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Evaluating Blocking Probability
in Generalized

Ellen Witte Zegura,

Abstract— Generalized connectors provide the capability to
connect a singte input to one or more outputs. Such networks play
an important role in supporting any application that involves the
dktribution of information from one source to many destinations
or many sources to many destinations.

We present the first analytic model for evaluating blocking
probabdity in generalized connectors. The model altows flex-
ibility in specifying traflic fanout characteristics and network
routing algorithms. Equations are derived for computing blocking
probability for the important class of series-parallel networks.
We investigate the accuracy of the equations by comparing the
blocking probability computed using the equations to resutts from
simulation.

I. INTRODUCTION

GENERAIJZED connectors provide the capability to con-
nect a single input to one or more outputs. Such networks

play an important role in supporting any application that

involves the distribution of information from one source to
many destinations or many sources to many destinations.

Examples include television broadcast, teleconferencing and
distributed collaboration. Additional applications that rely on
generalized connectors are certain to emerge in the future.

While some applications require networks that are non-
blocking (i.e., never refuse a “legal” request to setup a catl or
connection), in many domains some blocklng is acceptable,
particularly if it occurs infrequently and affords significant
savings in network cost. Evaluating the blocking probability
of a network under expected traffic conditions is a complex
problem. Simulation is one possible approach, however con-
siderable time is required to code and run simulations. Analytic
models are another approach, often allowing more efficient
calculation of blocking probability. The goal of this work is to
develop an efficient, accurate and flexible analytic model for
evaluating blocking probability in generalized connectors.

Previous work includes well known models for evaluating
blocking probability in connectors, networks that support
one-to-one transfer of information. Lee’s model [5] gives
upper bounds on blocking probabilityy in connectors. Pippenger
improves upon Lee’s model with exact equations for a par-
ticular class of networks, those that are series-parallel [8].
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the domain of multiprocessor interconnection networks,
Patel considers behavior similar to blocking—interference
between requests from processors to memory modules [7].
Valdimarsson [11] extends the models of Lee and Pippenger to
the multirate environment by associating a fractional weight
with each connection, allowing connections to share a link
provided the sum of their weights does not exceed 1.0.

In this paper we develop the first analytic model for evah.t-

ating blocking probabi Iity in generalized connectors. A Basic
Model is described first; it is simpler to understand, but

places restrictions on the fanout structure and routing in
the network. The General Model improves upon the Basic
Model by allowing more flexibility in specifying traffic fanout
characteristics and routing algorithms. A nice property of the
General Model is that it includes as special cases both the
Basic Model and Pippenger’s exact model for connectors.
Preliminary versions of this work appeared in two earlier
papers [12], [13].

The paper is organized as follows. In the next section we
give formal definitions. In Section 111 we present a Basic

Model for evaluating blocking probability in generalized con-
nectors, by stating the assumptions of the model and deriving
equations for computing blocking probability in series-parallel
networks. This model is generalized in Section IV to allow
more flexibility in specifying traffic fanout characteristics and
network routing algorithms. Section V addresses the accuracy

of the model by comparing the results of the equations to
simulation. We conclude in Section VI with indications of
future directions for this work.

II. DEFINITIONS

Informally, the networks we consider are composed of
crossbar switches (drawn as rectangles), connected by links
(drawn as lines). The crossbar switches can be divided into
columns (referred to as stages) with links between adjacent
stages. The networks will be drawn with the inputs on the left
and the outputs on the right. The stages are numbered left to
right .

Formally, for network IV, we associate a quadruple
(S, L, 1, 0), where S is a set of vertices, called swirches,
L is a set of arcs called links, I is a set of input terminals and
O is a set of output terminals. Each link is an ordered pair
(z, y) where z E 1 U S and y E O US. Each input and output
terminal must appear in exactly one link. Links including an
input terminal are called inputs, those containing an output
terminal are called outputs. We will also need to refer to
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Fig. 2. Psrallel construction N} @ Nz @ N3

inputs and outputs of particular switches in the network. For

g E S, the switch inputs of g are all links (x, y). For x E S,
the switch outputs of x are all links (x, y).

The networks we consider can be divided into a sequence of
stages, with links allowed only between switches in adjacent

stages. The input terminals are in stage O and for z > 0, a
vertex v is in stage z if for all links (u, v), u is in stage i – 1.
A link (u, v) is in stage z if its left endpoint u is in stage i. We
will consider only networks in which all of the outputs are in
the last stage, and no other vertices are in this stage. When the
outputs are in stage k, the network is called a k-stage network.

The topology of many interesting networks can be described
by two simple construction operators originally proposed by
Cantor [2]. If IVl is a nehvork with rtl outputs and IVz is a
network with n2 inputs, then the series connection of N1 with
lV2 is denoted IVl x IVz and is constructed as shown in Fig. 1.
Informally, thk consists of taking nz copies of lV1 in one
column and connecting them to nl copies of N2 in a second
column, with one link between each pair of subnetworks. A
network constructed using only the series operator has exactly
one path between each input-output pair.

The second construction operator combines three networks.
If ZV1 is a network with nl outputs, IVz is an (n2, rt3)-
network and iV3 is a network with nl inputs, then the parallel

connection of IVl, N2 and N3 is denoted N1 @ Nz @ N3 and
is constructed as shown in Fig. 2. Informally, this consists
of taking rtz copies of lVl in one column, nl copies of
N2 in a second column and n3 copies of N3 in a third
column. There is one link between each pair of subnetworks in

D
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Fig. 3. Delta and Bene3 networks.
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adjacent columns, providing multiple, disjoint paths between
each input-output pair. We will consider the class of networks
constructed by repeated applications of the series operator
and a restricted version of the parallel operator in which
NI = N3 = Xd,d, where Xd,d denotes the d x d crossbar
switch. We refer to such networks as series-parallel networks.

We illustrate the construction operators by using them to
describe several popular network topologies. A version of the
delta network [7] with n inputs constructed of d x d switches
is denoted Dn,d and defined recursively as

Dd,d = Xd,d Dn,d = Xd,d x Dnfd,d.

This version of the delta network is called the baseline network
and is isomorphic to other popular topologies such as the
banyan [6] and omega [4] networks. The Beneii network [1],
denoted &,& is defined using the parallel constructor:

Examples of the delta and Beneii networks are shown in Fig. 3.
We are interested in generalized connection networks or

generalized connectors, which operate in the multipoint en-
vironment. Generalized connectors are also called distribution
networks or broadcast networks elsewhere in the literature.
A generalized connection request is a pair (x, Y) where x is
an input and Y is a nonempty set of outputs. A generalized
connection assignment is a set of requests in which every input
and output appears at most once. A generalized connection
route is a list of links forming a tree whose root is an input
and whose leaves are outputs. A route realizes a request (z, Y)
if its root is x and its leaves are exactly the set Y. There is
a second type of request in a generalized connection network.
An augmentation request in a state s is a pair (~, y) where
r = (z, Y) is a request in the assignment realized by s and y
is an output not in Y. An augmentation request is compatible
withs if y is idle ins. An augmentation request can be satisfied
in s if the route realizing r can be extended by adding unused
links so that y becomes a leaf of the route.

We restrict our attention to requests of the form (z, y) where
z may be busy or idle. If z is idle, the ~quest is to create a
new connection. If z is busy, the request is an augmentation
request. This represents the worst case for routing, since the
outputs of a multipoint connection are added one at a time. If
a compatible request is made, but cannot be satisfied, we say
the request is blocked. We define the generalized connection
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blocking probability P<;<.(N. p) for network N with input .r,

output y and earned load p as follows:

P~C(N. p) = I’r{route(.r) ~ y blocked I y idle}

where “route(.c ) * g blocked” means that every path from y
to the route originating at T is blocked. The input .r is chosen at
random from the network inputs. If x is busy, the generalized
connection route is a tree: y may join the connection at any
point in the tree. We refer to the complementary probability as

the generalized connection linking probabili~ Qc;e(N, p) =

1 – P(;(,(N,p).

We also define two variants on the generalized connection
blocking probability that will be useful in developing equa-
tions. The generalized connection blocking probability to a
busy input I’B (N, p) is defined as:

F’B(N, P) ~ Pr{route(.r) ~ y blocked I x busy, y idle}

while the generalized connection blocking probability to an

idle inpuf P] ( N, p) is defined as:

l’I(N, p) - Pr{.r ~ g blocked I .r, y idle}.

Each of these variants has a complementary probability de-
noted (JB ( N, p) and (~1( ,V, p), respectively. The following
equation holds for all networks N.

F’~c(N. p) = Pr{.r busy I y idle}~B(N,p)

+ Pr{.r idle I y idle} Pl(N, p). (1)

II should be clear that this model, like those of Lee [5] and
Pippenger [8], assumes a circuit-switching abstraction; a single
connection requires the full bandwidth of a link, and sharing
of links by different connections is not allowed. This work
would serve as a good starting point for a model that reflects

a multirate environment (e.g., ATM), where connections can
share link bandwidth, The extension is beyond the scope of
this paper. however, and is likely to be nontrivial, as indicated
by the complexity of similar efforts for the point-to-point case
[3], [11].

III. BASIC MODEL

The models we consider have two components. The first
is ii set of assumptions that define a probability distribution
on states of the network. The second component is equations
for calculating blocking probability based on the probability

distribution of network states. In this section we develop a
probabilistic model for connections in a generalized connector
with

1)
~)

3)

the following assumptions:

Every output is busy with probability p.
The conditions of different outputs (busy or idle) are
independent.
If a given d x d switch has r busy outputs, all of the
d“ ways in which they may be connected to the inputs
are equally likely. That is, each busy switch output
independently selects a switch input to be connected to.

The first two assumptions are straightforward. The third as-

sumption captures the multipoint nature of the networks we are

considering; multiple busy switch outputs may select the same
switch input, creating a multipoint connection. A consequence
of Assumption 3 is that if the links in stage i + 1 are
independently busy with probability P,+l, then a link in stage
i is busy with probability pz = 1 – (1 – (p, +l /d))d. A link in
stage i is busy if any of the busy links in stage i + 1 select it.
Each link in stage i + 1 is busy with probability p,+l and, if
busy, selects from the d inputs with equal probability. If the
conditions of the links in stage i + 1 are not independent, then

the equation can be used to approximate pi. Later in the paper
we consider the error resulting from the approximation.

In a network with .9 stages, p, = P. We let q, = 1 – Pi

denote the probability a stage i link is idle. For simplicity we
have assumed that all switches are d x d; it is straightforward
to generalize the results to nonsquare switches.

As stated earlier, we consider the class of uniform series-
parallel networks. The blocking probability for an arbitrary
network in this class can be determined from the blocking

probability for a crossbar network and the transformation
of the blocking probability under the series and parallel
construction operators. The equations for the crossbar network
are trivial: ~Gc(Xdd!p) = }’B(xd,d. p) = P[(xrf.d. p) = 0.

Before developing the equations for the series and parallel
construction, we consider several fundamental probabilities
that will appear throughout the derivation.

A. Fundamental Probabilities

We derive expressions for the following conditional proba-

bilities relating input z and output y of network N with output
load p:

~+(N,P) s Pr{~ idle I y idle}.

P-(N. p) a Pr{s busy I g idle}.

(j-(N, p) s Pr{z idle I y busy},

P+(N, p) s Pr{z busy I y busy}

by introducing a quantity which covers all four conditional
probabilities:

C(N. p. ~) - Pr{~ busy I y busy with probability fi}.

Notice that Q+(N, p) = 1 – C(N. P.0). P-(), Q-(. ) and
F’+ (.) can be similarly expressed as functions of C(.), with
~ = () corresponding to y idle and fi = 1 corresponding to

y busy.
We can express C’(N. p, j) on a crossbar and give the trans-

formed probability under the series and parallel construction
operators:

~(xd,~,p,j) = 1 – (, - $)’-’-’(, - ;).

The intuition is that .r is busy if some busy output selects x.
Each output except y is busy with probability p and, if busy,
selects independently from the d inputs. Output y is busy with
probability j and, if busy, selects independently from the d
inputs.
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Turning to the series construction operator, consider the
network N = lV1 x Nz, with input z and output y. We let w
denote the link connecting the copy of N1 containing x with
the copy of N2 containing y. We let sl denote the number of
stages in N1. (See Fig. 4.) Let “wp” denote “with probability”.

C(N1 X N2, p,p)

= Pr{w busy I y busy wp p} Pr{z busy I w busy}

+ Pr{w idle I y busy wp ~} Pr{z busy I w idle}

= c(~2,p,@C(N1>ps1 >1)

+ (1 – c(N2, p, P))c(Nl>Ps, >o).

For the series transformation, the condition (busy or idle) of y

affects the condition of z through the link w. Given C(.) for
both N1 and N2 we can express the probability z is busy for
the two cases of w busy and w idle.

For the parallel construction operator, consider the network

M = Xti,d 8 N Cl Xd,d. We let s denote the number of stages
in &f. (See Fig. 6.) To compute C(iVf, p, ~), we introduce an
approximation. Although the states of the links out of the
switch containing z am not independent, we assume that they
are. Without this assumption we have been unable to develop
a useful analytic expression for the desired probability. With
the assumption, we approximate C(O) by

( )C(N,P.g-l, C(Xd,d, P>P)) d
1– l–

d

Input z is busy if some busy link out of the switch containing z
selects Z. The probability each of these links out of the switch

containing z is busy is determined recursively with p = ps _ 1

and # = C(&,&p,fi).
The expression for G(.) on the crossbar switch, together

with the series and parallel transformations, gives us
the desired conditional probabilities Q+(N, p), P- (N, p),

Q- (N, P) md P+(N, P) for any uniform series-parallel
network N. From the conditional probabilities we can express
any joint probability on the condition of x and y. For example,
Pr{z idle, y busy} = Pr{z idle I y busy} Pr{y busy} =

Q- (N, P)P. we can now develop equations showing how the
generalized connection blocking probability is transformed
under the series and paralleI construction operators.

B. Derivation of Equations

Using the conditional probabilities of the previous section,
the generalized connection blocking probability of(1) becomes

%c(N,P) = P-( N, P)%(N,P) -t Q+(N, P) PI(N, P).

It suffices to show how the blocking probabilities PB (.) and
Pr(.) are transformed under the series and parallel construc-
tion operators. We begin with the simpler case—the series
operator-then tackle the parallel operator.

1) Series Construction Operator: Consider the network
N = N1 x N2 in Fig. 4. We show how the probabilities

QB(”) = 1 – PB(”) and QI(”) = 1 – PI(.) are transformed
by the construction operators.
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Fig. 4. Relevantpart of series construction.

The generalized connection linking probability to a busy
input is

QB(N1 x N2, P) = Pr{w busy I z busy, y idle} (2)

. Pr{w connected to z I X,W busy} QB(Nz, p)

+ Pr{w idle I x busy, y idle} Q~(Nz, p) Q~(Nl, p.l).

Informally, an augmentation request to join y to a busy z
succeeds if and only if one of two conditions holds. First, w is
busy and connected to z and y can be connected to route(w).
Second, w is idle, there is an idle path from y to w and w
can be connected to route(z).

The generalized connection linking probability to an idle
input is

A

QI(NI x N2, P)

= Pr{w idle I z, y idle} Q1(Nz, p) Qr(Nl, p~, ).

(3)

new connection request to join y to an idle x succeeds if
and only if w is idle, there is an idle path from y to w and
there is an idle path from w to z.

The conditional probabilities regarding the state (busy or
idle) of w given the state of x and y can be computed
using Bayes’ theorem, the fact that the states of z and y are
independent given the condition of w, and the joint probability
regardhg the states of x and y. Recall that Bayes’
states

Pr{S I 2’} =
Pr{T I S} Pr{S}

Pr{T} ‘

Then, for example,

Pr{w idle I z busy, y idle}

Pr{x busy I w idle} Pr{w idle I y idle}
=

Pr{z busy I y idle}

theorem

P-( Nl, p., )Q+(N2, P)
=

P-(N1 X N2, p) “

The expression for QB(.) also requires the probability w is
connected to z given z and w are busy. For this we need the
following lemma on series-parallel networks under our model.

Lemma 3.1: A busy output is equally likely to be connected
to any input.

ProoJ? The lemma holds for Xd,d by Assumption 3. We
show it is preserved by the series and parallel construction
operators. Let y be a busy output and z be an arbitrary input.
Assume the lemma holds for N1 with nl inputs and N2 with
rt2 inputs. In N1 x N2, y is connected to z if and only if y
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Fig 5. Dependence of suhnelwork states
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is connected [o 711and w is connected to :r. This occurs with
probability l/(nl ttz).

Assume the lemma holds for N with n inputs and consider
Xd,(f @ N @ .l-,f,(l. (See Fig. 6.) y is connected to some w’ into
one of the d subnetworks N. Given this, y is connected to z

if and only if this u’ is connected to u) and u) is connected to
.r. This occurs with probability l/(7@. ❑

Using Lemma I and the definition of conditional probability
we obtain

Pr{w connected to r I r. ?(Ibusy}

_ Pr{ UJconnected to r and z busy I w busy}
—

Pr{.r busy I w busy}

Substituting into (2) and (3) we get the equations at the
bottom of this page. Those familiar with Pippenger’s model for
blocking in connectors will recognize the close correspondence
between Ql ( N, x N2, p) and the connection linking probability
under the series construction.

2) Parallel Construction Operator: We now consider net-
works constructed using the parallel construction operator.

Consider the network A! = .~~,d @ N @ .Td,d. It appears
that deriving an exact equation for the blocking probability of
Af in this model is quite difficult. The conditions of different
subnetworks I are not independent, as they are in Pippenger’s
model for connectors. This can be demonstrated by a simple
example in which d = 2 and p = 1.0. Consider a last stage
switch where If,,, denotes the link into the top subnetwork and
u}I denotes the link into the bottom subnetwork. (See Fig. 5.)

Since p = 1.(), it is easy to see that if WI is idle, then
Ujo musl be busy. That is, Pr{u~(l idle I U)l idle} = ().(). If,
however, 1111is busy. then W[) has a nonzero probability of

being idle.

Pr{ Wt) idle
Pr{ u). idle, WI busy} 1/4 1

‘ml busy } =
Pr{wl busy} = ~ = ~“

‘-&-”’v---m-wy

•1N
+– —-–- S - -+

Fig. 6. Relevant part of parallel construction,

The conditions of the subnetworks are not independent since
the condition of Ulo (a part of subnetwork No) depends on the

condition of W1 (a part of subnetwork N1 ). While the example

assumed d = 2 and p = 1.0, the dependence also exists for
general d and p.

Since it appears difficult to derive exact equations for the
parallel operator, we derive approximate equations by making
the simplifying (but inaccurate) assumption that the conditions
of the different subnetworks are independent. In Section V we
investigate the accuracy of the approximation.

The quantities ~E (.) and PI(. ) can be calculated by intro-
ducing several random variables to account for the conditions

of the links into and out of each subnetwork N needed to create
a connection between z and y, similar to Pippenger’s approach
for blocking in connectors. Specifically, each subnetwork N
has a link w connecting it to the first stage switch containing x
and a link w’ connecting it to the last stage switch containing

y. (See Fig. 6.) Let the random variable .J denote the number
of subnetworks for which w is busy and w’ is idle. Let the
random variables K and L denote the number of subnetworks
for which w and w’ are both idle, and w and w’ are both busy,
respectively. Let A denote (.J = j. K = k. L = 1).

d

P1(A4, p) = ~Pr{K = k I T.y idle} (4)
k=O

. Pr{x * y blocked I .r, ~ idle. K = k}

~B(~,P) = ~ Pr{.4 I .~ busy, y idle} (5)

j,k,l~O
]+k+l<d

Pr{route(x) H J) blocked I x busy, y idle, A}.

Intuitively, if x is idle, the only way to satisfy a new con-
nection request to connect y to ~ is by way of an idle path
from y to x. Only those subnetworks which have both V1and
w’ idle are candidates to realize the request. If r is busy, an

~J(NI x N2>P) =
Q+(~l,PS, )Q+(~Z, P)Q1(N, ~,, ~Q1(N2p,

Q+(NI x N2,P) ‘ ‘ ‘

QB(NI x N2, p) =
,L,P:;f;22.p)Q~(~”p) + ‘-Y;; ’iQ;:$’p)Q’(’~2’p)’J~ (N’’p”)
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augmentation request to connect y to z may be satisfied in
several ways. In fact, only those subnetworks which have w
idle and w’ busy are immediately ruled out as candidates for
realizing the request.

1) Idle input: First we consider calculating the generalized
connection blocking probability to an idle input. Using the
assumption of subnetwork independence, PI(. ) in (4) is ap-
proximated as

~Pr{K = k I x,y idle} (PI(N,p._l))’.
k=O

Determining Pr{K = k I Z, y idle} requires the random
variables J, K and L. Let G(a, 6, c) be defined as follows:

G(a, b, c) = ~ Pr{A I Z, y idle}a~bkc~ (6)
j,k,l

with the same conditions on j, k and 1 as in (5). Notice
that P{(lvf,p) = G(I, PI(N, p,_l), 1), therefore if we can
evaluate G(.), we will have the desired blocking probability.
To evaluate the conditional probability in this equation, we
introduce a similar equation with an unconditional probability:

If(a, b,c) - ~ Pr{A}a~bkcz. (7)
j,k,l

The links at the outputs of the subnetworks N
are each busy with probability p~ – 1 and idle with
probability qs- 1. A particular subnetwork is of type
J with probability q._ ~P- (N, p,_ ~), of type K with
probability q,-lQ+ (N, p._l ), of type L with probability

P.-1 P+(N, PS- 1), and of none of these types with probability

PS–lQ - (N, P~- 1). With the assumption of subnetwork
independence, we approximate H(a, b, c) by

H(a, b,c) N (p~-lQ-(N, p~-l) + qs-l P-( N,p,-l)a

+qs-lQ+(N, p,-l)b+p,-l P+(N, p._l)c)d.

We now relate the conditional and unconditional probabilities.
By Bayes’ theorem,

Pr{A I z, y idle} =
Pr{z, y idle I A} Pr{A}

Pr{x, y idle}
(8)

The conditions of x and y are independent given A, thus we
can take the product of Pr{x idle I A} and Pr{y idle I A}
to get the joint probability. Given A, the switch containing z
has exactly j + 1 busy outputs. The probability z is idle under
these condhions is

( Ye+’=’+’Pr{x idle I A} = 1 – -

since z is idle if none of the j + 1 busy switch outputs selects z.

Given A, the switch containing y has exactly d –j – k busy
inputs. Let r = d–j – k. The probability y is idle given r busy
inputs can be evaluated using Bayes’ theorem. We use this to

approximate the probabdity y is idle given A. The dependence

of subnetwork states makes this an approximation, rather than
an exact computation.

Pr{y idle I A} x Pr{y idle I r busy in}

_ Pr{r busy in I y idle} Pr{y idle}
—

Pr{r busy in} “
(9)

We evaluate Pr{r busy in} as follows:

Pr{r busy in}

= ~Pr{v busy out}Pr{r busy in I v busy out]

d
d——

10 ~ P“qd-v Pr{r- busy in I v busy out}. (lo)
U:r

The expression Pr{r busy in I v busy out} can be evaluated
recursively. Let Pu,v denote Pr{u busy in I w busy out} on a
d x d crossbar. The base cases are

Po,o = 1.0,

Pq. = Pl,,o = 0.0 for v # O.

The generaI case of u busy inputs given v busy outputs can

occur in two ways. First, it occurs if there are u – 1 busy inputs
with v – 1 busy outputs and the next busy output connects
to one of the idle inputs. Second, it occurs if there are u
busy inputs with v – 1 busy outputs and the next busy output
connects to one of the busy inputs. The general expression is

Using Pu,u, (10) becomes

The evaluation of Pr{r busy in I g idle} is similar, except that
there are only d – 1 possible busy outputs.

()‘-1 d–l
Pr{r busy in I y idle} = ~ v p“q~-l-”PT,V.

U=T

The expressions for Pr{r busy in I y idle} and Pr{~ busy in}
can be substituted into (9), giving

?(d-l)v P“9d-vpr,v

Pr{y idle I A} s “=’d
d

x() v P“qd–”p.,v
?J=r

Returning to (8), we now have

()d – 1 ~+~ Pr{A}
Pr{A I z,y idle} = Pr{y idle I A} ~

qQ+(~>P)“
Substituting this into (6) gives

G(a, b, c) =
1

qQ+(~,p)

()
~~Pr{y idle IA} ~ ‘+’ Pr{A’

j,k,l

~jbkcl
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where l’r{ .4} =

(),jj(p_ ,()- (.\. p- , )) (/-.~-~((l,\_, _J/(4v4Js/1)) l))’

(f/,._,(J+(.v.)).,_,))L’(/)._,I’+(.v./),._,))’.

This expression can be used to compute PI ( If. p),
z j Bu,yy [lllj[~~..we now consider the generalized connection

blocking” probability to a busy input, ~B(.!f = .Y,[,,l ;:: .V :;
.Y,l,,~.p). Using subnetwork independence, ~B(. ) in
approximated as

~Pr{.1 = .j.K = 1. L = / I r busy.!, idle}

P~(.N’. p,,-,) = 1 –
l/(/z’+ (N.p,<-l )P+(X(~,,/. pl ) “

(5) is

(11)

Informally, we block in each of the ,j subnetworks with w busy

and {(’ idle if we cannot realize the augmentation request in
.V to join 111’to // or u is not connected to .r (occurs with
probabability 1’1( )). We block in each of the k subnetworks
with u and ti ‘ idle if we cannot realize the augmentation
request in .V to connect {~’ to u’ (occurs with probabability
f),(~) ). We block in each of the 1 subnetworks with u and i(I’

b;sy if II is not connected to tl’ in :?l or !(’ is not connected

to r (occurs with probabability /?3( .)).
To determine the conditional probability, we apply a similar

technique to the one introduced in deriving the expression for
l’](). Specifically, define F({J. h. f) as follows:

~’(~1.b. ,) E ~ 1’r{.4 I r busy. !l idle} oJbkc~ (12)

,.KI

and notice that ~’(1’l ( ). P2( .). F’J(. )) is exactly the gen-
eralized connection blocking probability to a busy input
in ( 11). As before, we use the function H(. ) in (7) and

Pr{.4 I .r busy. .y idle} with Bayes’ theorem to determine
F( ), The result is

]’r{.~ I r busy. !j idle} =

This can be used in ( 12) to give an expression for F’B(AI. p).
Combining the blocking probabilities F’f(Jlf. p) and

PD (:!1. I)) completes the transformation of the generalized
connection blocking probability under the parallel construction

IV. GENERAL MODEL.

For a model to be useful, it must do a reasonable job
of representing real traffic, With the set of assumptions in

the Basic Model, the only parameter by which traffic can be
specified is the output load p. The fanout distribution in each
stage, and thus in the entire network, is fixed by Assumption
3. In the General Model we modify Assumption 3 to allow
more variety in specifying the fanout characteristics of the
multipoint traffic and the routing of connections. Another
criteria for usefulness of the model is the accuracy of the
equations, that is, how faithful are they to the underlying
probability distribution implied by the assumptions. In both

models an approximation is made that causes an inaccuracy
in the equations, however in some cases the General Model is
considerably more accurate than the Basic Model,

In the General Model, we retain Assumptions 1 and 2 and
modify Assumption 3 as follows.

If a given d x d switch has r busy outputs, the state of
the switch is determined by a local fanout function ~(~),
The busy outputs are considered in random order. When
an output is considered, it is connected to an arbitrary

busy input with probability ~(u), where It is the current
number of busy inputs. Otherwise it is connected to an
arbitrary idle input.

We call J( ]1) the fanout jmcfjon since it controls the
fanout structure of the multipoint connections. To see how this

generalizes the previous model, note that if j(v) = 7i/d then
the probability that a busy switch output connects to a busy
switch input is exactly equal to the fraction of busy switch
inputs. This matches Assumption 3 of the previous model in

which the busy switch output chooses an input at random.
Another special case of particular interest is J( ~1) = 0.0.
This gives Pippenger’s model for connectors, in which each
busy switch output is connected to an arbitrary idle switch
input. The resulting network will have only point-to-point
connections.

The modification to the model allows considerably more
control over fanout structure and routing scheme, To further
increase the flexibility of the model, it is possible to specify

different fanout functions for different stages of the network.
This allows one to model, for example, a network in which

copies are made in the early stages and point-to-point routing
occurs in later stages, a technique which has been considered
for some ATM networks [9].

The equations derived in the previous section can be modi-
fied to give the blocking probability under the General Model.
We highlight only the changes to the earlier equations.

A. Fundamental Probabilities

In the last section we defined the quantity J’,,,,. to be the

probability a d x f/ switch has II busy inputs given that it
has t busy outputs. This quantity was used for one particular
calculation. In the General Model it is ubiquitous. Recall the

if. p) recursive expression for 1’,,,, in the model from the previous

section:

~, ,=(d-f/+l)
1). r:j(iv. p-1)). 1’,,–l.,. -1 + ;Pl,.l. _l.,,./

d
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The quantity (d – u + 1)/d is the probability the next busy
output selects from the idle inputs when there are currently
71 – 1 busy inputs. The quantity u/d is the probability the
next busy output selects from the busy inputs when there are
currently u busy inputs. In the General Model, the probability
the next busy output selects from the idle inputs when there
are u – 1 busy inputs is 1 – ~(u – 1). The probability the
next busy output selects from the busy inputs when there are

u busy inputs is f(?L). The expression for ~,,,,, in the General
Model is modified accordingly:

Pu,t, = (1 – f(u – l)) P1,-l,,!– I + f(u) P1,,,>_l.

The base cases remain the same, that is, PO,O = 1.0 and

1’0,,1 = P,.,0 = 0.0 for 27# 0.
Another fundamental probability needed throughout the

equation derivation is the probability a link in stage i is busy.
In the model from the previous section, a link in stage i is busy
with probability Pi = 1 – (1 – (pa+l /d))d, assuming the links
in stage z + 1 are independent] y busy with probability p,+ 1.
In the General Model, p, is more complicated to evaluate.
Consider a switch in stage i + 1. The inputs are in stage i and
the outputs are in stage i + 1. Assume the outputs are each
independently busy with probability p,+l. If there are j busy
inputs, a particular input is busy with probability j/d:

~~i= ~ $Pr{.j busy inputs}
j=l

= ~ ~~pr{k busy outputs
j=l k=j

‘5~k (i)~~+lqQ’pjk
j=l k=j

We now consider modifications to the quantity C(N. p. j),

the probabilityy input z to network N is busy given that output

v is busy with probability F and all other outputs are busy with
probability p. When N is a crossbar, the equation is similar
to the one above for Pi, except that output T] is busy with
probability @ rather than p:

C(xd.lf! P, i)

~jpr
= ~ ~ {j busy inputs I v busy WP j}

,=1

= f ~ ~pr{k busy outputs I v busy with prob fi}pj,~
j=l ‘ k=j

= $ ;$ (9 (’L l)pk’J -l-k

‘p(wpk-lqd-k)pJ k

Under the series construction operator, the transformation
of C( N1 x Nz. p. fi) derived previously also holds for the
General Model.
saw previously
ing x is busy

Under the parallel construction operator, we
that each link out of the switch contain-
with probability C(N. p,_l . C(X’,’, p, j)).

This is true in the General Model as well. Let @l denote

C(N. P,,-1 i C(X~,,~. P. j)). Input r is busy if at least one of
the busy links selects :r:

C(Xd,,l !8 N ~ .X’,’, p. fi)

‘.i= ~ ~Pr{j busy inputs at switch containing z}
j=l

B. Series and Parallel Equations

The transformation derived previously for the series op-
erator holds for the General Model. Of course, since the
transformation involves various instances of Q+(.) and P-(),

the modifications to C( N, p. ~) result in underlying modifica-

tions to the transformation.
The majority of the derivation under the parallel operator

carries over to the General Model. The only modification is
in the expression for the probability input z is idle given A

(needed to calculate PI(.)) and the complementary probability
that x is busy given A (needed to calculate PB (.)). Recall that
when A holds, the switch containing z has exactly j + 1 busy
outputs. Input x is idle if none of these connects to z.

‘k
Pr{x idle I A} = 1 – ~ ~pk,j+~.

k=l

V. APPLICATION OF THE MODEL

In this section we apply the model to some specific senes-
parallel network topologies, addressing two issues of interest.
Primarily, we examine the effect of the approximation in the
equations for the parallel construction operator, by compar-
ing the equation results to results obtained by a simulation

designed to exactly match the assumptions of the model,
We also examine the fanout distribution obtained by various
fanout functions. Before discussing the results, we detail the
simulation methodology.

A. Simulation Methodology

In designing the simulator, we created a traffic environment
that matches the assumptions of the model. The simulator
operates as follows. In the first phase, a background of
multipoint connections is established working from the outputs
of the network toward the inputs. For a specified network of
size n and output load p, one output (call it y) is selected
to be idle, and each other output is independently made busy
with probability p. Each last stage switch is configured by
allowing each busy switch output to select from the d switch
inputs according to the fanout function. If multiple busy switch
outputs select the same input, a multipoint connection is
formed. This continues, one stage at a time, throughout the

network, until the inputs are reached.
In the second phase, an input .Z is chosen at random. If

we are measuring the blocking probability to an idle input
(PI(.)), we check to see if x is idle. If so, an attempt is made
to connect y to .z. The success or failure of the attempt is
recorded, and the background connections are cleared. If x is
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busy, the background setup is discarded, This does not count

as an attempt, lf we are measuring the blocking probability to

a busy input (PD(. )), the procedure is similar except that the
background is discarded when .r is idle.

The two phases are repeated multiple times. The blocking
probability istheratio of thenumber of failed attempts to the
Iota] number of attempts, An important issue is the number of
total attempts to perform. For large networks with low output
load. the blocking probability can be very low. requiring many
simulation attempts to get statistically valid results. We have
kept confidence interval information for all of the simulations
and ran them long enough so that, except at very low loads,

the 95% confidence interval was within 10% of the simulation
average.

B. Deltd Net}fvrk

We tirst consider the delta network under the Basic Model.
As described in Section 11, ti delta network is constructed
purely from the series construction operator. We made no
~implifying assumptions in deriving the equation for blocking

probability under the series operator. thus we expect the
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Fig. 8. FanouI distribution for DI 1,.J

equation results to match simulation results. Fig. 7 shows the

generalized connection blocking probability computed using

the equation and measured by simulation. The plot on the
top is for d = 2; the plot on the bottom is for d = .4.
Each plot contains simulation and equation curves for ne[work
sizes n = 16. [M. 256. 1024. In all of [he plots, the simulation
curves are marked by a plus f+) and the equation curves are
marked by a minus ( –). The blocking probability is plotted as
a function of the output load, ie.. the value [) from the model,

As expected, the equation results agree with the simulation

results. (In fact, it’s difficult to discern both the plusses and

minuses in the plots. ) The blocking probability increases with
network size 1~ and decreases with switch size d. Both an
increase in T)for fixed d and a decrease in d for fixed r~have
the effect of adding more stages to the network. Intuitively, it
becomes more difficult to satisfy a request when the number
of stages increases. Not surprisingly, this indicates that a delta
network is a poor choice as a generalized connector, exhibiting
a high rate of blocking even at moderate loads.

C. Fanout Functions

If the network designer has knowledge about the fanout

distribution expected for connections through the network,
that can be modeled by the fanout function to give blocking
probability estimates that better reflect expected traffic. We
restrict this discussion to fanout functions of the form j( u,) =
wujd, where d is the number of inputs to the given switch and
() < 0 < 1, In the conclusions, we mention other interesting

fanout functions.

Consider the fanout distribution for the fanout function
~(u) = nvfd. Intuitively, the effect of varying n is straightfor-

ward. As ~~increases, busy outputs are more likely to choose
the same input, leading to background connections with high
fanout. To get a more detailed view. we consider the fanout
distribution on a specific network.

Fig. 8 shows the fanout distribution for the network 111(,z

with an output load of 0.5, Five values of (} are considered,
ranging from 0.0 to 1.0. The plot shows the fraction of
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Fig. 9. Blocking probability in Beneinetworks.

connections with a particular fanout, for all fanout values that
appeared at least once. When n is 0.0, all of the connections
are point-to-point, thus all of the connections have fanout
of one. As n increases, the connections tend to be larger,
although even at a = 1.0, a significant fraction (about half)
are point-to-point connections.

Additional experiments have been performed to study the
fanout distribution on different networks and with different
loads. These experiments support the intuition that increasing
the output load results in more larger connections. Ftrrther-
more, decreasing the number of stages by increasing d results
in less opportunity for combination of busy links, leading to
more smaller connections. The fanout distribution study also
motivates considering fanout functions that allow for more
larger connections; this will require a different form of fanout
function.

D. Accuracy of the General Model

In this section we investigate the accuracy of the General
Model. The series equations are exact, but the parallel equa-
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Fig. 10, Accuracy of model fOr ~1 6,2.

tions contain an approximation, with accuracy that varies with

o. We already know something about what occurs at one
extreme value of cr: when a = 0.0 and we are connecting

to an idle input, the model is equivalent to Pippenger’s exact

model for blocking in connectors.
We first look at the values of blocking probability predicted

by the equations and measured during simulation when a =

1.0. Fig. 9 shows the simulation results marked by plus (+) and
the equation results marked by minus (-) for three networks,
BB,2, B16,2 and B64,4. Consistent with the observations re-

garding the delta network, the blocking probability is smaller
for the larger networks and smaller for an idle input than for

a busy input. Less clear from this plot is the accuracy of the
equations, beyond the qualitative observation that the curves

are relatively close, but not exact. To better explore accuracy,
we turn to plots of the error in the equation, rather than the
value of blocking probability.

Consider the Bene5 network BIG,Z. Fig. 10 shows the error

in the equation for blocking to an idle input (on the top) and
to a busy input (on the bottom), as a function of output load,
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for values of ,~ ranging from 0,0 to 1.0. Error is defined as

the difference between the equation value and the simulation
value, divided by the simulation value. For an idle input,

the accuracy improves as f~ decreases. approaching an exact
match between the equation and simulation when ~] is 0.0, The
curves all have the same general shape, that is, the accuracy
decreases as output load increases until moderately high output

load is reached. The intuition is that at very high loads, the
blocking probability is CIOSC(o 1.0 and the dependencies across
subnetworks are less important since nearly all subnetworks

block, The blocking probability (and accuracy) are higher
when (t is small since most of the connections are point-tin

point.
For a busy input, the accuracy has somewhat different char-

acteristics than was observed for creating a new connection.
When the output load is less than 0.5, the equation is more

accurate for smaller f}, When the output load exceeds ().5,
the equation is more accumte for larger (}, When f~ = ().()
and we are connecting to a busy input. wc have the same
distribution on states os in Pippengcr”s exact model, but

C-N
o

0
0

Idle Input
I

I, , , ,

0.2 0.4 0.6 0.8

output load

(Top)

( f, 1 I

0.2 0.4 0.6 0.8

output load

IBu:lurn)

Fig. 12. Accuracy {~fmodel for D,,! I

the blocking probability calculation contains approximations.
The intuition for why the error is greater for a busy input
than for an idle input is that the equation for blocking

probability to a busy input is more complex. The equation
must take into account a wider variety of situations and
thus there are more opportunities for error in the equa-
tion.

To determine how the accuracy varies with the size of the
network, we also examined a smaller network, BS.Z (Fig. J I )

and a larger network f~~jJ,L (Fig. 12). In each case the top
plot is for an idle input and the bottom plot is for a busy
input. The accuracy for an idle input is similar in all three

networks for moderate to high output load and worse for the
larger network at low output load. As network size increases,
the accuracy for a busy input improves. Two trends are at
work here: first, as the network size increases, the blocking

probability decreases; second, as the network size increases,
the equations involve additional levels of recursive evaluation
ot’ blocking pr-obability in smaller subnetworks. Errors in the
recursive evduution arc manifeit in the overall equation in
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complex ways, leading to the somewhat unintuitive shape of
the error plots.

VI. CONCLUSION

In this paper we have developed a model for evaluating
blocking probability in generalized connectors and derived
equations for the class of series-parallel networks. The model
allows a flexible specification of the fanout structure of con-

nections, including a specification which corresponds to the
point-to-point case and agrees with Pippenger’s exact model
for connectors. The ability to specify fanout structure allows
more accurate modeling of expected traffic characteristics and
examination of the effects of various routing schemes.

An investigation of the accuracy of the model indicates
that the approximations in the equations for parallel networks
are generally within 20% of the simulation value for the
blocking probability to an idle input. The accuracy is not

as good for a busy input, particularly for small networks
and low values of output load, however the equations are
relatively accurate—within 20%-for larger networks with
load of 0.5 or higher. While exact results would certainly
be desirable, the approximations are accurate enough for the
intended use of such a model-to get an idea of the blocking
characteristics of a network and make broad design decisions.
Building on the foundation of this model, there are several
possible directions for future work: upper and lower bounds
on blocking probability, exact equations for a limited class of

networks (e.g., three stage networks), partial or full elimination
of the assumption that subnetworks are independent, and
extensions to the multirate environment.

We restricted attention to fanout functions that were uniform
across all stages of the network and had the form ~(u) =
au/& It would certainly be interesting to look at some other
fanout functions, particularly those which could be tailored to
reflect routing algorithms. For example, using ~(u) = ().0 in
the first half of the network and ~(u) = u/d in the second
half of the network would model the type of routing found in
Turner’s cascaded Clos networks [10] in which branching is
restricted to the second half of the network.
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