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Abstract— A recently proposed active queue manage-
ment, CHOKe, is stateless, simple to implement, yet sur-
prisingly effective in protecting TCP from UDP flows. As
UDP rate increases, even though the number of UDP pack-
ets in the queue rises, its bandwidth share eventually drops
to zero, in stark contrast to the behavior of a regular FIFO
buffer. We derive a detailed model of CHOKe that accu-
rately predicts this, and other behaviors of CHOKe, and
validate the model with simulations. Its key features are
the incorporation of the feedback equilibrium of TCP with
dropping probability and the spatial characteristics of the
queueing process. CHOKe produces a “leaky buffer” where
packets can be dropped as they move towards the head of
the queue. This leads to a spatially non-uniform distribu-
tion of packets and their velocity, and makes it possible for
a flow to simultaneously maintain a large number of pack-
ets in the queue and receive a vanishingly small bandwidth
share. This is the main mechanism through which CHOKe
protects TCP from UDP flows.

I. I NTRODUCTION

TCP is believed to be largely responsible for prevent-
ing congestion collapse while Internet has undergone dra-
matic growth in the last decade. Indeed, numerous mea-
surements have consistently shown that more than 90%
of traffic on the current Internet are still TCP packets,
which, fortunately, are congestion controlled. Without a
proper incentive structure, however, this state of affair is
fragile and can be disrupted by the growing number of
non-rate-adaptive (e.g., UDP-based) applications that can
monopolize network bandwidth to the detriment of rate-
adaptive applications. This has motivated several active
queue management schemes, e.g., [13], [3], [7], [18], [15],
[17], [2], that aim at penalizing aggressive flows and en-
suring fairness. The scheme, CHOKe, of [17] is particu-
larly interesting in that it does not require any state infor-
mation and yet can provide a minimum bandwidth share
to TCP flows. In this paper, we provide a detailed ana-
lytical model of CHOKe, and discuss some of its implica-
tions.

The basic idea of CHOKe is explained in the following
quote from [17]:

When a packet arrives at a congested router, CHOKe
draws a packet at random from the FIFO (first-in-
first-out) buffer and compares it with the arriving
packet. If they both belong to the same flow, then
they are both dropped; else the randomly chosen
packet is left intact and the arriving packet is admit-
ted into the buffer with a probability that depends on
the level of congestion (this probability is computed
exactly as in RED).

The surprising feature of this extremely simple scheme is
that it can bound the bandwidth share of UDP flows re-
gardless of their arrival rate. In fact, as the arrival rate
of UDP packets increases without bound, their bandwidth
share approaches zero! An intuitive explanation is pro-
vided in [17]: “the FIFO buffer is more likely to have
packets belonging to a misbehaving flow and hence these
packets are more likely to be chosen for comparison. Fur-
ther, packets belonging to a misbehaving flow arrive more
numerously and are more likely to trigger comparisons.”
As a result, aggressive flows are penalized. This how-
ever does not explain why a flow that maintains a much
larger number of packets in the queue does not receive a
larger share of bandwidth, as in the case of a regular FIFO
buffer. It turns out that a precise understanding of this
phenomenon requires a detailed analysis of the queue dy-
namics, the key feature of our model. A simple model of
CHOKe is also presented in [17] that assumes a Poisson
packet arrival process and exponential service time. The
Poisson assumption is critical in order to use the PASTA
(Poisson Arrival Sees Time Averages) property to com-
pute drop probabilities. This model however ignores both
the feedback equilibrium of the TCP/CHOKe system and
the spatial characteristics of the queue.

Here, we adopt a deterministic fluid model that explic-
itly models both features (Section II).Our model predicts,
and simulation confirms, that as UDP rate becomes large,
not only does the total number of UDP packets in the
queue increase, more importantly, thespatialdistribution
of packets becomes more and more concentrated at the
tail of the queue, and drops rapidly to zero towards the
head of the queue. Hence even though the total number
of UDP packets in the queue is large, all of them will be
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dropped before they advance to the head. As a result the
UDP bandwidth share drops to zero, in stark contrast to a
non-leaky FIFO queue where UDP bandwidth shares ap-
proaches 1 as its input rate increases without bound.

Our current model is too complex to be solved analyti-
cally. We outline a numerical solution (Section II-F), and
compare our numerical results with detailed ns-2 simula-
tions. They match accurately not only with average be-
havior of CHOKe as reported in [17], but also with much
finer spatial characteristics of the queueing process.

The technique presented here should be applicable to
analyzing the queueing process in other types of leaky
buffer.

II. CHOKE MODEL

The basic idea of CHOKe is summarized in Section I.
A flow chart describing its implementation with RED is
given in Figure 1 from [17].
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Fig. 1. CHOKe flow chart

In general, one can choose more than one packet from
the queue, compare all of them with the incoming packet,
and drop those from the same flow. This will improve
CHOKe’s performance, especially when there are multi-
ple unresponsive sources. It is suggested in [17] that more
drop candidate packets be used as the number of unre-
sponsive flows increases. Here, we focus on the modelling
of a single drop candidate packet. The analysis can be ex-
tended to the case of multiple drop candidates.

The general setup for our model and our simulations is
shown in Figure 2.

There is a single bottleneck link with capacityc pack-
ets per second. We focus on the FIFO buffer at router
R1 where packets are queued. The buffer is shared byN
identical TCP flows and a single UDP flow.All TCP flows
have a common round trip delay ofd seconds.We assume
the system is stable and model its equilibrium behavior.
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Fig. 2. Network topology

There are two main components of our model; the first
models the feedback loop between TCP flows and the
dropping probability, and the other deals with the detailed
dynamics of a “leaky queue”. Our main goal is to under-
stand how bandwidth shares of UDP and TCP flows vary
with (the uncontrolled) UDP rate and the number of TCP
flows.

A. Notations

Quantities (rate, backlog, dropping probability, etc) as-
sociated with the UDP flow are indexed by 0. Those asso-
ciated with TCP flows are indexed byi = 1, . . . , N ; since
the TCP sources are identical, these quantities all have the
same value, and hence we will usually refer to flow 1 as
the generic TCP flow.

We collect here the definitions of all the variables and
some of their obvious properties:
bi: packet backlog from flowi, i = 0, . . . , N ; bi =

b1, i ≥ 1.
b: total backlog;b = b0 + b1N .
r: RED dropping probability:

r =





k(b− b) if b ≤ b ≤ b
0 if b ≤ b

1 if b ≥ b

(1)

wherek := p max/(b − b) is the slope of the RED
dropping profile.

hi: The probability of incoming packets being dropped
by choke for flowi, i = 0, . . . , N :

hi =
bi

b
(2)

pi: overall probability that packets of flowi is dropped
before it gets through, either by CHOKe or RED:

pi = 2hi + (1− hi) r (3)

The explanation of (3) is provided below.
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xi: source rate of flowi, i = 0, . . . , N .
τ : queueing delay (not including the common propaga-

tion delay isd).
µi: bandwidth share of flowi, i = 0, . . . , N ; µ0 +

µ1N = 1, µi = µ1, i ≥ 1.
ρi(y): probability that the packet at positiony ∈ [0, b] in the

queue belongs to flowi, i = 0, . . . , N .
v(y): velocity at which the packet at positiony ∈ [0, b] in

the queue moves towards the head of the queue.
As mentioned above, by symmetry,bi = b1, hi = h1,

etc, fori ≥ 1. RED does not distinguish between differ-
ent flows and hence its dropping probabilityr is common
for all flows i. CHOKe on the other hand differentiates
between TCP and UDP flows and henceh0 and h1 are
generally different.

We make two remarks. First, It is important to keep in
mind thatx0 is the only independent variable; all other
variables listed above are functions ofx0, though this is
not made explicit in the notation. Second,xi is the send-
ing rate of flowi. The rate at which flowi packets en-
ter the tail of the queue (after going through CHOKe and
RED on arrival) isxi(1−hi)(1−r), and the rate at which
flow−i packets exit the queue (throughput) isxi(1−pi) =
µic. Clearly,xi(1 − pi) ≤ xi(1 − hi)(1 − r) ≤ xi. Our
primary goal is to understand how throughputµic varies
with x0. As we show now, this turns out to require de-
tailed understanding of the queueing process in a “leaky
queue”.

B. TCP/CHOKe feedback loop

Recent studies have shown thatany TCP congestion
control algorithm can be interpreted as carrying out a dis-
tributed primal-dual algorithm over the Internet to maxi-
mize aggregate utility, and a user’s utility function is (of-
ten implicitly) defined by its TCP algorithm, see e.g. [4],
[9], [11], [14], [10], [8], [5]. For TCP Reno (or its variants
such as NewReno or SACK), this implies that the equilib-
rium source ratexi and the overall dropping probability
pi satisfies

pi =
2

2 + x2
i (d + τ)2

, i = 1, . . . , N (4)

This is equivalent to the well-known square-rootp for-
mula derived in, e.g., [6], [12], when the dropping prob-
ability pi is small. At equilibrium, the flows share the
bandwidth according to

xi(1− pi) = µic (5)

so that
∑

i xi(1− pi) = c.
Here,pi is the probability that a packet from TCP flow

i is dropped, either on arrival due to CHOKe and RED, or

after it has been admitted into the queue. Even if a packet
is not dropped on arrival, it can be dropped afterwards be-
cause a future arrival from the same flow triggers a com-
parison. To see whypi is related to CHOKe and RED
dropping probabilities according to (3), note that every ar-
rival from flow i can trigger either0 packet loss from the
buffer, 1 packet loss due to RED, or 2 packet losses due to
CHOKe. These events happen with respective probabili-
ties of (1 − hi)(1 − r), (1 − hi)r, andhi. Hence, each
arrival to the buffer is accompanied by an average packet
loss of

2hi + (1− hi)r + 0 · (1− hi − (1− hi)r)

Hence we take the overall loss probabilitypi to be the
packet loss rate2hi + (1− hi)r.

We next explain how to derive the queueing delayτ
and the bandwidth shareµi, the most subtle features of
CHOKe.

C. Spatial distribution and packet velocity

If a packet cannot be dropped once it has been admitted
into the queue, then, clearly, the queueing delayτ and the
bandwidth shareµi under FIFO are

τ =
b

c
and µi =

bi

b
c (6)

For a “leaky queue” where a packet can be dropped while
it advances towards the head of the queue, (6) no longer
holds, and the queueing delay and bandwidth share de-
pend critically on the spatial characteristics of the queue.
The key to their understanding is the spatial distribution of
packets in the queue and the “velocity” at which packets
move through the queue at different positions, defined as
follows. Let y ∈ [0, b] denote a position in the queue,
with y = 0 being the tail andy = b the head of the
queue. Letρi(y) be the probability that the packet at posi-
tion y belongs to flowi, i = 0, . . . , N ; as usual, we have
ρi(y) = ρ1(y), i ≥ 1, and

ρ0(y) + ρ1(y)N = 1, for all y ∈ [0, b] (7)

The average number
of flow-i packets in the entire backlog satisfies

∫ b

0
ρi(y)dy = bi (8)

More importantly, the bandwidth shareµi is the probabil-
ity that the head of the queue is occupied by a packet from
flow i:

µi = ρi(b) (9)
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Hence, to findµi, we need to solve for the spatial density
ρ(y); we will return to this after modelling another crucial
feature of CHOKe, the velocity at which packets move
through the queue.

We make two remarks before proceeding further. First,
if the queue is not leaky, then the spatial distribution will
be uniform,ρi(y) being independent of positiony. Then
ρi(y) = µi for all y ∈ [0, b] together with (8) implies
the bandwidth share in (6). That is, the bandwidth share
depends only on the total number of flow-i packets in the
queue, and not on details of their distribution.

Moreover, it is exactly equal to the flow’s share of back-
log.

When the queue is leaky, however, (9) says that the
bandwidth share of flowi depends on the spatial distri-
bution of packets only at theheadof the queue and does
not depend directly on the distribution at other positions
or the total number of flow-i packets, in stark contrast to
the case of non-leaky queue. This is the underlying rea-
son why UDP packets can occupy half of the buffer, yet
receiving very small bandwidth share: when UDP rate is
high, ρ0(y) decreases rapidly fromy = 0 to y = b with
ρ0(b) ' 0; see simulation results in Section III.

As we mention above, in a leaky queue, the queueing
delay of a packet that eventually exits the queue is no
longer the backlog it sees on arrival divided by the link
capacity. This is because it advances towards the head
both when packets in front of it exit the queue and when
they are dropped by CHOKe. To model this dynamics,
definev(y) as the velocity at which the packet at position
y moves towards the head of the queue:

v(y) =
dy

dt

For instance, the velocity at the head of the queue equals
the link capacity,v(b) = c. Then, the queueing delayτ is
given in terms ofv(y) as

τ =
∫ τ

0
dt =

∫ b

0

1
v(y)

dy (10)

We have completed the definition of spatial distribution
ρi(y) and velocityv(t) of packets in the queue. We now
derive an ordinary differential equation model of these
quantities.

D. ODE model ofρi(y) andv(y)

We will derive an ODE model forρ0(y) and v(y);
ρ1(y) can then be obtained from (7).The key is to care-
fully model the dropping process after a packet has been
admitted into the buffer.

Consider a small volumev(y)dt of the (one-
dimensional fluid) queue at positiony. The amount of
fluid (packets) in this volume that belongs to flowi is
ρi(y)v(y)dt, i = 0, 1. For instance,ρi(0)v(0)dt, i = 0, 1,
is the amount of fluid that arrives at the tail of the queue,
packets that are not dropped by CHOKe or RED on arrival
and admitted into the buffer. Hence

ρi(0)v(0) = xi(1− hi)(1− r), i = 0, 1 (11)

Another boundary condition is the packet velocity at the
head of the queue mentioned above:

v(b) = c (12)

Suppose the small volumeρi(0)v(0)dt of fluid (our
“tagged packet”) arrives at the buffer at time 0, and
reaches positiony = y(t) at time t. During this period
[0, t], there arexit packet arrivals from flowi, and each
of these arrivals triggers a comparison. The tagged packet
is selected for comparison with probability1/b each time.
We model this by saying that the fluid is thinned by a fac-
tor (1− 1/b)xit when it reaches positiony at timet. Thus

ρi(0)v(0)
(

1− 1
b

)xit

= ρi(y)v(y)

Taking logarithm on both sides and using

t =
∫ y

0

1
v(s)

ds

to eliminatet, we have

ln(ρi(0)v(0)) + xi ln
(

1− 1
b

) ∫ y

0

1
v(s)

ds = ln(ρi(y)v(y))

Differentiating both sides with respect toy, we get

x0

v(y)
ln

(
1− 1

b

)
=

ρ′0(y)
ρ0(y)

+
v′(y)
v(y)

(13)

x1

v(y)
ln

(
1− 1

b

)
=

ρ′1(y)
ρ1(y)

+
v′(y)
v(y)

(14)

(13)× ρ0(y) + (14)×N × ρ1(y) then yields

v′(y) = (ρ0(y)(x0 − x1) + x1) ln
(

1− 1
b

)
(15)

where we have used (7). Substituting (15) into (13), we
get

ρ′0(y) = ln
(

1− 1
b

)
(x0 − x1) ρ0(y)(1− ρ0(y))

1
v(y)

(16)

Hence the spatial distributionρi(y) and packet velocity
v(y) is given by the two-dimensional system of nonlinear
differential equations (15)–(16) with boundary conditions
(11)–(12).
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E. Model summary and implications

To recapitulate, CHOKe is modelled by a mixed system
of nonlinear algebraic and differential equations. The key
equations are (4) that models the feedback loop between
TCP flows and the dropping probability due to CHOKe
and RED, (15) and (16) that model the spatial distribution
and velocity of packets in the queue, with boundary con-
ditions (11)–(12). Other quantities in these equations are
specified in (1)–(3) on dropping probabilities, (5) and (9)
on bandwidth sharing, (7) onρ1(y), (8) on flow backlogs,
and (10) on queueing delay. Our goal again is to under-
stand the effect of UDP ratex0 on bandwidth shares, given
by (9), and queueing delay, given by (10). Although we
cannot solve the model analytically, we can deduce sev-
eral simple properties of CHOKe. These properties are
accurately validated in the simulation results presented in
Section III. The first property is the surprising feature of
CHOKe that is contrary to a non-leaky FIFO queue.

Theorem 1.
For all x0, bi ≤ 1/2b, i = 0, 1.
Asx0 →∞, µ0 → 0.

Proof. 1. From (3),2hi + (1− hi)r = pi ≤ 1 and hence
using (2), we have

bi

b
= hi =

1 + r

2 + r

The right-hand side is a decreasing function forr ≥ 0
with a maximum value of1/2 at r = 0.
2. From (16), we have

ρ′0(y)
ρ0(y)(1− ρ0(y))

= β(x0 − x1)
1

v(y)

whereβ := ln(1− 1/b). Define

τ̂(y) =
∫ y

0

dz

v(z
)

which can be interpreted as the time for a packet to reach
positiony from position0. Integrating both sides from 0
to y, we get

ln
ρ0(y)

1− ρ(y)
− ln

ρ0(0)
1− ρ(0)

= β(x0 − x1)τ̂(y)

Hence,

ρ0(y) =
aeβ(x0−x1)τ̂(y)

1 + aeβ(x0−x1)τ̂(y)
=:

A(y;x0)
1 + A(y;x0)

for some constanta > 0. All other quantities inA(y;x0)
exceptx0 are bounded:x1 ≤ c/N by symmetry, and
given anyy > 0, τ̂(y) is bounded. Sinceβ < 0, as

x0 → ∞, the exponent tends to−∞ andA(y; x0) → 0
for anyy > 0. This implies in particular fory = b > 0
thatµ0 = ρ(b) → 0.

In fact,the proof says something stronger: asymptoti-
cally asx0 → ∞, not only doesµ0 → 0, but all UDP
packets are dropped near the tail of the queue by CHOKe!
This is confirmed in the simulation results in the next sec-
tion.

Some fine structures of the queueing process are also
easy to derive. Generalizing (10), defineτ(y) as the time
for the packet in positiony to exit the queue:

τ(y) =
∫ b

y

dz

v(z)

Theorem 2. 1) Packet velocityv(y) is a convex and
strictly decreasing function withv(0) = (x0(1 −
h0) + x1(1 − h1)N)(1 − r) and v(b) = 0. It is
linear if and only ifx0 = x1.

2) Queueing delayτ(y) is a strictly concave decreas-
ing function.

3) The spatial distributionρ0(y) of UDP packets is
strictly increasing iny if x0 < x1, constant if
x0 = x1, and strictly decreasing ifx0 > x1.

Proof. Using (7), (15) can be rewritten as

v′(y) = β(ρ0(y)x0 + ρ1(y)x1N) < 0

whereβ = ln(1 − 1/b) < 0. Differentiating again and
usingρ′(y) + ρ′(y)N = 0 from (7), we have

v′′(y) = β(ρ′0(y)x0 + ρ′1(y)N)
= β(x0 − x1)ρ′0(y)

From (16), we have

v′′(y) = β2(x0 − x1)2ρ0(y)ρ1(y)
N

v(y)
≥ 0

with equality if and only ifx0 = x1. The boundary values
of v(y) follows from (11) (sum overi) and (12).
2. It is easy to verify thatτ ′(y) < 0 andτ

′′
(y) < 0 using

v(y) andv′(y).
3. Follows from (16).

We summarize these structural properties. First, the re-
maining queueing delay of a packet that eventually exit
the queue decreases more than linearly (in space) as it
progresses, due to the leaky nature of the buffer. Second,
whenx0 is large, the spatial distributionρ0(y) decreases
rapidly towards the head of the queue. This means that
most of the UDP packets are dropped before they reach
the head. It is therefore possible to simultaneously main-
tain a large number of packets (concentrating near the tail)
and receive a small bandwidth share, in stark contrast to
the behavior of a non-leaky FIFO buffer. Indeed, asx0

grows without bound, UDP share drops to 0.
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F. Solution of CHOKe model

The mixed system of nonlinear algebraic and differen-
tial equations that model CHOKe is too complex to be
solved exactly. In this subsection, we briefly describe how
we solve it numerically. The numerical results are com-
pared with ns-2 simulations in the next section.

For ease of reference, we reproduce below the system
of differential equations with boundary conditions:

ρ′0(y) = ln
(

1− 1
b

)
(x0 − x1) ρ0(y)(1− ρ0(y))

1
v(y)

v′(y) = (ρ0(y)(x0 − x1) + x1) ln
(

1− 1
b

)

v(0) = x0(1− h0) + Nx1(1− h1))(1− r)
ρ0(0) = x0(1− h0)(1− r)/v(0)

and the system of algebraic equations:

pi =
2

2 + x2
i (d + τ)2

, i = 1, . . . , N

v(b) = c

r = k(b− b) assumingb < b < b in equilibrium

hi =
bi

b
pi = 2hi + (1− hi) r

µic = xi(1− pi)
µi = ρi(b)
1 = ρ0(y) + ρ1(y)N, for all y

τ =
∫ b

0

1
v(y)

dy

bi =
∫ b

0
ρi(y)dy

To outline our numerical method, denote byα(y) the vec-
tor function:

α(y) = (v(y), ρ0(y)) for y ∈ [0, b]

and byβ the other variables:

β = (xi, pi, hi, r, µi, bi, τ, ρ1, i = 0, 1)

Then the CHOKe model can be written into the following
form:

α′(y) = F (α(y), β) (17)

β = G(α(·), β) (18)

with boundary conditions

f1(α(0)) = 0 (19)

Given anyβ, we can solve (17) and (19) numerically to
obtainα(β) := α(y; β), as a function ofβ. Substituting
α(β) into (18), we obtain a fixed-point equation inβ:

β = G(α(β), β) =: g(β) (20)

A solution of our CHOKe model is a fixed point of (20).
However, the straightforward fixed-point iteration of (20)
does not converge to a solution of CHOKe.

Instead, we solved the nonlinear equation (20) approxi-
mately by minimizing the quadratic cost on the difference
betweenβ andg(β):

min
β

J(β) := (β − g(β))T W (β − g(β))

with an appropriate choice of positive diagonal weighting
matrix W . A solution β∗ of CHOKe satisfiesJ(β∗) =
minβ J(β) = 0.

Matlab is used to implement above procedure. The
weighting matrix is chosen such that each component in
vectorWβ is in range [10 100] nearby the fixed point.
A direct search method (Nelder,Mead [16])for multidi-
mensional unconstrained nonlinear minimization imple-
mented in matlab, is used for this optimization problem.
The search algorithm will be stopped when theJ(β) func-
tion get smaller than 0.05. This is accurate enough! The
solutions are verified with the ns simulation in section III.

III. S IMULATION RESULTS

We implemented a CHOKe module in ns-2 version
2.1b9 and have conducted extensive simulations using the
network shown in Figure 2 to study the equilibrium be-
havior of CHOKe. There is a single bottleneck link from
router R1 to router R2 shared byN TCP sources and one
UDP source. The UDP source sends data at constant rate
(CBR). For all our simulations, the link capacity is fixed
at c = 1Mbps and the round trip propagation delay is
d = 100ms. We use RED+CHOKe as the queue man-
agement with RED parameters: ( minth b = 20 packets,
max th b = 520 packets, pmax = 0.5). Packet size is
1KB. The simulation time is 200–300 seconds.

We vary UDP sending ratex0 from 12.5pkts/s to 1250
pkts/s and the numberN of TCP flows from 12 to 64
to observe their effect on the equilibrium behavior of
CHOKe. We measure, and compare with our numerical
solutions, the following quantities

1) aggregate queue sizeb
2) UDP bandwidth shareµ0 = ρ0(b)
3) TCP throughputx1(1− p1) = µ1c = ρ1(b)c
4) spatial distributionρ0(y) of UDP packets

The results illustrate both the equilibrium behavior of
CHOKe and the accuracy of our analytical model. They
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show the ability of CHOKe to protect TCP flows and agree
with those aggregate measurements of [17]. Moreover,
they exhibit the fine structure of queue dynamics, and con-
firm the spatial character of our CHOKe model.

We next discuss these results in detail.

A. Effect of UDP ratex0

First we study the effect of UDP sending rate on queue
size and bandwidth allocation. The number of TCP
sources is fixed atN = 32. We vary the UDP sending
ratex0 from 0.1× link capacity to 10× link capacity. The
results are in Figure 3.

The aggregate queue lengthb steadily increases as UDP
rate x0 rises. UDP bandwidth shareµ0 = ρ0(b) rises,
peaks, and then drops to less than 5% asx0 increases
from 0.1c to 10c, while the total TCP throughput fol-
lows an opposite trend eventually exceeding 95% of the
capacity. We have shown both TCP throughput – the to-
tal number of TCP packets, from allN flows, transmitted
by the link during each simulation – and TCP goodput –
sum of largest sequence numbers in each simulation. TCP
goodput does not count retransmitted packets and is hence
lower than TCP throughput. These results match closely
those obtained in [17], and with our analytical model.

At first, one might expect that as UDP rate increases,
the number of UDP packets in the queue steadily rises,
and hence, under FIFO, UDP bandwidth share should
steadily rise too, contrary to the result in Figure 3(b). This
can be explained by the non-uniform spatial distribution
of packets in the queue. These distributions are shown in
Figure 4.

To get the packet distribution from each simulation (x0

value), we tookJ = 3000 snapshots of the queue every
100ms for 300 seconds. From theJ sample queue sizes
bj , we first calculated the averagebavg :=

∑
j bj/J . The

distribution was estimated over this range[0, bavg], as fol-
lows. For eachy ∈ [0, bavg], the sample distribution is
calculated as

ρ(y) =
1
J

∑

j

1j(y)

where1j(y) is 1 if the packet in positionbybj/bavgc of the
jth snapshot is UDP, and 0 otherwise. This distribution is
plotted in Figure 4, together with the numerical solution
of our CHOKe model.

Whenx0 = 0.1c (Figure 4(a)), UDP packets are dis-
tributed roughly uniformly in the queue, with probability
close to 0.08 at each position. As a result, its bandwidth
share is roughly 10%. Asx0 increase,ρ(y) becomes a
decreasing function ofy; moreover, the rate of decrease
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Fig. 3. Effect of UDP ratex0 on queue size and bandwidth allocation.
N = 32, x0 = 0.1c to 10c, c = 1Mbps, simulation duration = 300sec.
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(b) UDP ratex0 = c
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(c) UDP ratex0 = 10c
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(d) UDP ratex0 = 100c

Fig. 4. Spatial distributionρ(y) of packets in queue at different UDP
ratesx0. N = 32, c = 125pkts/s, simulation duration = 300sec.

rises. This can be understood from equation (16) that says
thatρ(y) is increasing iny whenx0 < x1, uniform when
x0 = x1, and decreasing whenx0 > x1.

As the CHOKe model predicts, the UDP bandwidth
share is determined only by the value ofρ at the head of
the queue,µ0 = ρ0(b). Hence, asx0 increases,µ0 steadily
drops to zero. Also marked in Figure 3(b), are the UDP
bandwidth shares corresponding to UDP rates in Figure
4. As expected the UDP bandwidth shares in 3(b) are
equal toρ(b) in Figure 4. Whenx0 > 10c, even though
roughly half of the queue is occupied by UDP packets, al-
most all of them are dropped before they reach the head
of the queue!

B. Effect of numberN of TCP flows

Figure 5 shows the effect ofN on aggregate queue size
b and on per-flow TCP throughputµ1c = ρ1(b)c.
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(b) TCP throughput per flowµ1c

Fig. 5. Effect of numberN of TCP flows on aggregate queueb and
per-flow TCP throughputµ1c. N = 12 − 64, x0 = 1250 pkts/s,
c = 125pkts/s, simulation duration = 300s

Not surprisingly, the queue size increases and per-flow
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TCP throughput decreases withN as the queue becomes
more congested. Again, the simulation and analytical re-
sults match very well, further validating our model.

IV. A DDITIONAL DISCUSSION ONCHOKE

The model proposed above captures the equilibrium be-
havior of CHOKe very well under the assumption that the
queue sizeb is always larger thanb. A sampled queue
size can be found at figure(7). it is worth noting that this
assumption may not hold for relatively smallN .

With smallerN , each TCP source gets larger band-
width share, and larger TCP sending rate requires lower
dropping probability. However, whenb > b, the TCP
dropping probability is at least1/N due to CHOKe, be-
cause the UDP packets can take at most half of the queue.
We can estimate the minimalN that will make CHOKe
always active. From (3)

pi = 2hi + (1− hi)r ≥ 2hi (21)

rewrite (4) here:

pi =
2

2 + x2
i (d + τ)2

, i = 1, . . . , N

Now

hi ≥ 1
2N

(22)

When UDP sending rate is large, TCP take almost all the
bandwidth, so

xi ≈ c/N (23)

And aroundb,
τ ≈ b/c (24)

In the example in last section,N = 12 can guarantee
CHOKe to be always on, butN = 8 fails. Using the same
parameters, we can estimate the minimalN to be8.43.
WhenN = 8, queue size will oscillate aroundb,which
means CHOKe turns on and off regularly as shown in fig-
ure (6). The model developed above cannot capture this
situation.

For the similar reason, whenN is fixed, andc increases
linearly, the TCP source ratexi will almost increase lin-
early. The dropping rate should decrease proportionally
to 1/x2

i based on equations (4,23) However, the dropping
rate by CHOKe to TCP sources is at least1/N . This
means CHOKe may drop too aggressive for the future
high bandwidth network.

All the discussion above is about basic CHOKe whose
flow chart is shown in figure1, In fact, the CHOKe can be
implemented in different ways as mentioned in [17] for
example: head CHOKe, tail CHOKe. They all have the
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same feature that the UDP packets will take almost half of
the buffer when UDP’s sending rate is high enough. But
the bandwidth sharing feature can be totally different.

This is another possible CHOKe implementation called
Perfect CHOKe. Suppose we have perfect information
about the queue. When the packets formith flow comes,it
will be dropped with probability2bi/b. This implemen-
tation is easily modelled by a set of algebraic equations
without the leaky buffer. More theoretical result can be
derived based on this model later.

We showed UDP throughput in Figure 8. Unlike the
basic CHOke, the UDP source can get almost half of the
link bandwidth.

V. CONCLUSIONS

CHOKe is completely stateless and extremely simple
to implement, yet surprisingly effective in bounding the
bandwidth share of UDP flows. As shown in the simula-
tions of [17], as UDP source rate increases, its bandwidth
share eventually drops to zero, exactly opposite to what a
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regular FIFO queue behaves. To understand this precisely
requires a careful modelling of the queueing process un-
der CHOKe.

In this paper, we have derived a detailed model of
CHOKe. Its key features are the incorporation of the feed-
back equilibrium of TCP detailed modelling of the queue
dynamics. We have introduced the concepts of spatial dis-
tribution and velocity of packets in the queue, two quanti-
ties that are critical in understanding CHOKe. In a regular
FIFO, both quantities are uniform across the queue. As
a result, both the number of packets from a flow in the
queue and its bandwidth share is proportional to its input
rate. CHOKe however produces a “leaky buffer” where
packets may be dropped as they move towards the head of
the queue. This leads a non-uniform distribution of pack-
ets and their velocity, and makes it possible for a flow to
simultaneously maintain a large number of packets in the
queue and receive a vanishingly small bandwidth share.
This is the main mechanism through which CHOKe pro-
tects TCP from UDP flows. As our model predicts, and
simulation confirms, as UDP input rate increases, more
and more UDP packets enter the queue. However, they
concentrate near the tail of the queue, and are mostly
dropped before they can advance to the head, resulting
in small UDP throughput.

We also comment two features of CHOKe.One is that
CHOKe algorithm may be turned on and off regularly
when the link capacity is high or the number of TCP
sources is small, which will make queue size oscillate
aroundb The other is that different algorithms have dif-
ferent UDP throughput behaviors. We are still working to
explore the details of these features.
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