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Abstract 

We consider two problems: randomly generating labeled 
bipartite graphs with a given degree sequence and 
randomly generating labeled tournaments with a given 
score sequence. We analyze simple Markov chains for 
both problems. For the first problem, we cannot prove 
that our chain is rapidly mixing in general, but in 
the (near-) regular case, i.e. when all the degrees are 
(almost) equal, we give a proof of rapid mixing. Our 
methods also apply to the corresponding problem for 
general (nonbipartite) regular graphs which was studied 
earlier by several researchers. One significant difference 
in our approach is that our chain has one state for 
every graph (or bipartite graph) with the given degree 
sequence; in particular, there are no auxiliary states as 
in the chain used by Jerrum and Sinclair. 

For the problem of generating tournaments, we are 
able to prove that our Markov chain on tournaments 
is rapidly mixing, if the score sequence is near-regular. 
The proof techniques we use for the two problems are 
similar. 

1 Introduction 

The problems of counting and random generation of 
(O,l)-matrices with prescribed row and column sums 
are of interest to combinatorialists, statisticians, and 
computer scientists. Theorems of Gale, Ryser and 
several others (see [7], [19]) on properties of such 
matrices and subsequent applications to tournaments, 
Hadamard matrices and latin squares made the study 
of these matrices particularly attractive. The same 
problem when we allow non-negative integers instead 
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of just 0 or 1, is of interest in statistics (Diaconis et al.). 
We study these problems here and present some partial 
results. 

Suppose we are given the degrees of the vertices 
of a labeled bipartite graph. Then how many different 
graphs can have this ‘degree sequence’ ? How do we 
select one of these graphs uniformly at random? Stated 
another way, given a sequence of m + n positive integers 
q,?z ,.“, ~77x,Cl,Q,... ,c, such that Cri = Ccj, we 
wish to count the number of m by n, (O,l)-matrices A 
which satisfy the following property: the sum of the 
entries of the it” row of A is T; and the sum of jth 
columniscjfori=l,..., mandj=l,..., n. Gale[7] 
and Ryser [19] were the first to obtain a simple easy- 
to-check criterion to determine if there exists at least 
one (O,l)-matrix with the given row and column sums. 
While the constructive proof of the above fact produces 
one such matrix, Ryser remarks that “the exact number 
of them is undoubtedly an extremely intricate function 
of the row and column sums.” 

Such matrices represent labeled bipartite graphs 
and the integer sequence can be called a bipartite degree 
sequence, as the numbers correspond to the degrees 
of the vertices in a bipartite graph. In this work we 
consider the problem of almost uniform generation of 
such matrices. We are able to give the first fully 
polynomial time algorithm for this problem in the 
regular case, namely, when all the ri and cj are equal. 

The closely related problem of generating/counting 
labeled graphs (not bipartite) with a given degree se- 
quence has received considerable attention in recent 
years. The works of Bender and Canfield [l], Bol- 
lob&s [2], and Wormald [22] give us an algorithm 
for generating regular graphs that is efficient for de- 
grees upto O((logn)1/2). After a series of improve- 
ments, [5, ‘20, 151, Jerrum and Sinclair [9], were able to 
solve the problem for regular graphs in polynomial time 
by considering a random walk through an associated 
Markov chain. They go on to show that their approach 
is efficient only for near-regular sequences. Our algo- 
rithm is also based on a random walk; however, unlike 
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the chain studied in [9], our chain has no “auxiliary” 
states. So although we are unable to prove it, it is pos- 
sible that our algorithm works for all degree sequences. 
Our analysis for regular sequences can be extended to 
prove rapid-mixing for slightly more general degree se- 
quences (and bipartite degree sequences). A sufficient 
condition is that the minimum and maximum degrees 
are close to the average degree. A precise statement 
of this and its proof are left for the full version of the 
paper. 

The corresponding problem for bipartite multi- 
graphs (where multiple edges are allowed) is the prob- 
lem of uniform random generation of matrices with 
nonnegative integer entries with given row and column 
sums. This problem is of importance in statistics where 
such matrices arise as “contingency tables”. A Markov 
chain similar to the one we analyze has been proposed 
by Diaconis for the contingency table problem and it is 
a long-standing open problem as to whether this mixes 
rapidly. We hope our techniques shed some light on this 
problem. We also hope our techniques help in generat- 
ing a latin square of order n uniformly at random, in 
view of the fact that the set of latin squares of order n 
is precisely the set of (O,l)-cubes of size n x n x n, with 
all the line sums equal to 1. 
The second problem we are able to solve with this 
approach is that of almost uniform generation of a 
labeled tournament, given a near-regular score sequence 
on n players (or vertices). A tournament is a complete 
oriented graph. The score sequence (also called the score 
vector) of a tournament is the sequence of outdegrees 
of the vertices of the tournament. Let S = Sn = 
(~1,. _ . sn) denote a score sequence on n vertices. With 
no loss of generality, we assume si 5 s2 5 . . . 5 s,. 
Let I(s) denote the set of labeled tournaments (on n 
vertices) with the score sequence s. We provide a fully 
polynomial algorithm for generating a member of I(s) 
almost uniformly at random, for a given s. While the 
Markov chain we describe is irreducible for all score 
sequences, at the moment we can prove rapid mixing 
only for near-regular score sequences - (~1,. . . , sn) is 
near-regular if Vi, ]si - (n - 1)/2] = O(n3/4+e), for a 
sufficiently small E > 0. 

Asymptotic enumeration of labeled tournaments 
has been of interest to combinatorialists and has been 
studied in some detail (see [al], [12], [13], [14]). The 
focus of the study in these papers is in providing an 
asymptotic estimate (of the type (1 + o( 1)) or (1 + 0( 1)) 
of some explicit formula) of the exact number of labeled 
tournaments with a prescribed score sequence. For 

example, in [12], McKay proves that for any c > 0, 

2n+1 (n-1)/2 
RT(n) = - 

( > 7rn 
7pe-1/2(1 + qn-W+‘)), 

where RT(n), defined for odd n, is the number of labeled 
regular tournaments which have the score sequence, 

((n - 1)/2, *. . , (n - 1)/2). The techniques used in 
these papers include the use of generating functions 
and integration in n complex dimensions, and thus 
are quite different from the Markov chain Monte-Carlo 
approach. The graph underlying our Markov chain for 
the tournaments has also been studied by Brualdi and Li 
[3]; in particular, bounds on the diameter of this graph 
for some special score sequences can be found there. 

We use the Jerrum-Sinclair technique of canonical 
path counting to analyze the Markov chains involved in 
our schemes. 

2 The Markov chain on bipartite graphs 

Let d = d,, = (~1,. . . , rm,cl,. . .c,) be a bipartite 
degree sequence. We consider a Markov chain M(d) 
whose states correspond to distinct graphs with degree 
sequence d. A state u E M(d) has an associated matrix 
MU and a bipartite graph G,. Two states u,v are 
connected iff A&, - MU has exactly 4 non-zero entries. 
In other words if G, and G, are the bipartite graphs 
represented by the states u and w, they are adjacent in 
the chain iff the symmetric difference of their edges is 
a cycle of length 4 with edges alternately from G, and 
G,. (Note that th is is the smallest possible difference 
between any two states of M(d).) We sometimes refer 
to an edge of the Markov chain as a switch as it switches 
the edges on a cycle of length 4. For brevity of notation, 
we refer to M(d) by M. 

The random walk can now be described as follows. 
At a state u we choose two entries (i, j), (le, I), 1 5 i 5 
L 5 m, 1 5 j 5 1 5 n of M,, uniformly at random. If the 
entries (i, j), (Ic, I) are both 1 and the entries (i, I), (Ic,j) 
are both 0 then we go to the state where (i, j), (Ic, I) are 
0 and (4 l>, (k, d are 1, i.e. we switch the cycle i,j, k, 1, i. 
In any other case we stay at u. 
In the next section we will set up paths between every 
pair of states in the Markov chain hence showing that 
it is irreducible. (The fact that the moves as described 
above can be used to transform a given (O,l)-matrix to 
any other with the same row and column sums was also 
another elegant observation of Ryser [18].) 

2.1 Canonical Paths.Let C be the set of all cycles in 
the complete bipartite graph on m x n vertices. Order 
these cycles, first by length and arbitrarily among cycles 
of the same length. Fix an order on the vertices of 
the graph. Each cycle is then a sequence of vertices 
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starting with the vertex in the cycle that first appears in 
the vertex-ordering, and following the vertices along the 
cycle in the order which gives the earlier lexicographic 
sequence. The first vertex in the sequence of a cycle is 
also called the “start” vertex of the cycle. 

Consider two states u and v of M. Let H be the 
symmetric difference of G, and G,. For illustration let 
the edges in H from G, be red edges and those from 
G, be blue edges. An alternating cycle in H is a cycle 
which has edges alternately from G, and G,, i.e., it 
is a sequence of vertices wi, . . . , wzk, wi such that the 
edges (wl,wZ),(w3,w4)>... , (W2k- 1, wpk) are all red or 
all blue) and the edges (wz, ws), (~4, ws), . . . , (wzk, wi) 
are all of the other color. Such an alternating cycle also 
corresponds to a sequence of edges that are alternately 
present and absent in G, (and G,). The following 
simple observation plays a key role in defining canonical 
paths. 

LEMMA 2.1. H is the union of a set of edge-disjoint 

alternating cycles. 

For each graph H we fix a unique decomposition 
into cycles. Let the cycle decomposition of H into 
edge-disjoint alternating cycles be Ci , CZ, . . . , Ck . The 
same decomposition is fixed for all graphs H obtained 
by swapping the red and blue edges on some subset of 
cycles. This mapping from symmetric difference graphs 
to alternating cycle decompositions will be extended to 
graphs where a small number of cycles are allowed to 
overlap. 

Let HI = G,ACr, Hi = Hi-rACi, 1 < i < k, then 
G, = Hk-lACk. Our canonical path from G, to G, 
will visit HI, . . . , Hk-1 in that order. To go from G, 
to HI we look at the cycle Cr in more detail. If Cr 
is of length 4 then we can switch it to go from G, to 
HI. Otherwise, let Ci = (WI,. . . , ~21, ~1) where the 
edges (WI, wz), (wg, WJ), . . . , (wzl-i, WZI) are present in 
G, and the edges (wz,ws), (w4, ws), . . . ,(wzr, wi) are 
present in Hi (and also G,). Here wi is the designated 
start vertex. 

LEMMA 2.2. Cl contains a vertex w; such that the 
cycle w;, wi+l, war-d, wzl--i+l, wi can be switched in G,. 

Proof. By induction on the size of Ci. If lC,i = 4, 
then it has two red edges and two blue edges and the 
whole cycle can be switched in one step in G,. If 
[Gil > 4, consider the cycle WI, wz, war-r, ~21, wr. We 
know that the edges (WI, WZ) and (~21-1, WZI) are red 
edges (present in G, and not in G,) and the edge 
(wz,,wi) is blue (present in G, and not G,). So if 
(wz, ~21-1) is not present in G,, we can switch the 4- 
length cycle in G,, However if (wz, wzr-1) is present in 
G,, then ~2, wg,, . . , wzl-1, w2 is a shorter alternating 
cycle in G,. By the induction hypothesis, we find a 
switchable 4-length cycle as required. cl 

Now we have the tools to define the canonical path be- 
tween G, and G,. We find the first vertex wi such 
that the cycle wi, ~2,. . . , wi+l, wzl-i, . . . , wzl, wi is al- 
ternating in G,. So wa, wi+l, . . . , wzl-i+i, wi can be 
switched, and we switch it to get a graph G, such 
that G,AG, consists of one (if wi is WI) or in gen- 
eral two smaller cycles wi, . . . , Wi, w2r-;+l,. . . , w21, w1 

and wi+r, . . . , wzr-i,wi+i. The first cycle is “erased” 
from the symmetric difference by a series of switches 
wjuj~,wj,w2~-j+~,w2~-j+2,wj-~ in the order j = i,i - 
1 .‘, 2. This is because we switched at the first point 
id ‘Ci where a switch was possible and so all the edges 
(wj , wzl-j+i) must be alternately absent and present in 
G, for j = 1,2 ,..., i. We call this part of the path 
phase I. 

At the end of phase I we are left with a graph whose 
symmetric difference with HI is an alternating cycle 
smaller than Ci. The rest of the canonical path can be 
seen by a suitable induction hypothesis on the number 
of edges in the symmetric difference H. 

3 A Condition for Rapid-Mixing 

Let u, v be any two states of M. Let t be a state on the 
canonical path from u to v in M. We first prove some 
useful observations. 

As before let H = G,AG,. We represent an 
alternating cycle in H by an m by n matrix with l’s 
for the edges in G, and -1’s for the edges in G,. Then 
M,, = M,+Ci+Cz+...+Ck. Each matrixCi 
has every row and column sum equal to zero. Let 
Mi = MU + Cl + Cz + .. + Ci. Mi corresponds to 
the graph Hi as defined in the previous section. 

LEMMA 3.1. The matrix i@ = MU + M,, - M, has 
at most 3 entries that are not 0 or 1. 

Proof. If z corresponds to some Ma then h;, = MU + 

M, - M, = MU + Cd+1 + . . . + Ck . Since these cycles are 
edge-disjoint by lemma 2.1, and they are alternating for 
G,, all the entries of ii? are 0 or 1. 

Assume z is a state between the two states cor- 
responding to Ma-1 and Mi. This means that at the 
point when the canonical path from u to v passes 
through Z, it is working on the cycle Ci. Let Ci = 
(w1,wz,...,w21,w1). 

The state z could be of three types: 
1. As described in the previous section, when the 

canonical path reaches Ci it finds the first 
place along Ci where a switch can be per- 
formed, i.e. the first vertex wj with such that 
wj, wj+i, ~2l-j, wzl-j+i, wj can be switched. We 
call this 4-cycle Sj. Such an Sj exists by lemma 
2.2 

SOM,=M,+C~+..~+C~-~+S~ and 
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AIf = M9J+Mu-M, = M~+Ci+l+“*+Ck+Ci-Sj. 
$+Sj is a (O,l)-matrix. So according to the nature 
of the switch ii? has the entries corresponding to 
(2oj+1, wsr-j) and (202r--j+i, UQ) both equal to 2 or 
both equal to -1. 

2. Now we have two shorter alternating cycles in G,, 
call them D1 = ~1,~~,...wj,w2~-j+l,...,~2l,~l 

and D2. Since Sj was the first possible switch, 
D1 = Sj-1 + Sj-2 + **’ + Si where the switches 
are legal only in the order j - 1,j - 2,. . . , 1. Each 
step sets one odd entry in & (starting with the 
entry corresponding to the edge (w2,-j+r, wj)) to 
0 or 1, depending on whether it was -1 or 2, and 
creates a new odd entry keeping the total number 
of odd entries the same. At the end of this process, 
i.e. when we have switched ,151, &?f has one odd 
entry (corresponding to the edge (wj+r , w2r-j)). 

We shall use this construction to set up N2 paths 
between every pair of states in the Markov chain, i.e. 
one path between every pair of perfect matchings. These 
paths will have the property that no more than N’\M’I 
go through any single edge of the Markov chain. 

Consider the set of all perfect matchings of Gd. 
We will describe a path between every pair of perfect 
matchings. In general, these paths will use two kinds of 
moves. One set correspond to switches of the Markov 
chain. The second set are moves that connect perfect 
matchings corresponding to the same state of the chain. 
We connect two perfect matchings if their symmetric 
difference consists of exactly 4 edges, and none of them 
is in the induced graph G,,. These moves are called 
short moves and the ones corresponding to switches are 
called long moves. 

Here is a sketch of the scheme: Let F, and F, be 
perfect matchings of Gd such that F, maps to u and 

3. Then we find the first switch on the remaining FV maps to V. Consider the set of edges F,AF,,. It 

(shorter) cycle D2 = wj+l, wj+2, . . . , WZI-~, Wj+l. 
is a set of vertex-disjoint even cycles Cl,. . . , ck in Gd. 

When we find one and do it, we may create two 
We can erase these cycles from the symmetric difference 

new odd entries in &f taking the total number of following a fixed global order on all cycles of Gd and the 

odd entries to 3 and also create two new shorter two kinds of moves available. Let F, be an intermediate 

cycles. Working backwards to erase the first one 
perfect matching on the path from FU to F,. Given 

keeps the number of odd entries equal to 3 and 
the graph F’ = F,AF,AF,, the matching F, and the 

then it drops to 1. 
current move, we can uniquely determine the matchings 

When the cycle Ci is completely erased from the F, and FV. First compute F, AF,, = F’AF, . From 

symmetric difference fi is once again a purely (O,l)- 
the current move and the global order on cycles of Gd 

matrix. I 
we know that if the current move is affecting the cycle 
Ci in the sequence cl,. . , , ci, . . . , ck then Cl,. . . Ci-r 

Let M’ = M’(d) be the set of matrices that have have already been switched while Ci+l, . . . , Ck have not 

the same row and column sums as matrices in M and been switched. The next theorem makes this precise. 

further each matrix of M’ has up to 3 entries that are THEOREM 3.1. We can set up paths between pairs 
not 0 or 1. These ‘odd’ entries have to be -1 or 2. of perfect matchings of Gd such that if F,, F, are perfect 

To derive a condition for rapid mixing, we need to matchings and (F,, F,I) is a move on the path from F, 
look at a more complicated set-up. Given a bipartite to FV then, 
degree sequence d, we construct a graph Gd such that 1. F’ = F,AF,AF, is almost a perfect matching of 

the perfect matchings in Gd map to (O,l)-matrices for Gd, i.e it maps to a matrix with less than 3 entries 
d. that are not 0 and 1, and these “odd” entries are 

Given d = (~1,. . . ,T,,c~, . . . ,c,.,), start with the each t or -1. 

complete bipartite graph with m and n vertices in 
the two color classes. Label the vertices on one side 2. Given F’ and (F,, FE,) we can uniquely determine 

~l,...,Gl and on the other bl, . . . , b,. Subdivide each F,, and F,. 
edge (ai, bj) with two new vertices zji and yij so that the p roof. Fix an order on all cycles in Gd, with cycles 
edge from ai to bj is now a path ai, 2.. y” $3, ag, bj. Finally, 
replace each vertex ai with n - ri vertices each with 

that don’t have any edges in G,, appearing before the 
remaining cycles. Also let each cycle have a start vertex. 

edges to each xij for 1 5 j 5 n. Similarly replace each For two perfect matchings F,,, F,,, F,AF, consists 
vertex bj with m - cj vertices each with edges to each of vertex-disjoint cycles Ci, . . . , Ck in the sequence fixed 
yij for 1 < i 5 m. Let the graph obtained be Gd. by the global order. The paths we define are based on 

LEMMA 3.2. A perfect matching in the graph Gd those in the proof of lemma 3.1. The subset of edges of 
maps to a (O,l)- matrix with the sequence d. Moreover, each Ci in the graph G,, maps to an alternating cycle 
there are exactly N = II(n - ri)!II(m - ci)! perfect in G,AG,. 
matchings mapping to a single matrix. First we erase all cycles that can be erased with 
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only short moves. These cycles have no edge in G,,. 
Let Ci be the first of the remaining cycles. It maps 
to a cycle in G,AG, and the proof of lemma 3.1 gives 
us a sequence of switches that erase it. These switches 
correspond to long moves. We extend this sequence of 
moves to erase Ci from F,AF, in the following manner: 
When we make a long move we may create upto 4 cycles 
that can be erased using only short moves. We perform 
these short moves immediately following the long move. 
In this manner we get a series of short and long moves 
that have the net result of erasing Ci. 

To prove the first part of the theorem we observe 
that only the long moves affect the edges of any Ci IIG,, 
and since we are using the same sequence of long moves, 
it follows from lemma 3.1 that F’ maps to an element 
of M’. 

Now we prove the second part. Given F’ and 
(F,, F,I), we can calculate F,AF, = F’AF,. This gives 
us the sequence of cycles. Then the move (Fz, F,,) 
also tells us which cycle we are currently working on. 
Let this be Ci. To determine exactly how far we have 
proceeded in this cycle, we apply the erasure procedure 
to the cycle till we reach the given move. It is a simple 
observation that any single move is used no more than 
once in erasing any particular cycle. To get F, we undo 
the cycles Cl,. . . , Ci-r and the moves upto the current 
move of Cd in F,, and to get F,, we apply the remaining 
moves of Ci and switch the cycles Ci+r, . . . , Ck to F,. 
0 

COROLLARY 3.1. The conductance of the Markov 
chain is at least M 

4 2jM’ . 

Proof. The total number of paths going through a 
single move (F,, F,I) is at most the number of graphs 
of type F’. IF’1 = NIM’I, and using that N edges of F 
map to a single edge of M, the total number of paths 
through an edge of the M is at most N2(M’(. Now we 
send a flow of & through each path between every pair 
of states of M. Hence we send a flow of 1 unit between 
every pair of states. The flow through a single edge, i.e. 
the congestion is less than $.N’lM’I = IM’I. 

Let S be a subset of states such that IS] 5 IMl/2. 
Let (S, M - S) denote the set of edges from S to M - S. 
The conductance of M is the minimum ‘v over 
all such subsets S. For any subset S, there are ISI ]M-S] 
pairs of vertices that send a unit of flow across the 
cut (S, M - S). Since the maximum flow through any 
edge is IM’l, the number of edges in the cut is at least 
w 2 $$/. This implies that the conductance is 

at least as JCL 2,M,, , as required. 0 

Hence the chain is rapid-mixing if the ratio $‘ is 
H 

bounded by a polynomial in m, n. 

3.1 Generating regular bipartite graphs.A de- 
gree sequence is called regular if all the integers in the 
sequence are equal. In this section we show that the 
Markov chain M is rapid-mixing for regular sequences. 

Let Mi be the set of matrices with exactly i entries 
equal to 2 or -1, and no more than one such non-O,1 
entry in any row or column. 

THEOREM 3.2. For a regular bipartite degree se- 
quence (k, k,. . . , k) of length 2n, IMil 5 (nk)“lMj. 

Proof. By induction on i, the number of odd entries. 
Base: lMo[ = [MI. A ssuming the theorem is true for 
Mi- 1, we shall prove it for Mi . 

Assume w.1.o.g. that the entry (1,l) is odd, specif- 
ically let it be 2. All but k - 2 other entries in the 
first row are zero. Similarly all but k - 2 entries in the 
first column are zero. Let j be a column with a zero 
in the first row, i.e. (1,j) is zero. Since this column 
sum is k, and it can have at most one odd entry, it 
has l’s in atleast k - 1 rows and therefore there must 
be a row i such that (i, 1) is zero and (i, j) is 1. Now 
switching the cycle corresponding to the 4 four entries 
(l,l),(l,j),(i,j),(i,l) gives amatrixinthe class Mi-1. 

Similarly suppose that the (1,l) entry is -1. So k+ 1 
entries in the first row are 1 and the remaining n - k - 2 
entries are zero. Let j be a column with a 1 in the first 
row. Since the column sum is k and it can have at most 
one odd entry, there are atleast n - Ic - 1 zeros in this 
column. One of these zeros must occur in a position 
(i, j) such that (i, 1) is 1. The cycle corresponding to 
the entries (1, l), (l,j), (i,j), (i, 1) can be switched to 
get a matrix in the class Mi-1. 

So each matrix in the class Mi is one switch away 
from some matrix in the class Mi-1. Since the total 
number of possible switches from a matrix in Mi-1 
is less than(nk)2, we have IMil = (nk)‘lMil and the 
theorem follows. cl 

COROLLARY 3.2. For a regular bipartite degree se- 
quence (k, k, . . . , k) of length 2n, the conductance of the 
Markov chain is R(l/poly(n)). 

Proof. From lemma 3.1 we have that for a bipartite se- 
quence IM’I 5 lM31. For a regular sequence (k, k, . . . , k) 
of length 2n we have that IMsj = O((nk)6)IMI from the 
previous theorem. Using these two facts and corollary 
3.1, the conductance of the chain is fi(l/poly(n)). 0 

4 The Markov chain on tournaments 

In view of good existing surveys on results on tourna- 
ments, we shall keep the discussion on general facts 
about tournaments brief, and recommend that the 
reader refer to [16] or [17]. Let T, denote a labeled 
tournament on n vertices. Let S(T,) denote the score 
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sequence of T,. Given an arbitrary sequence of n non- 
negative integers, it, is easy to determine if the sequence 
is in fact a score sequence using the following theorem, 
first proved by Landau [ll]. 

THEOREM 4.1. (LANDAU ‘53) Let 0 5 q 2 . . . < 
s, be a sequence of integers. Then 7(sl,. . . , s,,) is 
nonempty if and only if for i = 1,2,. . . ,n, 

i 
Sl + s2 + . . . + si 2 

0 2 ’ 

with equality for i = n. 

There is a constructive version of this theorem (see 
e.g. [16] or [17]), which gives a linear time algorithm to 
produce a tournament with the given score sequence. It 
follows from an elegant theorem of Ryser [18] on (O,l)- 
matrices that any tournament can be transformed into 
any other tournament with the same score sequence by 
successively reversing the arcs in 3-cycles (see also [6], 
and for a direct proof, see [3]). 

Given all this, the irreducible Markov chain M(s), 
whose state space R = 7(s) is the set of all labeled 
tournaments on n vertices with the score sequence s = 
(SL,. . . , s,), suggests itself: 

1. Start with an arbitrary T, such that S(Tn) = s. 

2. (A-reversal). At each step, choose a S-cycle uni- 
formly at random (u.a.r.), and reverse the orienta- 
tion of the arcs in the cycle with probability l/2; 
with the remaining probability do nothing. 

An interesting fact (and an easy exercise in under- 
graduate combinatorics) is that the number of 3-cycles 
in a tournament is purely a function of its score se- 
quence. More precisely, the number of S-cycles in T, 
with score sequence (~1,. . . , sn) equals (I) - Cd (“2). 
This shows that the stationary distribution of the 
Markov chain as defined above is uniform. 

We remark that the steps of the above Markov chain 
are easy to implement. For, one can start with a list of 
all the 3-cycles, and at, each step of the Markov chain, 
one needs to update the list which is easy to do. An 
alternative approach would be to use a slightly different 
chain as follows. At each step, pick a triple of vertices 
u.a.r and if the triple forms a 3-cycle, then apply a A- 
reversal (i.e. reverse the orientation of the S-cycle), else 
do nothing. It is easy to check that this also gives 
a Markov chain with uniform stationary distribution. 
Moreover, the following analysis of rapid mixing remains 
essentially the same for this new chain. 

4.1 The canonical paths.Let T and T’ be two 
arbitrary tournaments from 7(s). Let T\T’ denote the 
tournament with the same set of vertices, and whose 
arcs are those of T which are not in T’. It is easy to 

see that T \ T’ is an arc disjoint collection of directed 
cycles. Since Section 2.1 describes in detail how to deal 
with a collection of edge disjoint cycles in general, here 
we are only going to describe how to “take care of” a 
particular cycle C of length 3 < k 5 n in T \ T’. For 
this reason, in fact, let us assume that T \T’ is a simple 
directed cycle, C. We are going to apply a particular 
sequence of A-reversals so that either T is transformed 
into T’, or T \ T’ is reduced by at least one arc. In the 
latter case, we apply the procedure repeatedly. (Note 
that T’\T is simply the set of arcs obtained by reversing 
the arcs in T \ T’.) 

Let c = (WY. *. , Wk), 
where the arcs (WI, wa), . . . , (wk, ~1) are in T and 

(w,w),..., (wz,wl) are in T’. Further let WI be the 
start vertex of C (see Section 2.1). Set j to be min{i : 
(w;, we) E T}. Then we can reverse the orientation of 
(w,w2),... , (wi-1, wj) by applying a sequence of A- 
reversals on triples (Wj, wl, zuj-I), . . . , (203, w1, wz), in 
that order. If j = Ic, then at the end of this sequence 
T is transformed into T’, and if 3 5 j < k then we are 
left with a smaller cycle, C’ = (~1, wj, wi+l, . . . , wk). 
This finishes the description of canonical paths between 
every pair of states in M(s). 

4.2 Near-regular tournaments and proof of 
rapid mixing.The proof of rapid mixing is similar 
to the proof (in Section 3) for the previous problem; 
so here we only outline the key differences. To get 
a bound on the congestion of the canonical paths de- 
fined above, it is convenient to consider the (O,l)-matrix 
representation of a tournament. Let the vertices be 
labeled, 1,2,. . . , n. Given T,, let, [Tn] represent the 
n x n matrix, where [T,]ij = 1 if arc (i, j) E T,, and 
0 otherwise. Further, [Tn]id = 0, for all i. Thus [Tn] 
is skew-symmetric (combinatorially speaking), where 
[T,]ij + [Tn]ii = 1, whenever i # j. Let the score vec- 
tor of Tn be (sl,..., sn). Then the vector of row sums 
of [T,] is (~1,. . . , s,), and the vector of column sums 
is (n-l--I,..., n - 1 - sn). Now, given a score se- 
quence s = (~1,. . . , sn), let d(s) denote the sequence 

(Sl,%?,...,Sn, n-1-s1,n-1-Q )...) n-l-s,). 
Treating [Tn] as a bipartite graph with the degree se- 
quence d(s), we can construct the graph Gdcs), as in 
Section 3. Then the following lemma is an immediate 
corollary of Lemma 3.2. 

LEMMA 4.1. A perfect matching in the graph GdCsj 

maps to a tournament in 7(s); moreover, there are 
exactly N = n(n - si)!n(si + l)! perfect matchings 
mapping to a single tournament. 
The analog of Theorem 3.1 of Section 3.1 can now be 
derived from the following result of [13] (see also [21]). 
The results in [13] are actually more precise than as 
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stated below. Given a score sequence s = (sr , . . . , sn), 
let us define an excess sequence 6(s) = (a,,. . . ,S,), 

where 6j = sj - [(n - 1) - ~j] = 2sj - (n - l), for 
j = l,... , n. Let NT(n; 6) denote the number of labeled 
tournaments on n vertices with the excess sequence 
6 = (61,. . . ,6,). Thus NT(n; (0,. . . , 0)) corresponds to 
RT(n), the number of labeled regular tournaments. To 
avoid trivialities, assume in the following theorem that 
61,. . . ,6, are integers, of opposite parity to n, that sum 
to zero. 

THEOREM 4.2. (MCKAY-WANG) . For E > 0 
suficiently small, suppose maXj{ ISj I} = O(n3/4+L). 
Then 

cj”=, 6; 
NT(n;S) = RT(n)exp (-i -I- o(l)) n 

( ) 
. 

Spencer was the first to obtain a result of the type above 
with maxj{]Jj]} = O(n3j5) (see Theorems 1 and 6 in 
[al]). We call (si, . . . , s,) a near-regular score sequence 
if for al1 i, we have ]si - (n - 1)/2] = o(n3i4). 

THEOREM 4.3. For a near-regular score sequence 
s on n vertices, the conductance of the Markov chain 
M(s) is n(l/poly(n)). 

Proof sketch. Let S denote the set of score sequences 
that can be obtained from s by choosing two (not nec- 
essarily distinct) entries of s, and increasing one score 
and decreasing the other score. Clearly, ISI is at most 
n2. Let Y(s) denote the set of (labeled) tournaments 
whose score sequence is in S. Now proceeding as in 
Corollary 3.1 of Section 3.1, it is straight forward to 
show that the conductance of the Markov chain M(s) 
is R(]l(s)]/l’T’(s)J). Using Theorem 4.2 we can arrive 
at the requisite bound: 

P-‘(s) I 2 + o(n314) 
17(s)I F n2exp c-f + 41)) 72 

( > 
. 

0 

5 Conclusion 

Using some of the ideas from the end of [13], we can 
also efficiently generate a tournament almost uniformly 
at random from among all possible labeled tournaments 
on n vertices. While this problem is easy for labelled 
tournaments (pick an orientation of each edge at ran- 
dom), the technique might apply for generating unla- 
belled tournaments. The basic idea is that given a posi- 
tive integer n, we can first select a score sequence almost 
uniformly at random, by selecting each sj with the bino- 
mial distribution Bfn - 1,1/2), independently subject 
only to have the sum (of sj ‘s) equa1 to n(n- 1)/2. Prom 
Theorems 4.4 and 4.5 of [13], it follows that the chosen 

(random) score sequence is, in fact, a near-regular score 
sequence with high probability (i.e. the failure prob- 
ability is inverse polynomial in n). So, if the selected 
sj’s are not a genuine score sequence, then simply re- 
peat the selection process. Now run the Markov chain 
of Section 4 to generate a random tournament which 
has the random score sequence. 

Brualdi and Qiao showed that the diameter of the 
interchange graph of labeled tournaments is at most (n- 
l)(n - 2)/2, and can be as large as (n - 1)2/4 - the two 
labeled tournaments they use for the lower bound are 
actually isomorphic, as noted in [8]. Recently, Guiduli 
et al [8] proved several interesting results about the 
interchange graph of unlabeled tournaments, wherein 
the vertices are non-isomorphic tournaments with a 
given score sequence, and (once again) two tournaments 
are adjacent, iff one can be obtained from the other by 
a A-reversal. They showed that the diameter of this 
graph can be as large as (1 - o(1))n2/32, through an 
explicit example of the Paley tournament on n vertices 
(for n prime, and congruent to 3 mod 4) and what 
they call a balanced 2-partition-transitive tournament, 
with the same (regular) score sequence. (Note that 
the upper bound in the labeled case implies an upper 
bound for the unlabeled case, and the lower bound of 
the unlabeled case implies a lower bound for the labeled 
case.) They also showed that one can-find in O(n2) time 
a sequence of A- reversals which would convert a given 
tournament T to another (given) tournament T’ with 
the same score sequence. The above lower bound(s) on 
the diameter are obviously lower bound(s) on the rate of 
mixing of the chain we discussed in this paper; however, 
providing tighter bounds on the rate of mixing should 
be a challenging task. 

The original theorem of Ryser [18] on tournaments 
shows that one can transform any tournament into any 
other with the same score sequence by reversing 4-cycles 
and 3-cycles. Thus one can define a new chain using 
O-reversals (reversal of the arcs in 4-cycles) as well as 
A-reversals. Since any O-reversal can be accomplished 
by two A-reverals, our results of rapid mixing extend 
to this new chain. It might be interesting to compare 
the exact mixing rate of this chain with the ones we 
analyzed in this work. 

We conclude with open problems of determining 
whether the Markov chains proposed are rapidly mixing 
for general degree/score sequences. The other natural 
open questions are whether exact counting in the prob- 
lems we mentioned is #P-hard. One piece of strong 
evidence we have in this direction is a recent result ([4]) 
which shows that the problem of determining the exact 
number of contingency tables with prescribed row and 
column sums is #P-complete, even in the 2 x n case. 



200 

References PO1 

PI 

PI 

PI 

PI 

PI 

PI 

PI 

PI 

PI 

I101 

WI 

WI 

P31 

[I41 

[161 

P71 

[I81 

WI 

E.A. Bender and E.R. Canfield, The asymptotic num- 
ber of labeled graphs with given degree sequence, J. Pll 
Combin. Theory Ser. A, 24 (1978), 296-307. 
B. Bollob&s, A probabilistic proof of an asymptotic WI 
formula for the number of labeled graphs with given 
degree sequence, European J. Combin., 1 (1980), 311- 
316. A 
R.A. Brualdi and Qiao Li, The interchange graph of 
tournaments with the same score vector, in “Progress 
in Graph Theory,” Academic Press, Canada (1984), 
128-151. 
M. Dyer, R. Kannan, and J. Mount, Sampling conti- 
gency tables, preprint (October, 1995). 
A. Frieze, On random regular graphs with non-constant 
degree, Research report 88-2, Department of Mathe- 
matics, Carnegie Mellon University, 1988. 
D.R. Fulkerson, Upsets in round robin tournaments, 
Canad. J. Math., 17 (1965), 957-969. 
D. Gale, A theorem on flows in networks, Pacific J. 
Math., 7 (1957), 1073-1082. 
B. Guildi, A. Gybrf&, S. Thomas&, and P. Weidl, 
2-partition-transitive tournaments, preprint (April, 
1996). 
M. Jerrum and A. Sinclair, Fast uniform generation 
of regular graphs, Theoretical Computer Science,73 
(1990), 91-100. 
M. Jerrum and A. Sinclair, Polynomial-time approx- 
imation algorithms for the Ising model, University of 
Edinborough, Internal Report, CSR l-90 (1990). 
H.G. Landau, On dominance relations and the struc- 
ture of animal societies, III: the condition for a score 
structure, Bull. Math. Biophys. 15 (1953), 143-148. 
B.D. McKay, The asymptotic number of regular 
tournaments, eulerian digraphs and eulerian oriented 
graphs, Combinatorics, 10 (1990), 367-377. 
B.D. McKay and X. Wang, Asymptotic enumeration of 
tournaments with a given score sequence, J. Combin. 
Theory, Series A, to appear (1996). 
B.D. McKay and N.C. Wormald, Asymptotic enumer- 
ation of by degree sequence of graphs of high degree, 
European J. Combinatorics, 11 (1990), 565-580. 
B.D. McKay and N.C. Wormald, Uniform generation 
of random regular graphs of moderate degree, J. Algo- 
rithms, 11 (1990), 52-67. 
J.W. Moon, “Topics on tournaments,” Holt, Rinehart, 
and Winston, New York (1968). 
K.B. Reid and L.W. Beineke, Tournaments, Ch. 7 of 
Selected Topics in Graph Theory (ed. by L.W. Beineke 
and R.J. Wilson), Academic Press, New York (1978), 
169-204. 
H. J. Ryser, Matrices of zeros and ones in combinatorial 
mathematics, Recent advances in matrix theory (ed. 
by H. Schneider), Univ. of Wisconsin Press, Madison 
(1964) 103-124. 
H. J. Ryser, “Combinatorial Mathematics,” Carus 
Math. Monograph, No. 14, New York, Wiley (1963). 

A. J. Sinclair and M.R. Jerrum, Approximate counting, 
uniform generation and rapidly mixing Markov chains, 
Inform. and Comput., 82 (1989), 93-133. 
J.H. Spencer, Random regular tournaments, Period. 
Math. Hungar., 5 (1974), 105-120. 
N.C. Wormald, Generating random regular graphs, J. 
Algorithms, 5 (1984), 247-280. 

Appendix: A bottleneck 

In this section we show a degree sequence d of length 2n 

for which the ratio $ 
9 

is exponential in n. Although 

this does not imply that the chain is not rapid-mixing 
(as in the case of more complicated chains studied by 
Jerrum and Sinclair) it indicates the need for a more 
sophisticated analysis. 

Let d be the sequence (1,2, . . . , n, 1,2, . . . , n). The 
last row and column of a solution to this sequence must 
be all 1’s. So, 

IM(d)( 5 (M&2 ,..., n-2,1,2 ,..., n-2)( 

2 (M(1,2 ,..., n--4,1,2 ,.a., n-4)1 

Continuing this way we see that IM(d)l = 1. 
To estimate IMll, let us count the number of 

matrices with degree sequence d and the entry (n, n) 
equal to 2. 

The next few steps generate solutions in Ml by 
filling up rows and colums in descending order. 

jMl(d)l >_ JM(1,1,2,3 ,..., n-2,1,1,2,3 ,..., n-2)1 

> 27M(1,1,2 )...) n-4,1,1,2 ,...) n-4)) 

2 241M(1,1,2 ,..., n-6,1,1,2 ,..., n-6)1 

> 2”-2 

In each step above we get 4 different solutions by 
choosing one of the rows with row sum 1 and one of the 
columns with column sum 1 to be set at 0. 

Since # 2 2n-2, we can not hope to prove rapid- 

mixing in general with the canonical paths used in this 

paper. 


