
A Polynomial-Time Approximation Algorithm
for the Permanent of a Matrix with Non-Negative Entries∗

Mark Jerrum
Division of Informatics
University of Edinburgh

The King’s Buildings
Edinburgh EH9 3JZ

United Kingdom

mrj@dcs.ed.ac.uk

Alistair Sinclair
Computer Science Division
Univ. of California, Berkeley

Soda Hall
Berkeley, CA 94720-1776

USA

sinclair@cs.berkeley.edu

Eric Vigoda
Division of Informatics
University of Edinburgh

The King’s Buildings
Edinburgh EH9 3JZ

United Kingdom

vigoda@dcs.ed.ac.uk

ABSTRACT
We present a fully-polynomial randomized approximation
scheme for computing the permanent of an arbitrary matrix
with non-negative entries.

1. PROBLEM DESCRIPTION
AND HISTORY

The permanent of an n×n matrix A = (a(i, j)) is defined
as

per(A) =
X

π

Y
i

a(i, π(i)),

where the sum is over all permutations π of {1, 2, . . . , n}.
When A is a 0,1 matrix, we can view it as the adjacency
matrix of a bipartite graph GA = (V1, V2, E). It is clear
that the permanent of A is then equal to the number of
perfect matchings in GA.
The evaluation of the permanent has attracted the atten-

tion of researchers for almost two centuries, beginning with
the memoirs of Binet and Cauchy in 1812 (see [12] for a com-
prehensive history). Despite many attempts, an efficient
algorithm for general matrices remained elusive. Indeed,
Ryser’s algorithm [12] remains the most efficient for com-
puting the permanent exactly, even though it uses as many
as Θ(n2n) arithmetic operations. A notable breakthrough
was achieved about 40 years ago with Kasteleyn’s algorithm

∗This work was partially supported by the EPSRC Research
Grant “Sharper Analysis of Randomised Algorithms: a
Computational Approach” and by NSF grants CCR-982095
and ECS-9873086. Part of the work was done while the first
and third authors were guests of the Forschungsinstitut für
Mathematik, ETH, Zürich, Switzerland. A preliminary ver-
sion of this paper appears in the Electronic Colloquium on
Computational Complexity, Report TR00-079, September
2000.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
STOC’01, July 6-8, 2001, Hersonissos, Crete, Greece.
Copyright 2001 ACM 1-58113-349-9/01/0007 ...$5.00.

for counting perfect matchings in planar graphs [9], which
uses just O(n3) arithmetic operations.
This lack of progress was explained in 1979 by Valiant [15],

who proved that exact computation of the permanent is #P-
complete, even for 0,1 matrices, and hence (under standard
complexity-theoretic assumptions) not possible in polyno-
mial time. Since then the focus has shifted to efficient
approximation algorithms with precise performance guar-
antees. Essentially the best one can wish for is a fully-
polynomial randomized approximation scheme (fpras), which
provides an arbitrarily close approximation in time that de-
pends only polynomially on the input size and the desired
error. (For precise definitions of this and other notions, see
the next section.)
Of the several approaches to designing an fpras that have

been proposed, perhaps the most promising was the “Markov
chain Monte Carlo” approach. This takes as its starting
point the observation that the existence of an fpras for the
0,1 permanent is computationally equivalent to the exis-
tence of a polynomial time algorithm for sampling perfect
matchings from a bipartite graph (almost) uniformly at ran-
dom [7].
Broder [3] proposed a Markov chain Monte Carlo method

for sampling perfect matchings. This was based on sim-
ulation of a Markov chain whose state space consisted of
all perfect and “near-perfect” matchings (i.e., matchings
with two uncovered vertices, or “holes”) in the graph, and
whose stationary distribution was uniform. Evidently, this
approach can be effective only when the near-perfect match-
ings do not outnumber the perfect matchings by more than
a polynomial factor. By analyzing the convergence rate of
Broder’s Markov chain, Jerrum and Sinclair [4] showed that
the method works in polynomial time whenever this condi-
tion is satisfied. This led to an fpras for the permanent of
several interesting classes of 0,1 matrices, including all dense
matrices and a.e. random matrix.
For the past decade, an fpras for the permanent of ar-

bitrary 0,1 matrices has resisted the efforts of researchers.
There has been similarly little progress on proving the con-
verse conjecture, that the permanent is hard to approximate
in the worst case. Attention has switched to two complemen-
tary questions: how quickly can the permanent be approx-
imated within an arbitrary close multiplicative factor; and
what is the best approximation factor achievable in poly-
nomial time? Jerrum and Vazirani [8], building upon the

712

work of Jerrum and Sinclair, presented an approximation
scheme whose running time was exp(O(

√
n)) in the worst

case, which though substantially better than Ryser’s ex-
act algorithm is still exponential time. In the complemen-
tary direction, there are several polynomial time algorithms
that achieve an approximation factor of cn, for various con-
stants c (see, e.g., [10, 2]). To date the best of these is due
to Barvinok [2], and gives c ∼ 1.31.
In this paper, we resolve the question of the existence of

an fpras for the permanent of a general 0,1 matrix (and in-
deed, of a general matrix with non-negative entries) in the
affirmative. Our algorithm is based on a refinement of the
Markov chain Monte Carlo method mentioned above. The
key ingredient is the weighting of near-perfect matchings
in the stationary distribution so as to take account of the
positions of the holes. With this device, it is possible to
arrange that each hole pattern has equal aggregated weight,
and hence that the perfect matchings are not dominated too
much. The resulting Markov chain is a variant of Broder’s
earlier one, with a Metropolis rule that handles the weights.
The analysis of the mixing time follows the earlier argu-
ment of Jerrum and Sinclair [4], except that the presence of
the weights necessitates a combinatorially more delicate ap-
plication of the path-counting technology introduced in [4].
The computation of the required hole weights presents an
additional challenge which is handled by starting with the
complete graph (in which everything is trivial) and slowly re-
ducing the presence of matchings containing non-edges of G,
computing the required hole weights as this process evolves.
We conclude this introductory section with a statement

of the main result of the paper.

Theorem 1. There exists a fully-polynomial randomized
approximation scheme for the permanent of an arbitrary n×
n matrix A with non-negative entries.

The condition in the theorem that all entries be non-negative
cannot be dropped. One way to appreciate this is to consider
what happens if we replace matrix entry a(1, 1) by a(1, 1)−α
where α is a parameter that can be varied. Call the result-
ing matrix Aα. Note that per(Aα) = per(A)− αper(A1,1),
where A1,1 denotes the submatrix of A obtained by deleting
the first row and column. On input Aα, an approximation
scheme would have at least to identify correctly the sign of
per(Aα); then the root of per(A)−αper(A1,1) = 0 could be
located by binary search and a very close approximation to
per(A)/per(A1,1) found. The permanent of A itself could
then be computed by recursion on the submatrix A1,1. It
is important to note that the cost of binary search scales
linearly in the number of significant digits requested, while
that of an fpras scales exponentially (see section 2).
The remainder of the paper is organized as follows. In

section 2 we summarize the necessary background concern-
ing the connection between random sampling and counting,
and the Markov chain Monte Carlo method. In section 3 we
define the Markov chain we will use and present the over-
all structure of the algorithm, including the computation
of hole weights. In section 4 we analyze the Markov chain
and show that it is rapidly mixing; this is the most techni-
cal section of the paper. Finally, in section 5 we show how
to extend the algorithm to handle matrices with arbitrary
non-negative entries, and in section 6 we observe some ap-
plications to constructing an fpras for various other combi-
natorial enumeration problems. In the interests of clarity of

exposition, we make no attempt to optimize the exponents
in our polynomial running times.

2. RANDOM SAMPLING
AND MARKOV CHAINS

2.1 Random sampling
As stated in the Introduction, our goal is a fully-polynom-

ial randomized approximation scheme (fpras) for the perma-
nent. This is a randomized algorithm which, when given as
input an n× n non-negative matrix A together with an ac-
curacy parameter ε ∈ (0, 1], outputs a number Z (a random
variable of the coins tossed by the algorithm) such that

Pr[(1− ε) per(A) ≤ Z ≤ (1 + ε) per(A)] ≥ 3
4
,

and runs in time polynomial in n and ε−1. The probabil-
ity 3/4 can be increased to 1 − δ for any desired δ > 0 by
outputting the median of O(log δ−1) independent trials [7].
To construct an fpras, we will follow a well-trodden path

via random sampling. We focus on the 0,1 case; see section 5
for an extension to the case of matrices with general non-
negative entries. Recall that when A is a 0,1 matrix, per(A)
is equal to the number of perfect matchings in the corre-
sponding bipartite graph GA. Now it is well known—see for
example [6]—that for this and most other natural combina-
torial counting problems, an fpras can be built quite easily
from an algorithm that generates the same combinatorial
objects, in this case perfect matchings, (almost) uniformly
at random. It will therefore be sufficient for us to construct a
fully-polynomial almost uniform sampler for perfect match-
ings, namely a randomized algorithm which, given as inputs
an n× n 0,1 matrix A and a bias parameter δ ∈ (0, 1], out-
puts a random perfect matching inGA from a distribution U ′

that satisfies

dtv(U ′,U) ≤ δ,

where U is the uniform distribution on perfect matchings
in GA and dtv denotes (total) variation distance.1 The
algorithm is required to run in time polynomial in n and
log δ−1.
This paper will be devoted mainly to the construction of a

fully-polynomial almost uniform sampler for perfect match-
ings in an arbitrary bipartite graph. The sampler will be
based on simulation of a suitable Markov chain, whose state
space includes all perfect matchings in the graph and which
converges to a stationary distribution that is uniform over
these matchings.

2.2 Markov chains
Consider a Markov chain with finite state space Ω and

transition probabilities P . The chain is irreducible if for
every pair of states x, y ∈ Ω, there exists a t > 0 such that
P t(x, y) > 0 (i.e., all states communicate); it is aperiodic if
gcd{t : P t(x, y) > 0} = 1 for all x, y. It is well known from
the classical theory that an irreducible, aperiodic Markov
chain converges to a unique stationary distribution π over Ω,
i.e., P t(x, y) → π(y) as t → ∞ for all y ∈ Ω, regardless of
the initial state x. If there exists a probability distribution

1The total variation distance between two distributions µ,
η on a finite set Ω is defined as dtv(µ, η) =

1
2

P
x∈Ω |µ(x)−

η(x)| = maxS⊂Ω |µ(S)− η(S)|.

713

set δ̂ ← δ/(12n2 + 3)
repeat T = �(6n2 + 2) ln(3/δ)� times:

simulate the Markov chain for τx(δ̂) steps
output the final state if it belongs to M and halt

output an arbitrary perfect matching if all trials fail

Figure 1: Obtaining an almost uniform sampler from
the Markov chain.

π on Ω which satisfies the detailed balance conditions for all
M,M ′ ∈ Ω, i.e.,

π(M)P (M,M ′) = π(M ′)P (M ′,M) =: Q(M,M ′),

then the chain is said to be (time-)reversible and π is the
stationary distribution.
We are interested in the rate at which a Markov chain

converges to its stationary distribution. To this end, we
define the mixing time as

τx(δ) = min{t : dtv(P t(x, ·), π) ≤ δ}.
When the Markov chain is used as a random sampler, the
mixing time determines the number of simulation steps need-
ed before a sample is produced.
In this paper, the state space Ω of the Markov chain will

consist of the perfect and “near-perfect” matchings (i.e.,
those that leave only two uncovered vertices, or “holes”) in
the bipartite graph GA with n+ n vertices. The stationary
distribution π will be uniform over the set of perfect match-
ings M, and will assign probability π(M) ≥ 1/(4n2 + 1)
to M. Thus we get an almost uniform sampler for per-
fect matchings by iterating the following trial: simulate the
chain for τx(δ̂) steps (where δ̂ is a sufficiently small positive
number), starting from state x, and output the final state if
it belongs to M. The details are given in figure 1.

Lemma 2. The algorithm presented in figure 1 is an al-
most uniform sampler for perfect matchings with bias pa-
rameter δ.

Proof. Let π̂ be the distribution of the final state of a
single simulation of the Markov chain; note that the length
of simulation is chosen so that dtv(π̂, π) ≤ δ̂. Let S ⊂ M
be an arbitrary set of perfect matchings, and let M ∈ M
be the perfect matching that is eventually output (M is a
random variable depending on the random choices made by
the algorithm). Denoting by M = Ω \M the complement
of M, the result follows from the chain of inequalities:

Pr(M ∈ S) ≥ π̂(S)
π̂(M)

− π̂(M)T

≥ π(S)− δ̂
π(M) + δ̂

− exp(−π̂(M)T)

≥ π(S)
π(M)

− 2δ̂

π(M)
− exp(−(π(M)− δ̂)T)

≥ π(S)
π(M)

− 2δ

3
− δ

3
.

A matching bound Pr(M ∈ S) ≤ π(S)/π(M) + δ follows
immediately by considering the complementary set M\ S .
(Note that the total variation distance dtv(µ, η) between

distributions µ and η may be interpreted as the maximum
of |µ(S)− η(S)| over all events S .)

The running time of the random sampler is determined
by the mixing time of the Markov chain. We will derive an
upper bound on τx(δ) as a function of n and δ. To satisfy the
requirements of a fully-polynomial sampler, this bound must
be polynomial in n. (The logarithmic dependence on δ−1

is an automatic consequence of the geometric convergence
of the chain.) Accordingly, we shall call the Markov chain
rapidly mixing (from initial state x) if, for any fixed δ > 0,
τx(δ) is bounded above by a polynomial function of n. Note
that in general the size of Ω will be exponential in n, so rapid
mixing requires that the chain be close to stationarity after
visiting only a tiny (random) fraction of its state space.
In order to bound the mixing time we use the notion of

conductance Φ, defined as Φ = min∅⊂S⊂Ω Φ(S), where

Φ(S) = Q(S ,S)
π(S)π(S) ≡

P
x∈S

P
y∈S Q(x, y)

π(S)π(S) .

The following bound relating conductance and mixing time
is well known (see, e.g., [4]).

Theorem 3. For any ergodic, reversible Markov chain
with self-loop probabilities P (y, y) ≥ 1/2 for all states y,
and any initial state x ∈ Ω,

τx(δ) ≤ 2

Φ2

�
ln π(x)−1 + ln δ−1� .

Thus to prove rapid mixing it suffices to demonstrate a
lower bound of the form 1/ poly(n) on the conductance of
our Markov chain on matchings. (The term ln π(x)−1 will
not cause a problem since the total number of states will
be at most (n + 1)!, and we will start in a state x that
maximizes π(x).)

3. THE SAMPLING ALGORITHM
As explained in the previous section, our goal now is to

design an efficient (almost) uniform sampling algorithm for
perfect matchings in a bipartite graph G = GA. This will
immediately yield an fpras for the permanent of an arbitrary
0,1 matrix, and hence most of the content of Theorem 1. The
extension to matrices with arbitrary non-negative entries is
described in section 5.
Let G = (V1, V2, E) be a bipartite graph on n+n vertices.

The basis of our algorithm is a Markov chain MC defined
on the collection of perfect and near-perfect matchings of
G. Let M denote the set of perfect matchings in G, and
let M(y, z) denote the set of near-perfect matchings with
holes only at the vertices y ∈ V1 and z ∈ V2. The state
space of MC is Ω := M∪Sy,z M(y, z). Previous work [3,

4] considered a Markov chain with the same state space Ω
and transition probabilities designed so that the stationary
distribution was uniform over Ω, or assigned slightly higher
weight to each perfect matching than to each near-perfect
matching. Rapid mixing of this chain immediately yields
an efficient sampling algorithm provided perfect matchings
have sufficiently large weight; specifically, |M|/|Ω| must be
bounded below by a polynomial in n. In [4] it was proved
that this condition — rather surprisingly — also implies that
the Markov chain is rapidly mixing. This led to an fpras
for the permanent of any 0,1 matrix satisfying the above
condition, including all dense matrices (having at least n/2

714

�

� �

�

� �

� �

� �

�

� �

� � �

� �

� �

� �

�� ❅❅ �� ❅❅
❅❅ �� ❅❅ �� ❅❅ ��

�� ❅❅u v· · ·
(k hexagons)

Figure 2: A graph with |M(u, v)|/|M| exponentially
large.

1’s in each row and column), and a.e. (almost every) random
matrix.2

It is not hard to construct graphs in which, for some pair
of holes u, v, the ratio |M(u, v)|/|M| is exponentially large.
The graph depicted in figure 2, for example, has one perfect
matching, but 2k matchings with holes at u and v. For
such graphs, the above approach breaks down because the
perfect matchings have insufficient weight in the stationary
distribution. To overcome this problem, we will introduce
an additional weight factor that takes account of the holes in
near-perfect matchings. We will define these weights in such
a way that any hole pattern (including that with no holes,
i.e., perfect matchings) is equally likely in the stationary
distribution. Since there are only n2+1 such patterns, π will
assign Ω(1/n2) weight to perfect matchings.
It will actually prove technically convenient to introduce

edge weights also. Thus for each edge (y, z) ∈ E, we intro-
duce a positive weight λ(y, z), which we call its activity. We
extend the notion of activities to matchings M (of any car-
dinality) by λ(M) =

Q
(i,j)∈M λ(i, j). Similarly, for a set of

matchings S we define λ(S) =PM∈S λ(M).3 For our pur-
poses, the advantage of edge weights is that they allow us to
work with the complete graph on n+n vertices, rather than
with an arbitrary graph G = (V1, V2, E): we can do this by
setting λ(e) = 1 for e ∈ E, and λ(e) = ξ ≈ 0 for e /∈ E.
Taking ξ ≤ 1/n! ensures that the “bogus” matchings have
little effect, as will be described shortly.
We are now ready to specify the desired stationary distri-

bution of our Markov chain. This will be the distribution π
over Ω defined by π(M) ∝ Λ(M), where

Λ(M) =

(
λ(M)w(u, v) if M ∈ M(u, v) for some u, v;

λ(M) if M ∈ M,

and w : V1 × V2 → R
+ is the weight function for holes to be

specified shortly.
To construct a Markov chain having π as its station-

ary distribution, we use the original chain of [3, 4] aug-
mented with a Metropolis acceptance rule for the transi-
tions. Thus transitions from a matching M are defined as
in figure 3. The Metropolis rule in the final step ensures
that this Markov chain is reversible with π(M) ∝ Λ(M) as
its stationary distribution. Finally, to satisfy the conditions
of Theorem 3 we add a self-loop probability of 1/2 to every
state; i.e., on every step, with probability 1/2 we make a
transition as above and otherwise do nothing.
Next we need to specify the weight function w. Ideally we

2I.e., the proportion of matrices that are covered by the
fpras tends to 1 as n→ ∞.
3Note that if we set λ(y, z) = a(y, z) for every edge (y, z),
then per(A) is exactly equal to λ(M). Thus our definition
of the activity function λ is natural.

1. Choose an edge e = (u, v) uniformly at random.

2. (i) If M ∈ M and e ∈ M , let M ′ = M \ {e} ∈
M(u, v);

(ii) if M ∈ M(u, v), let M ′ =M ∪ {e} ∈ M;

(iii) if M ∈ M(u, z) where z �= v and (y, v) ∈ M , let
M ′ =M ∪ {e} \ {(y, v)} ∈ M(y, z);

(iv) if M ∈ M(y, v) where y �= u and (u, z) ∈ M , let
M ′ =M ∪ {e} \ {(u, z)} ∈ M(y, z).

3. With probability min{1,Λ(M ′)/Λ(M)} go toM ′; oth-
erwise, stay at M .

Figure 3: Transitions from a matching M .

would like to take w = w∗, where

w∗(u, v) =
λ(M)

λ(M(u, v))
(1)

for each pair of holes u, v with M(u, v) �= ∅. (We leave
w(u, v) undefined when M(u, v) = ∅.) With this choice of
weights, any hole pattern (including that with no holes) is
equally likely under the distribution π; since there are at
most n2 + 1 such patterns, when sampling from the distri-
bution π a perfect matching is generated with probability at
least 1/(n2 + 1). In fact, we will not know w∗ exactly but
will content ourselves with weights w satisfying

w∗(y, z)/2 ≤ w(y, z) ≤ 2w∗(y, z), (2)

with very high probability. This perturbation will reduce the
relative weight of perfect matchings by at most a constant
factor.
The main technical result of this paper is the following

theorem, which says that, provided the weight function w
satisfies condition (2), the Markov chain is rapidly mixing.
The theorem will be proved in the next section. We state
the theorem as it applies to an arbitrary bipartite graph
with m = |E| edges; since we are working with the complete
bipartite graph, for our purposes of our algorithm m = n2.

Theorem 4. Assuming the weight function w satisfies
inequality (2) for all (y, z) ∈ V1×V2, then the mixing time of
the Markov chain MC is bounded above by τx(δ) = O

�
m6 ×

n8(n log n+log δ−1)
�
, provided the initial state x is a perfect

matching of maximum activity.

Finally we need to address the issue of computing (ap-
proximations to) the weights w∗ defined in (1). Since w∗

encapsulates detailed information about the set of perfect
and near-perfect matchings, we cannot expect to compute
it directly for our desired edge activities λ(e). Rather than
attempt this, we instead initialize the edge activities to triv-
ial values, for which the corresponding w∗ can be computed
easily, and then gradually adjust the λ(e) towards their de-
sired values; at each step of this process, we will be able to
compute (approximations to) the weights w∗ corresponding
to the new activities.
Recall that we work with the complete graph on n + n

vertices, and will ultimately assign an activity of 1 to all
edges e ∈ E (i.e., all edges of our graph G), and a very small
value 1/n! to all “non-edges” e /∈ E. Since the weight of an
invalid matching (i.e., one that includes a non-edge) will be

715

at most 1/n! and there are at most n! possible matchings, the
combined weight of all invalid matchings will be at most 1.
Assuming the graph has at least one perfect matching, the
invalid matchings will merely increase by at most a small
constant factor the probability that a single simulation fails
to return a perfect matching. Thus our “target” activities
are λ∗(e) = 1 for all e ∈ E, and λ∗(e) = 1/n! for all other e.
As noted above, our algorithm begins with activities λ

whose ideal weights w∗ are easy to compute. Since we
are working with the complete graph, a natural choice is
to set λ(e) = 1 for all e. The activities of edges e ∈ E
will remain at 1 throughout; the activities of non-edges
e /∈ E will converge to their target values λ∗(e) = 1/n!
in a sequence of phases, in each of which the activity λ(e)
of some chosen non-edge e /∈ E is updated to λ′(e), where
exp(−1/2)λ(e) ≤ λ′(e) ≤ λ(e). (Symmetrically, it would be
possible to increase λ(e) to any value λ′(e) ≤ exp(1/2)λ(e),
though we shall not use that freedom.)
We assume at the beginning of the phase that condi-

tion (2) is satisfied; in other words, w(u, v) approximates
w∗(u, v) within ratio 2 for all pairs (u, v).4 Before updating
an activity, we must consolidate our position by finding, for
each pair (u, v), a better approximation to w∗(u, v): specif-
ically, one that is within ratio c for some 1 < c < 2. (We
shall see later that c = 6/5 suffices here.) For this purpose
we may use the identity

w(u, v)

w∗(u, v)
=
π(M(u, v))

π(M)
, (3)

since w(u, v) is known to us, and the probabilities on the
right hand side may be estimated to arbitrary precision by
taking sample averages. (Recall that π denotes the station-
ary distribution of the Markov chain.)
Although we do not know how to sample from π exactly,

Theorem 4 does allow us to sample, in polynomial time, from
a distribution π̂ that is within variation distance δ̂ of π.
(We shall set δ̂ appropriately in a moment.) So suppose
we generate S samples from π̂, and for each pair (u, v) ∈
V1 × V2 we consider the proportion α(u, v) of samples with
holes at u, v, together with the proportion α of samples that
are perfect matchings. Clearly, the expectations of these
quantities satisfy

E α(u, v) = π̂(M(u, v)) and E α = π̂(M). (4)

Naturally, it is always possible that some sample average
α(u, v) will be far from its expectation, so we have to allow
for the possibility of failure. We denote by ε the (small)
failure probability we are prepared to tolerate. Provided
the sample size S is large enough, α(u, v) (respectively α)
approximates π̂(M(u, v)) (respectively π̂(M)) within ratio

c1/4, with probability at least 1 − ε. Furthermore, if δ̂
is small enough, π̂(M(u, v)) (respectively π̂(M)) approx-

imates π(M(u, v)) (respectively π(M)) within ratio c1/4.
Then via (3) we have, with probability at least 1−(n2+1)ε,
approximations within ratio c to all of the target weights
w∗(u, v).
It remains to determine bounds on the sample size S and

sampling tolerance δ̂ that make this all work. Condition (2)
entails

E α(u, v) = π̂(M(u, v)) ≥ π(M(u, v))− δ̂ ≥ 1/4(n2 +1)− δ̂.
4We say that ξ approximates x within ratio r if r−1x ≤ ξ ≤
rx.

initialize λ(e) ← 1 for all e ∈ V1 × V2

initialize w(u, v) ← n for all (u, v) ∈ V1 × V2

while ∃e /∈ E with λ(e) > 1/n! do
set λ(e) ← λ(e) exp(−1/2)
take S samples from MC with parameters λ,w,

each after a simulation of T steps
use the sample to obtain estimates w′(u, v) satisfy-

ing condition (5) with high probability ∀u, v
set w(u, v) ← w′(u, v) ∀u, v

output the final weights w(u, v)

Figure 4: The algorithm.

Assuming δ̂ ≤ 1/8(n2 + 1), it follows from any of the stan-
dard Chernoff bounds (see, e.g., [1] or [13, Thm. 4.1]), that
O(n2 log ε−1) samples from π̂ suffice to estimate E α(u, v) =

π̂(M(u, v)) within ratio c1/4 with probability at least 1− ε.
Again using the fact that π(M(u, v)) ≥ 1/4(n2 + 1), we
see that π̂(M(u, v)) will approximate π(M(u, v)) within ra-

tio c1/4 provided δ̂ = c1/n
2 where c1 > 0 is a sufficiently

small constant. (Note that we also satisfy the earlier con-

straint on δ̂ by this setting.) Therefore, taking c = 6/5
and using O(n2 log ε−1) samples, we obtain refined estimates
w′(u, v) satisfying

5w∗(u, v)/6 ≤ w′(u, v) ≤ 6w∗(u, v)/5 (5)

with probability 1 − (n2 + 1)ε. Plugging δ = δ̂ into Theo-
rem 4, the time to generate each sample is T = O(n21 log n).
We can then update the activity of an edge e by chang-

ing λ(e) by a multiplicative factor of exp(−1/2). Note that
the effect of this change on the ideal weight function w∗ is at
most a factor exp(1/2). Thus, since 6 exp(1/2)/5 < 2, our
estimates w′ obeying (5) actually satisfy the weaker condi-
tion (2), as it applies to the next phase of the algorithm;
that is, putting w = w′ in (2) and interpreting w∗ as the
ideal weights with respect to the new activities. So having
assigned w′ to w we can proceed with the next phase. The
entire algorithm is sketched in figure 4.
Starting from the trivial values λ(e) = 1 for all edges e of

the complete bipartite graph, we use the above procedure
repeatedly to reduce the activity of each non-edge e /∈ E
down to 1/n!, leaving the activities of all edges e ∈ E at
unity. This requires O(n3 log n) phases, and each phase re-
quires S = O(n2 log ε−1) samples. We have seen that the
number of simulation steps to generate a sample is T =
O(n21 log n). Thus the overall time required to initialize the
weights to appropriate values for the target activities λ∗ is
O(n26(log n)2 log ε−1).
Suppose our aim is to generate one perfect matching from

a distribution that is within variation distance δ of uniform.
Then we need to set ε so that the overall failure proba-
bility is strictly less than δ, say δ/2. The probability of
violating condition (5) in any phase is at most O(εn5 log n),
since there are O(n5 log n) values to be estimated, and we
can fail in any individual case with probability ε. So for
adequate reliability we must take ε = c2δ/n

5 log n. The
running time of the entire algorithm of figure 4 is thus
O(n26(log n)2(logn + log δ−1)). By Theorem 4, the (ex-
pected) additional time required to generate the sample is
O(n22(n log n+ log δ−1)), which is negligible in comparison
with the initialisation procedure. (The extra factor n2 rep-

716

resents the expected number of samples before a perfect
matching is seen.)
At the conclusion of this algorithm we have a good approx-

imation to the ideal weights w∗ for our desired activities λ∗.
We can then simply simulate the Markov chain with these
parameters to generate perfect matchings uniformly at ran-
dom at an (expected) cost of O(n22(n log n + log δ−1)) per
sample, where δ is the permitted deviation from uniformity.
As remarked earlier, we have not attempted to minimize the
exponents, and the analysis could certainly be tightened to
reduce the exponent 22 somewhat.

4. ANALYSIS OF THE MARKOV CHAIN
Our goal in this section is to prove our main technical

result on the mixing time of the Markov chain MC, Theo-
rem 4, stated in the previous section. Following Theorem 3,
we can get an upper bound on the mixing time by bound-
ing the conductance from below. To do this, we shall use
technology introduced in [4], and since applied successfully
in several other examples. The idea is to define a canonical
path γI,F from each state I ∈ Ω to each state F ∈ Ω. By
upper bounding the maximum number of such paths that
pass through any particular transition (the “congestion”),
one obtains a lower bound on the conductance.
Using the fact that perfect matchings have non-negligible

weight under the stationary distribution, it will be sufficient
to consider only paths between pairs (I, F) where F ∈ M
(and I ∈ Ω is arbitrary), and moreover to count only a por-
tion of some of these paths. Denote the set of all canonical
paths by Γ = {γI,F : (I, F) ∈ Ω ×M}. Certain transitions
on a canonical path will be deemed chargeable. For each
transition t denote by

cp(t) = {(I, F) : γI,F contains t as a chargeable transition}.
The canonical paths are defined by superimposing I and

F . If I ∈ M, then I ⊕F consists of a collection of alternat-
ing cycles. We assume that the cycles are ordered in some
canonical fashion; for example, having ordered the vertices,
we may take as the first cycle the one that contains the least
vertex in the order, as the second cycle the one that con-
tains the least vertex amongst those remaining, and so on.
Furthermore we assume that each cycle has a distinguished
start vertex (e.g., the least in the order).
The canonical path γI,F from I ∈ M to F is obtained by

unwinding these cycles in the canonical order. A cycle v0 ∼
v1 ∼ . . . ∼ v2k = v0, where we assume w.l.o.g. that the edge
(v0, v1) belongs to I , is unwound by: (i) removing the edge
(v0, v1), (ii) successively, for each 1 ≤ i ≤ k − 1, exchanging
the edge (v2i, v2i+1) with (v2i−1, v2i), and (iii) adding the
edge (v2k−1, v2k). (Refer to figure 5.) All transitions on the
path γI,F are deemed chargeable. A canonical path join-
ing two perfect matchings, as just described, will be termed
“type A”.
If I ∈ M(y, z) for some (y, z) ∈ V1×V2, then I⊕F consists

of a collection of alternating cycles together with a single
alternating path from y to z. The canonical path γI,F from I
to F is obtained by unwinding the path and then unwinding
the cycles, as above, in some canonical order. In this case,
only the transitions involved in the unwinding of the path
are deemed chargeable. The alternating path y = v0 ∼ . . . ∼
v2k+1 = z is unwound by: (i) successively, for each 1 ≤ i ≤ k,
exchanging the edge (v2i−1, v2i) with (v2i−2, v2i−1), and (ii)

adding the edge (v2k, v2k+1). A canonical path joining a
near-perfect to a perfect matching will be termed “type B”.
We define a notion of congestion of Γ that accounts only

for the chargeable transitions:

/(Γ) := max
t

(
1

Q(t)

X
(I,F)∈cp(t)

π(I)π(F)

)
, (6)

where the maximum is over all transitions t.
Our main task will be to derive an upper bound on /(Γ),

which we state in the next lemma. From this, it will be
a straightforward matter to obtain a lower bound on the
conductance Φ (see Corollary 8 below) and hence, via The-
orem 3, a bound on the mixing time. In the following lemma
recall that m = |E|, where for our purposes m = n2.

Lemma 5. Assuming the weight function w satisfies in-
equality (2) for all (y, z) ∈ V1 × V2, then /(Γ) ≤ 16m.

In preparation for proving Lemma 5, we establish some
combinatorial inequalities concerning weighted near-perfect
matchings that will be used in the proof.

Lemma 6. Let G be as above, and let u, y ∈ V1, v, z ∈ V2.

(i) λ(u, v)λ(M(u, v)) ≤ λ(M), for all vertices u, v with
u ∼ v;

(ii) λ(u, v)λ(M(u, z))λ(M(y, v)) ≤ λ(M)λ(M(y, z)), for
all distinct vertices u, v, y, z with u ∼ v.

Proof. The mapping from M(u, v) to M defined by
M →M ∪{(u, v)} is injective, and preserves activities mod-
ulo a factor λ(u, v); this dispenses with (i). For (ii), sup-
pose Mu,z ∈ M(u, z) and My,v ∈ M(y, v), and consider
the superposition of Mu,z, My,v and the single edge (u, v).
Observe that Mu,z ⊕My,v ⊕{(u, v)} decomposes into a col-
lection of cycles together with an odd-length path O joining
y and z.5 Let O = {e0, e1, . . . , e2k} be an enumeration of
the edges of this path, starting at y and working towards z.
Denote by O0 the k + 1 even edges, and by O1 the k odd
edges. Finally define a mapping from M(u, z)×M(y, v) to
M × M(y, z) by (Mu,z,My,v) → (M,My,z), where M :=
Mu,z ∪ O0 \ O1 and My,z := My,v ∪ O1 \ O0. Note that
this mapping is injective, since we may uniquely recover
(Mu,z,My,v) from (M,My,z). (To see this, observe that
M ⊕ My,z decomposes into a number of cycles, together
with a single odd-length path joining y and z. This path is
exactly the path O considered in the forward map. There is
only one way to apportion edges from O \ {(u, v)} between
Mu,z andMy,v.) Moreover, the mapping preserves activities
modulo a factor λ(u, v).

Corollary 7. Let G be as above, and let u, y ∈ V1,
v, z ∈ V2. Then, provided in each case that the left hand
side of the inequality is defined,

(i) w∗(u, v) ≥ λ(u, v), for all vertices u, v with u ∼ v;

(ii) w∗(u, z)w∗(y, v) ≥ λ(u, v)w∗(y, z), for all distinct ver-
tices u, v, y, z with u ∼ v;

5It is at this point that we rely crucially on the bipartiteness
of G. If G is non-bipartite, we may end up with an even-
length path and an odd-length cycle, and the proof cannot
proceed.

717

�

� �

�

�

� �

�

�

� �

�

�

� �

�

� �

� �

� �

�

� �

�

�

��

�

�

� �

�

�

� �

�

�

� �

�

�

� �

�

��

❅❅ ❅❅

��

❅❅

��❅❅

❅❅

��❅❅

��
→ → → → →

v0 v1 v1

v2

v3

v4

v6

v5

v7

v0

Figure 5: Unwinding a cycle with k = 4.

(iii) w∗(u, z)w∗(y, v) ≥ λ(u, v)λ(y, z), for all distinct ver-
tices u, v, y, z with u ∼ v and y ∼ z.

Proof. Inequalities (i) and (ii) follow from the corre-
spondingly labelled inequalities in Lemma 6, and the def-
inition of w∗ in equation (1). Inequality (iii) is implied by
(i) and (ii).

Armed with Corollary 7, we can now turn to the proof of
our main lemma.

Proof of Lemma 5. Note from the Metropolis rule that
for any pair of states M,M ′ such that the probability of
transition from M to M ′ is non-zero, we have Q(M,M ′) =
min{π(M), π(M ′)}/2m. We will show that for any tran-
sition t = (M,M ′) and any pair of states I, F ∈ cp(t),
we can define an encoding ηt(I, F) ∈ Ω such that ηt :
cp(t) → Ω is an injection (i.e., (I, F) can be recovered
uniquely from ηt(I, F)), and

π(I)π(F) ≤ 8min{π(M), π(M ′)}π(ηt(I, F))

= 16mQ(t)π(ηt(I, F)). (7)

(The factor 8 here comes from approximating w∗ by w.)
Note that inequality (7) requires that the encoding ηt(I, F)
be “weight-preserving”. in some sense. Summing inequal-
ity (7) over (I, F) ∈ cp(t), we get

1

Q(t)

X
(I,F)∈cp(t)

π(I)π(F) ≤ 16m
X

(I,F)∈cp(t)

π(ηt(I, F)) ≤ 16m,

where we have used the fact that ηt is an injection. This
immediately yields the claimed bound on /(Γ).
We now proceed to define the encoding ηt and show that

it has the above properties. For a transition t = (M,M ′)
which is involved in stage (ii) of unwinding a cycle, the en-
coding is

ηt(I, F) = I ⊕ F ⊕ (M ∪M ′) \ {(v0, v1)},
where (v0, v1) is the first edge in the unwinding of the cycle.
(Refer to figure 6, where just a single alternating cycle is
viewed in isolation.) Otherwise, the encoding is

ηt(I, F) = I ⊕ F ⊕ (M ∪M ′).

It is not hard to check that C = ηt(I, F) is always a
matching in Ω (this is the reason that the edge (v0, v1) is
removed in the first case above), and that ηt is an injection.
To see this for the first case, note that I⊕F may be recovered
from the identity I ⊕ F = (C ∪ {(v0, v1)}) ⊕ (M ∪ M ′);
the apportioning of edges between I and F can then be
deduced from the canonical ordering of the cycles and the
position of the transition t. The remaining edges, namely
those in the intersection I ∩ F , are determined by I ∩ F =

M ∩M ′ ∩ C. The second case is similar, but without the
need to reinstate the edge (v0, v1).

6 It therefore remains
only to verify inequality (7) for our encoding ηt.
Consider first the case where I ∈ M and t = (M,M ′) is

the first transition in the unwinding of an alternating cycle
in a type A canonical path, where M = M ′ ∪ {(v0, v1)}.
Since I, F,C,M ∈ M and M ′ ∈ M(v0, v1), inequality (7)
simplifies to

λ(I)λ(F) ≤ 8min{λ(M), λ(M ′)w(v0, v1)}λ(C).
The inequality in this form can be seen to follow from the
identity

λ(I)λ(F) = λ(M)λ(C) = λ(M ′)λ(v0, v1)λ(C),

using inequality (i) of Corollary 7 and inequality (2). The
situation is symmetric for the final transition in unwinding
an alternating cycle.
Staying with the type A path, i.e., with the case I ∈ M,

suppose the transition t = (M,M ′) is traversed in stage
(ii) of unwinding an alternating cycle, i.e., exchanging edge
(v2i, v2i+1) with (v2i−1, v2i). In this case we have I, F ∈
M while M ∈ M(v0, v2i−1),M

′ ∈ M(v0, v2i+1) and C ∈
M(v2i, v1). Since

λ(I)λ(F) = λ(M)λ(C)λ(v2i, v2i−1)λ(v0, v1)

= λ(M ′)λ(C)λ(v2i, v2i+1)λ(v0, v1),

inequality (7) simplifies to

1 ≤ 8min

�
w(v0, v2i−1)

λ(v2i, v2i−1)
,
w(v0, v2i+1)

λ(v2i, v2i+1)

�
w(v2i, v1)

λ(v0, v1)
.

This inequality can again be verified by reference to Corol-
lary 7: specifically, it follows from part (iii) in the general
case i �= 1, and by two applications of part (i) in the special
case i = 1. Again we use inequality (2) to relate w and w∗.
We now turn to the type B canonical paths. Suppose I ∈

M(y, z), and consider a transition t = (M,M ′) from stage
(i) of the unwinding of an alternating path, i.e., exchang-
ing edge (v2i, v2i−1) with (v2i−2, v2i−1). Observe that F ∈
M,M ∈ M(v2i−2, z),M

′ ∈ M(v2i, z) and C ∈ M(y, v2i−1).
Moreover, λ(I)λ(F) = λ(M)λ(C)λ(v2i−2, v2i−1) = λ(M ′)×
λ(C)λ(v2i, v2i−1). In inequality (7) we are left with

w(y, z) ≤ 8min

�
w(v2i−2, z)

λ(v2i−2, v2i−1)
,
w(v2i, z)

λ(v2i, v2i−1)

�
w(y, v2i−1),

6We have implicitly assumed here that we know whether it
is a path or a cycle that is currently being processed. In
fact, it is not automatic that we can distinguish these two
possibilities just by looking at M , M ′ and C. However, by
choosing the start points for cycles and paths carefully, the
two cases can be disambiguated: just choose the start point
of the cycle first, and then use the freedom in the choice of
endpoint of the path to avoid the potential ambiguity.

718

�

� �

�

�

��

�

�

� �

�

�

��

�

�

� �

�

�

��

�

�

� �

�

�

��

�

�

� �

�

� �

��

❅❅

❅❅ ��

❅❅��

❅❅

��❅❅

��

F η(M,M′)(I, F)I

→∗ → →∗

M ′M

Figure 6: A canonical path through transition M →M ′ and its encoding.

which holds by inequality (ii) of Corollary 7. Note that the
factor 8 = 23 is determined by this case, since we need to
apply inequality (2) three times.
The final case is the last transition t = (M,M ′) in unwind-

ing an alternating path, where M ′ = M ∪ (z′, z). Note that
I, C ∈ M(y, z), F,M ′ ∈ M,M ∈ M(z′, z) and λ(I)λ(F) =
λ(M ′)λ(C) = λ(M)λ(z′, z)λ(C). (Here we have written z′

for v2k.) Plugging these into inequality (7) leaves us with

1 ≤ 8min

�
w(z′, z)
λ(z′, z)

, 1

�
,

which follows from inequality (i) of Corollary 7 and inequal-
ity (2).
We have thus shown that the encoding ηt satisfies in-

equality (7) in all cases. This completes the proof of the
lemma.

The upper bound on path congestion given in Lemma 5
readily yields a lower bound on the conductance:

Corollary 8. Assuming the weight function w satisfies
inequality (2) for all (y, z) ∈ V1×V2, then Φ ≥ 1/100/3n4 ≥
1/106m3n4.

Proof. Set α = 1/10/n2. Let S ,S be a partition of
the state-space. (Note that we do not assume that π(S) ≤
π(S).) We distinguish two cases, depending on whether or
not the perfect matchings M are fairly evenly distributed
between S and S. If the distribution is fairly even, then
we can show Φ(S) is large by considering type A canonical
paths, and otherwise by using the type B paths.

Case I. π(S ∩ M)/π(S) ≥ α and π(S ∩ M)/π(S) ≥ α.
Just looking at canonical paths of type A we have a
total flow of π(S ∩M)π(S ∩M) ≥ α2π(S)π(S) across
the cut. Thus /Q(S ,S) ≥ α2π(S)π(S), and Φ(S) ≥
α2// = 1/100/3n4.

Case II. Otherwise (say) π(M ∩ S)/π(S) < α. Note the
following estimates:

π(M) ≥ 1

4n2 + 1
≥ 1

5n2
;

π(S ∩M) < απ(S) < α;
π(S \M) = π(S)− π(S ∩M) > (1− α)π(S).

Consider the cut S \ M : S ∪ M. The weight of
canonical paths (all chargeable as they cross the cut)
is π(S \ M)π(M) ≥ (1 − α)π(S)/5n2 ≥ π(S)/6n2.
Hence /Q(S \M,S ∪M) ≥ π(S)/6n2. Noting Q(S \

initialize λ(e) ← amax for all e ∈ V1 × V2

initialize w(u, v) ← namax for all (u, v) ∈ V1 × V2

while ∃e with λ(e) > a(e) do
set λ(e) ← max{λ(e) exp(−1/2), a(e)}
take S samples from MC with parameters λ,w,

each after a simulation of T steps
use the sample to obtain estimates w′(u, v) satisfy-

ing condition (5) with high probability ∀u, v
set w(u, v) ← w′(u, v) ∀u, v

output final weights w(u, v)

Figure 7: The algorithm for non-negative entries.

M,S ∩M) ≤ π(S ∩M) ≤ απ(S) we have

Q(S ,S) ≥ Q(S \M,S)
= Q(S \M,S ∪M) −Q(S \M,S ∩M)

≥ (1/6/n2 − α)π(S)
≥ π(S)/15/n2

≥ π(S)π(S)/15/n2.

Rearranging, Φ(S) = Q(S ,S)/π(S)π(S) ≥ 1/15/n2.

Clearly, it is Case I that dominates, giving the claimed
bound on Φ.

Our main result, Theorem 4 of the previous section, now
follows immediately.

Proof of Theorem 4. The condition that the starting
state is one of maximum activity ensures log(π(X0)

−1) =
O(n log n), where X0 in the initial state. The lemma now
follows from Corollary 8 and Theorem 3.

5. ARBITRARY NON-NEGATIVE ENTRIES
Our algorithm easily extends to compute the permanent

of an arbitrary matrix A with non-negative entries. Let
amax = maxi,j a(i, j) and amin = mini,j:a(i,j)>0 a(i, j). As-
suming per(A) > 0, then it is clear that per(A) ≥ (amin)

n.
Rounding zero entries a(i, j) to (amin)

n/n!, the algorithm
follows as described in figure 7.
The running time of this algorithm is polynomial in n and

log(amax/amin). For completeness, we provide a strongly
polynomial time algorithm, i.e., one whose running time is
polynomial in n and independent of amax and amin, assum-
ing arithmetic operations are treated as unit cost. The algo-
rithm of Linial, Samorodnitsky and Wigderson [10] converts,
in strongly polynomial time, the original matrix A into a
nearly doubly stochastic matrix B such that 1 ≥ per(B) ≥
exp(−n− o(n)) and per(B) = αper(A) where α is an easily
computable function. Thus it suffices to consider the com-
putation of per(B), in which case we can afford to round up

719

any entries smaller than, say, n−2n to n−2n. The analysis
for the 0,1 case now applies with the same running time.

6. OTHER APPLICATIONS
Several other interesting counting problems are reducible

(via approximation-preserving reductions) to the 0,1 perma-
nent. These were not accessible by the earlier approximation
algorithms for restricted cases of the permanent because the
reductions yield a matrix A whose corresponding graph GA

may have a disproportionate number of near-perfect match-
ings. We close the paper with two such examples.
The first example makes use of a reduction due to Tutte

[14]. A perfect matching in a graph G may be viewed as a
spanning7 subgraph of G, all of whose vertices have degree 1.
More generally, we may consider spanning subgraphs whose
vertices all have specified degrees, not necessarily 1. The
construction of Tutte reduces an instance of this more gen-
eral problem to the special case of perfect matchings. Jer-
rum and Sinclair [5] exploited the fact that this reduction
preserves the number of solutions (modulo a constant factor)
to approximate the number of degree-constrained subgraphs
of a graph in a restricted setting.8 Combining the same re-
duction with Theorem 1 yields the following unconditional
result.

Corollary 9. For an arbitrary bipartite graph G, there
exists an fpras for computing the number of labelled sub-
graphs of G with a specified degree sequence.

As a special case, of course, we obtain an fpras for the
number of labelled bipartite graphs with specified degree
sequence.9

The second example concerns the notion of a “0,1 flow”.
Consider a directed graph G = (V,E), where the in-degree
(respectively, out-degree) of a vertex v ∈ V is denoted by
d−G(v) (respectively, d

+
G(v)). A 0,1 flow is defined as a subset

of edges E′ ⊆ E such that, in the resulting subgraph H =
(V,E′), d−H(v) = d+

H(v) for all v ∈ V . Counting the 0,1 flows
in G is reducible to counting the matchings in an undirected

bipartite graph. Specifically, let bG = (bV , bE) be the graph
with the following vertex and edge sets:bV =

�
hi,j ,mi,j , ti,j : ∀i, j with (vi, vj) ∈ E

	
∪ �u1

i , . . . , u
d+

G
(vi)

i : ∀i with vi ∈ V
	
,bE =

�{hi,j ,mi,j}, {mi,j , ti,j} : ∀i, j with (vi, vj) ∈ E
	

∪ �{uk
i , hi,j}, {ti,j , uk′

j } : ∀i, j with (vi, vj) ∈ E,
∀k, k′ with 1 ≤ k ≤ d+

G(vi), 1 ≤ k′ ≤ d+
G(vj)

	
.

A 0,1 flow E′ in G corresponds to a set of perfect match-

ings M in bG in the following manner. For each (vi, vj) ∈ E′

add the edge {hi,j ,mi,j} to M , while for each (vi, vj) ∈
E \ E′ add the edge {mi,j , ti,j} to M . Now for vi ∈ V ,

7A subgraph of G is spanning if it includes all the vertices
of G; note that a spanning subgraph is not necessarily con-
nected.
8More specifically, both the actual vertex degrees of the
graph and the desired vertex degrees of the subgraph had
to satisfy a certain algebraic relationship.
9Note that this special case is not known to be #P-complete,
and hence may conceivably be solvable exactly in polynomial
time. It seems likely, however, that an fpras is the best that
can be achieved.

observe that the set of vertices {hi,j}j ∪ {tj′,i}j′ , consists
of exactly d−H(vi) + d+

G(vi) − d+
H(vi) = d+

G(vi) unmatched
vertices. There are d+

G(vi)! ways of pairing these unmatched

vertices with the set of vertices {uk
i }k. Thus the flow E′

corresponds to
Q

v∈V d
+
G(v)! perfect matchings in bG, and

it is clear that every perfect matching in bG corresponds to
precisely one 0,1 flow. This implies the following corollary.

Corollary 10. For an arbitrary directed graph G, there
exists an fpras for counting the number of 0,1 flows.

Suppose the directed graph G has a fixed source s and
sink t. After adding a simple gadget from t to s we can
estimate the number of maximum 0,1 flows from s to t of
given value by estimating the number of 0,1 flows in the
resulting graph.
Finally, it is perhaps worth observing that the “six-point

ice model” on an undirected graph G may be viewed as a
0,1 flow on an appropriate orientation of G, giving us an
alternative approach to the problem of counting ice config-
urations considered by Mihail and Winkler [11].

7. REFERENCES
[1] Noga Alon and Joel Spencer, The Probabilistic

Method, John Wiley, 1992.

[2] Alexander Barvinok, Polynomial time algorithms to
approximate permanents and mixed discriminants
within a simply exponential factor, Random Structures
and Algorithms 14 (1999), 29–61.

[3] Andrei Z. Broder, How hard is it to marry at random?
(On the approximation of the permanent), Proceedings
of the 18th Annual ACM Symposium on Theory of
Computing (STOC), ACM Press, 1986, 50–58.
Erratum in Proceedings of the 20th Annual ACM
Symposium on Theory of Computing, 1988, p. 551.

[4] Mark Jerrum and Alistair Sinclair, Approximating the
permanent, SIAM Journal on Computing 18 (1989),
1149–1178.

[5] Mark Jerrum and Alistair Sinclair, Fast uniform
generation of regular graphs, Theoretical Computer
Science 73 (1990), 91–100.

[6] Mark Jerrum and Alistair Sinclair, The Markov chain
Monte Carlo method: an approach to approximate
counting and integration. In Approximation
Algorithms for NP-hard Problems (Dorit Hochbaum,
ed.), PWS, 1996, 482–520.

[7] Mark Jerrum, Leslie Valiant and Vijay Vazirani,
Random generation of combinatorial structures from a
uniform distribution, Theoretical Computer
Science 43 (1986), 169–188.

[8] Mark Jerrum and Umesh Vazirani, A mildly
exponential approximation algorithm for the
permanent, Algorithmica 16 (1996), 392–401.

[9] P. W. Kasteleyn, The statistics of dimers on a lattice,
I., The number of dimer arrangements on a quadratic
lattice, Physica 27 (1961) 1664–1672.

[10] Nathan Linial, Alex Samorodnitsky and Avi
Wigderson, A deterministic strongly polynomial
algorithm for matrix scaling and approximate
permanents, Combinatorica 20 (2000), 545–568.

720

[11] Milena Mihail and Peter Winkler, On the number of
Eulerian orientations of a graph, Algorithmica 16
(1996), 402–414.

[12] Henryk Minc, Permanents, Encyclopedia of
Mathematics and its Applications 6 (1982),
Addison-Wesley Publishing Company.

[13] Rajeev Motwani and Prabhakar Raghavan,
Randomized Algorithms, Cambridge University Press,
1995.

[14] W. T. Tutte, A short proof of the factor theorem for
finite graphs, Canadian Journal of Mathematics 6
(1954) 347–352.

[15] L. G. Valiant, The complexity of computing the
permanent, Theoretical Computer Science 8 (1979),
189–201.

721

