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Abstract—In this paper, we propose a method to calculate
the average blocking probability in all-optical networks using
limited-rangewavelength conversion. Previous works have shown
that there is a remarkable improvement in blocking probability
while using limited-range wavelength conversion, but these
analytical models were either for a path or for a mesh-torus
network. Using a graph-theoretical approach, we extend Birman’s
model for no wavelength conversion and derive an analytical
expression to compute the blocking probabilities in networks for
fixed routing. The proposed model is applicable toany network
topology. We consider the case where an incoming wavelength
can be converted to adjacent outgoing wavelengths on either
side of the input wavelength, in addition to the input wavelength
itself, where is the degree of conversion. When = 0 and
= (( 1) 2), where is the capacity of a link, the proposed

model reduces to the model previously given for no wavelength
conversion and the model previously given for full wavelength
conversion respectively. Using this model we demonstrate that
the performance improvement obtained by full wavelength
conversion over no wavelength conversion can almost be achieved
by using limited-range wavelength conversion with the degree of
conversion, , being only 1 or 2. In a few example networks we
considered, for blocking probabilities up to a few percent, the
carried traffic with limited conversion degree = 2 was almost
equal to the carried traffic for full wavelength conversion.

Comparisons to simulations show that our analytical model is
accurate for a variety of networks, for various values of the con-
version degree ( = 1, 2, 3), and hop length (1–4), and over a wide
range of blocking probabilities ( 0.0001). The method is also ac-
curate in estimating the blocking probabilities on individual paths
(and not just the average blocking probability in the network).

Index Terms—Blocking probability, reduced load approxima-
tion, wavelength conversion, wavelength-division multiplexing.

I. INTRODUCTION

I N RECENT years, demand for high bandwidth has been
growing at a very rapid pace led by Internet and multimedia

applications. Networks which employ optical fiber for trans-
mission are very attractive because fiber provides an enormous
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bandwidth (25 THz), low loss (0.2 dB/km) and very low bit error
rate (10 –10 ).

In all-optical networks, the data remain in the optical do-
main throughout their path except at the ends. Such paths are
termedlightpaths. The currently favored technology to tap the
huge bandwidth of optical fiber is wavelength division multi-
plexing (WDM). In WDM networks, the optical spectrum is
divided into many different channels, and each channel corre-
sponds to a different wavelength which can operate at the peak
electronic speed. In wavelength routed WDM networks, we can
reuse the wavelength provided no two lightpaths sharing a link
are assigned the same wavelength.

In networks using full wavelength conversion, a call is ac-
cepted if on all the links on its route there is at least one free
wavelength. With no wavelength conversion, a call is accepted
on a route if there exists at least one wavelength which is si-
multaneously free on all the links of that route. This constraint
is known as thewavelength continuity constraint. This means a
call can be blocked even if there are free wavelengths (but not
the same one) on all the links. Therefore, having full wavelength
conversion is advantageous [3], [5], [8] in that it decreases the
blocking probability.

However, implementing all-optical full wavelength conver-
sion is quite difficult due to technological limitations. So, it is
interesting to investigate whether we can do as well as full wave-
length conversion in terms of blocking performance by using
limited-range wavelength conversion, if not by using no wave-
length conversion.

Limited wavelength conversion can imply a limit on the
number of nodes with full wavelength conversion capability
(sparse wavelength conversion) [7], or a limit on the range of
wavelengths to which a given wavelength can be converted
(limited-range conversion).

The analysis presented in [1] and [2] for calculating blocking
probability with limited-range conversion, though shown to be
beneficial, is restricted to some specific network topologies. In
this paper, we have extended the idea given in [3] to derive anan-
alytical expressionto compute the blocking probability of net-
works withlimited-range conversionfor fixed routing. The anal-
ysis can be used foranynetwork topology.

The rest of the paper is organized as follows. In Section II, we
present our analytical model to calculate the blocking probabili-
ties for limited wavelength conversion. In Section III we present
numerical results, and in Section IV we conclude.
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II. L IMITED-RANGE WAVELENGTH CONVERSION

A. Traffic Model

In our case, we consider theonline blockingmodel [9]. The
lightpaths are set up and taken down on demand. These are anal-
ogous to setting up and taking down circuits in circuit-switched
networks.

B. Assumptions

The following assumptions are used in our analytical model.

1) External calls arrive at each node according to an inde-
pendent stationary Poisson process with rate.

2) Call holding time is exponentially distributed with unit
mean.

3) Calls that cannot be routed in the network are blocked and
lost.

4) The capacity of the links, denoted by, is the same for
all the links in the network. Each call requires a full wave-
length on each link of its path.

5) Wavelengths are assigned uniformly randomly from the
set of free wavelengths on the associated path.

6) Simplex connections are considered.
7) Existing lightpaths/calls cannot be reassigned different

wavelengths to accommodate the new lightpath/call re-
quest.

C. Analytical Model for Limited-Range Conversion

We assume that for any given input wavelength, it is pos-
sible to translate it to a limited range of output wavelengths.
More precisely, it is assumed that a wavelength can be con-
verted to adjacent wavelengths on either side of the input
wavelength, in addition to the input wavelength itself, where
is the degree of conversion. Hence, any wavelength can be con-
verted to wavelengths. For example, incoming wave-
length can be converted to any of the outgoing wavelengths

. We also assume that the conversions
are circularly symmetric.

Let denote the probability of having
choices for the outgoing wavelengths on an–hop path given
that wavelengths are free on links respec-
tively. If ,

Pr (1)

where is a random variable denoting the number of choices
for the outgoing wavelengths on route and
the random variables denote the number of free wavelengths
on link . Let us first consider the case of a two-hop route

, for which

Pr (2)

This is the probability of having possible outgoing wave-
lengths on a two link route given thatand wavelengths are
free on the first and the second link, respectively. We can think
of having a bipartite graph , where the set of vertices
and represent the set of wavelengths available on the first and

Fig. 1. Possible wavelength conversions at each node ford = 1. The
conversions are circularly symmetric.

second link, respectively; hence, the cardinality of both the sets
is equal to the capacity of the link, i.e., . Each
vertex has an edge incident with the “facing” vertex

and adjacent vertices on either side of(see Fig. 1).
Therefore, each vertex of will have a degree of . The

vertices in set which are adjacent to a vertex in set
are called its neighbors. For example, the neighbors of vertex

are vertices 1, 2, and 3 as shown in Fig. 1. The edges
denote the possible conversion from one wavelength to another
wavelength. For the last (respectively, first) vertex, we will have
edges to the immediately higher (respectively, lower)vertices
and the first (respectively, last)vertices from the top (respec-
tively, bottom), i.e., the wavelength conversion is assumed to be
circularly symmetric. This is merely for the sake of analytical
convenience, as it distributes the load uniformly among all the
wavelengths on a link. Let and denote those
vertices corresponding to which we have free wavelengths on
link and link respectively. The cardinalities of sets and

are and (free wavelengths on linkand , respectively).
Let denote the neighbors of the vertices in set.

Then we are interested in finding the probability of having
such neighbors of vertices in which are incident with the
vertices in . Then, for

Pr

Pr

Pr (3)

The last equality in (3) has the summation running from
to . This is because the

minimum cardinality (neighbors) of will be
or , depending on whichever is smaller, and the maximum
cardinality (neighbors) can be eitheror , depending
on whichever is smaller, as the number of neighbors cannot be
more than (the capacity of the link).
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When there is only one wavelength (vertex) free belonging
to the set , i.e., , then the number of neighbors of
that vertex will be exactly , and in this case the lower
and upper limits of summation coincide. In the case when one
has exactly wavelengths (vertices) free in the set , i.e.,

, and if all the wavelengths are adjacent, then we
have only distinct neighbors. This one ex-
treme case constitutes the lower limit. Had all thesefree wave-
lengths (vertices) been sufficiently apart from one another so
that each contributes distinct neighbors then we will
have distinct neighbors provided is less
than ; otherwise this number will be . This other extreme
case constitutes the upper limit of the summation. For all other
cases, the number of neighbors lies between these two limits.
Note that in general but interestingly, it
can be shown that .1 When , our model
reduces to Birman’s model [3] for no wavelength conversion. In
this case, , by symmetry. We can rearrange
the links such that the links of the path have free wavelengths in
increasing order and then we can use (3) to compute .
When , the method reduces to that given in [4]
for full wavelength conversion.

The probability term, Pr in (3) is given by

Pr

Pr

Pr (4)

First, note that Pr if or
since the number of neighbors cannot exceed

either number. Also, Pr if
since there are at least neighbors, in this

case. Hence, for the remainder of the discussion, we assume
.

Consider the probability that , given that the
vertices lie in some contiguous range ofvertices (and

). In this range, some of the vertices may not be neigh-
bors of . Therefore, the total number of neighbors is at most
. Clearly there are cases when we have no more thanneigh-

bors but they do not lie in some contiguous range ofvertices.
This yields the inequality

Pr

Pr contiguous

We have

Pr contiguous Pr (5)

where each is a contiguous set of vertices of size, and varies
from 1 to as we can positioncontiguous vertices in ways
because the conversion is assumed to be circularly symmetric.

1p (x; y) is the probability that�(X ) \ Y = �. We will prove that
whenever�(X ) \ Y = �, �(Y ) \ X = �. We prove this by contra-
diction. Suppose�(Y ) \ X 6= �. Then there exists a vertexu 2 X s.t.
u 2 �(Y ) \ X . Sinceu 2 �(Y ), there exists a vertexv 2 Y s.t.
�(v ) = u . Therefore,�(u ) = v which contradicts�(X ) \ Y = �.

Fig. 2. This figure is for limited conversion with degreed = 1. If all the
neighbors must lie within a contiguous range ofl vertices, we cannot choose
the first and lastd vertices from the setXXX . Here we cannot choose the first and
the lth vertices shown by the hollow circles. For example, if we choose thelth
vertex its neighbors fall outside the rangel as shown in the figure above.

Let us denote the event by (given that
). Then the right-hand side of (5) is given by

Pr Pr or or or

Pr (6)

because we can choosecontiguous vertices in ways. Now
consider one such contiguous set ofvertices in the set , say
set . As per our assumption, thevertices in set are con-
tained in the “facing” vertices of the vertices in set. We de-
note this set of “facing” vertices as set which has cardinality
. We want to choose vertices in such that their neighbors

are in set . If any vertex is in the first vertices or the last
vertices of the set , some neighbors must fall outside the

range of set as shown in Fig. 2. Therefore,vertices can be
chosen only from vertices of set . The total number
of ways in which set , such that , can be formed is

. Therefore, the probability that , when is a
set of contiguous vertices of size, is given by

Pr (7)

Therefore, from (5)–(7), we get

Pr contiguous (8)

We have already mentioned that Pr is lower
boundedby the left-hand side of (8) given that .
Thus, this does not yield a bound on Pr .
We assume the following approximation holds for

:

Pr

We will see from numerical results later that this yields a good
approximation to the blocking probabilities, at least for small
values of the conversion degree.
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For the general case of an-hop route, , let be the
number of the idle wavelengths on theth hop. We condition on
the set of disjoint events ,
where . Recall that is a random variable
denoting the number of possible outgoing wavelengths on route

. We thus obtain the recursive relation (assume the first
links to be the first link and the last link to be the second link):

(9)

where is given by (3).

D. Fixed Wavelength Routing

We consider a network with an arbitrary topology withlinks
and wavelengths on each link. A route is a subset of links

. Calls arrive for route as a Poisson stream with
rate . An incoming call on route is set up if it finds a free
wavelength on all the links from the possible choices of out-
going wavelengths with the given degree of limited wavelength
conversion. If such a combination of wavelengths is not possible
on the links constituting the path, then the call is blocked and
lost. If the call is accepted, it simultaneously holds the wave-
length/wavelengths on all the links on routefor the duration
of the call. The holding times of all the calls are assumed to be
exponentially distributed with unit mean.

Let be the random variable denoting the number of idle
wavelengths on link in equilibrium. Let
and let

Pr

be the idle capacity distribution. Throughout the following ap-
proximations are made.

1) The random variables are mutually in-
dependent. Then

where .
2) When there are idle wavelengths on link , the time

until the next call is set up on link is exponentially dis-
tributed with parameter . This parameter is the call
set-up rate on link when wavelengths are free on link
.

From the approximation (2), it follows that the number of
idle wavelengths on link can be viewed as a birth-and-death
process, and therefore we have

(10)

where

(11)

The call set-up rate on link, when there are idle wavelengths
on link , , is obtained by combining the contributions
from the request streams to routes of which linkis a member.

if

Pr

(12)

If the route consists of a single link, then the probability term
Pr under the summation sign in (12) will be equal to 1. If the
route consists of two links, let . The term Pr can be
further simplified by conditioning it on the set of disjoint events

.

Pr

Pr Pr

(13)

where is given by (3).

E. Computation of Blocking Probability

The blocking probability for calls to route is

Pr

if

if (14)

Blocking probability for routes with more hops can also be cal-
culated similarly.

F. Algorithm for Computation of Blocking Probability

The algorithm below uses a fixed-point method to compute
the approximate blocking probabilities for the traffic on all the
routes and the (average) blocking probability of the network.

1) Initialization. For all the routes let . For
, let , and let be chosen arbi-

trarily, .
2) Determine from (10) and (11).
3) Obtain new values of , using (12).

(Note that (13) must be used in (12) for 2-hop paths, and
suitable generalizations for paths with more hops.)

4) Calculate , for all routes , using (14). If
(where is suitably small positive quantity),

then terminate. Otherwise let , and go to step 2.
5) The (average) blocking probability of the network is then

given by
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Fig. 3. Example network with six nodes and seven links.

Fig. 4. Mesh network with 14 nodes and 18 links.

III. N UMERICAL RESULTS

We present simulation and analytical results for an example
network with 6 nodes and 7 links (Fig. 3), a 6-node ring network,
and a mesh network (Fig. 4) for three different cases: no wave-
length conversion, limited wavelength conversion with degree

, and full wavelength conversion. For the first two net-
works, we consider connections between all possible node pairs,
so that the number of possible routes is 15. For the mesh net-
work, we have taken 80 routes. (These are the routes for which
the minimum hop path is unique.) The offered traffic on each
route is assumed to be equal (uniform traffic) and we plot the
(average) blocking probability (over all routes) versus the total
offered load to the network.

In simulation, for limited wavelength conversion, we choose
a wavelength out of the free wavelengths on the first hop uni-
formly randomly and at each subsequent hop look for the pos-
sible outgoing wavelengths with the given degree of wavelength
conversion. If more than one such wavelength is available, then
once again we choose a wavelength uniformly randomly on this
hop. This is repeated on subsequent hops. If, at some hop (other
than the first), there is no wavelength free which is in the pos-
sible subset of outgoing wavelengths, then we fall back to the
previous hop and choose a wavelength out of the free wave-
lengths minus the earlier chosen free wavelength/wavelengths
uniformly randomly. If we exhaust all the free wavelengths on
the first hop, and still cannot find any possible outgoing wave-
length on some hop then we block the call.

For the six-node example network (Fig. 3), we plot the graphs
for 16 wavelengths showing the performance of full, no, and
limited wavelength conversion. From Fig. 5, we see that the per-
formance obtained by limited wavelength conversion with de-
gree is close to the performance of full conversion and
with degree it almost matches the full wavelength con-
version performance. In Fig. 6, we show that our analysis results
for limited wavelength conversion with degree is in good
agreement with the results of simulations. In Fig. 7, we plot the
curves for 16 wavelengths for a six-node ring network and with
conversion degree , we can virtually achieve the same per-
formance as that of full conversion. In Fig. 8, we compare the
results of our analysis and simulations for and see that

Fig. 5. Average blocking probability in the example network with six nodes and
seven links versus the total offered load, forC = 16 wavelengths per link. The
plot shows the analytically calculated values and simulation values for no, full,
and limited wavelength conversion with conversion degreed = 1 andd = 2.

Fig. 6. Comparison of the results obtained through analysis and simulation for
limited wavelength conversion with degreed = 1 for the example network with
six nodes and seven links.

they match quite well. For the mesh network (Fig. 4), we con-
sider 18 one-hop, 29 two-hop, 25 three-hop, and eight four-hop
routes. We show graphs for 10 wavelengths. From Fig. 9, we
note that the blocking performance of limited wavelength con-
version with degree is very close to that of full wavelength
conversion. Our method gives accurate results for higher values
of as well, for example, as shown in [11].

Table I shows path-wise blocking probabilities for the net-
work shown in Fig. 3. Simulation results are given as 95% con-
fidence intervals estimated by the method of batch means. The
number of batches is 20. We consider all the 15 possible routes
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Fig. 7. Average blocking probability in the six-node ring network versus
the total offered load, forC = 16 wavelengths per link. The plot shows the
analytically calculated values and simulation values for no, full, and limited
wavelength conversion with conversion degreed = 1 andd = 2.

Fig. 8. Comparison of the results obtained through analysis and simulation for
limited-wavelength conversion with degreed = 2 for the six-node ring network.

and each link has a capacity of eight wavelengths. The total
offered load to the network is six Erlangs and . Since
the load is uniformly distributed on all the paths, each path has
a load of 0.4 Erlangs. We observe that analytically calculated
blocking probabilities are in good agreement with the simula-
tion results. We have shown the result for low load as the cal-
culation of blocking probability using our algorithm becomes
more accurate as the load is increased. The reason for this is that
the algorithm presented in the paper is a reduced load algorithm,
and it is well known that it gives accurate results as the load is

Fig. 9. Average blocking probability in the mesh network (Fig. 4) versus
the total offered load, forC = 10 wavelengths per link. The plot shows the
analytically calculated values and simulation values for no, full, and limited
wavelength conversion with conversion degreed = 1 andd = 2.

TABLE I
WE CONSIDER THENETWORK SHOWN IN FIG. 3 WITH A TOTAL OFFEREDLOAD

OF SIX ERLANGS. ALL THE 15 ROUTES ARECONSIDERED. SO EACH ROUTE

HAS 0.4 ERLANGS OFLOAD. THE DEGREE OFWAVELENGTH CONVERSION IS

d = 2. THE NUMBER OF WAVELENGTHS CONSIDERED IS8.R: ROUTES(SET

OF LINKS),L : BLOCKING PROBABILITY OBTAINED BY USING SIMULATIONS,
L : ANALYTICALLY CALCULATED BLOCKING PROBABILITY

increased [4]. The graphs plotted also show that at higher load,
simulation results match very well with the analytical results.

We have presented three examples to show the accuracy of
our analytical method in estimating the blocking probabilities.
In all these examples, limited conversion provides a marked im-
provement in the blocking performance of the network as com-
pared to no wavelength conversion. Furthermore, the perfor-
mance obtained by limited conversion with small values of the
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conversion degree, such as or , is very close to the
blocking performance of the network with full wavelength con-
version.

The only drawback of our analytical model for limited wave-
length conversion presented above is that its computational re-
quirements are significant: exponential in terms of the number
of hops. The complexity of calculating the blocking probability

is of the order of , where denotes the number
of hops in route . Thus, when we have to consider a large
number of wavelengths on each link, or when the diameter of
the network is large, our method will be intractable. We note,
however, that this computational complexity is the same as that
of the model for no wavelength conversion [3]. Very recently, a
method of significantly reducing the computational complexity
in the no wavelength conversion case has been described by
Sridharan and Sivarajan [10]. The adaptation of this reduced
complexity model for the limited wavelength conversion case,
considered in this paper, is the subject of future research.

IV. CONCLUSION

In this paper, we have proposed a method to calculate the
average blocking probability in optical networks usinglimited-
rangewavelength conversion. The proposed analytical model in
this paper is applicable toany topology. Using this model, we
have demonstrated that the performance improvement obtained
by full-wavelength conversion over no-wavelength conversion
can be achieved by using limited-wavelength conversion with
the degree of conversion,, being only 1 or 2.

The model presented in this paper, especially that used for
computing the , can also be used for alternate routing with
limited-range wavelength conversion by extending the method
presented in [6]. This is also a topic for further research.
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