, “Split/merg:
system support for elastic execution in virtual middleboxes,” in NSDI’13,
Lombard, IL: ACM, 2013, pp. 227-240.

[14] S. Mehraghdam, M. Keller, and H. Karl, “Specifying and placing chains
of virtual network functions,” in arXiv preprint arXiv:1406.1058, 2014.

[15] M. Moshref, M. Yu, A. Sharma, and R. Govindan, “Scalable rule
management for data centres,” in NSDI’13, Lombard, IL: ACM, 2013,
pp. 157-170.

[16] S. Zhang, F. Ivancic, C. Lumezanu, Y. Yuan, A. Gupta, and S. Malik,
“An adaptable rule placement for software defined networks,” in 2014
44th IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN), Atlanta, GA, 2014, pp. 88-99.

[17] European Telecommunications Standards Institute (ETSI) GS, “Network
functions virtualisation (NFV); Infrastructure Overview,” Group Spec-
ification, 2015. [Online]. Available: http://www.etsi.org/deliver/etsi gs/
NFV-INF/001 099/001/01.01.01 60/gs NFV-INF001v010101p.pdf

[18] H. Hu, G. Ahn, and K. Kulkarni, “Detecting and Resolving Firewall
Policy Anomalies,” in IEEE Transactions on dependable and secure
computing, vol. 9, no. 3, 2012, pp. 318-331.

[19] M. Jünger, Th.M. Libelling, D. Naddef, G.L. Nemhauser, W. R. Pul-
leyblank, G. Reinelt, G. Rinaldi, and A. Wolsey, “Nonlinear integer
programming,” in “50 Years of Integer Programming 1958-2008: The
Early Years and State-of-the-Art Surveys”, New York, Spring-Verlag,
2009.

[20] C. C. Zhang, M. Winslett, and C. A. Gunter, “On the safety and effi-
ciency of firewall policy deployment,” in IEEE Symposium on Security
and Privacy, Berkeley, CA, 2007, pp. 33-50.

[21] Y. Gao, X. Chen, N. Pan, and Z. Morley Mao, “On the safety of
enterprise policy deployment,” in NDSS 2010, San Diego, CA, USA,
2010.

[22] European Telecommunications Standards Institute (ETSI) GS, “Network
functions virtualisation (NFV); Terminology for main concepts in NFV,”
Group Specification, 2013. [Online]. Available: http://www.etsi.org/
deliver/etsi gs/NFV/001 099/003/01.01.01 60/gs nfv003v010101p.pdf

[23] J. Martins, M. Ahmed, C. Raiciu, V. Olteanu, M. Honda, R. Bifulco,
and F. Huici, “ClickOS and the art of network function virtualisation,”
in 11th USENIX Symposium on Networked System Design and Imple-
mentation, 2011, pp. 459-473.

[24] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. Frans Kaashoek, “The
click modular router,” in ACM Transactions on Computer Systems, vol.
18, issue 3, 2000, pp. 263-297.

[25] University of Utah, Cloudlab Technology. Available: http://www.
cloudlab.us/technology.php

[26] M. Chapple, “Firewall rules are meant to be managed, not bro-
ken,” 2012. Available: http://www.biztechmagazine.com/article/2012/08/
firewall-rule-management-key-network-security.

[27] OPNFV. Available: https://www.opnfv.org/

[28] H. Hu, W. Han, G. Ahn, and Z. Zhao, “FlowGuard: building robust
firewalls for software-defined network,” in HotSDN’14, Chicago, IL,

USA, 2014.

2015 IEEE Conference on Network Function Virtualization and Software Defined Network (NFV-SDN)

114

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

