Understanding CHOKe

Ao Tang Jiantao Wang Steven H. Low
California Institute of Technology, Pasadena, USA
{aotang@, jiantao@cds., slow@altech.edu

Abstract— A recently proposed active queue manage- When a packet arrives at a congested router, CHOKe
ment, CHOKe, is stateless, simple to implement, yet sur- draws a packet at random from the FIFO (first-in-
prisingly effective in protecting TCP from UDP flows. As first-out) buffer and compares it with the arriving

UDP rate increases, even though the number of UDP pack-
ets in the queue rises, its bandwidth share eventually drops
to zero, in stark contrast to the behavior of a regular FIFO
buffer. We derive a detailed model of CHOKe that accu-

packet. If they both belong to the same flow, then
they are both dropped; else the randomly chosen
packet is left intact and the arriving packet is admit-

rately predicts this, and other behaviors of CHOKe, and ted into the buffer with a probability that depends on
validate the model with simulations. Its key features are the level of congestion (this probability is computed
the incorporation of the feedback equilibrium of TCP with exactly as in RED).

dropping probability and the spatial characteristics of the The surprising feature of this extremely simple scheme is
queueing process. CHOKe produces a“leaky buffer"where that it can bound the bandwidth share of UDP flows re-
packets can be dropped as they move towards the head of, qaqq of their arrival rate. In fact, as the arrival rate

the queue. This leads to a spatially nhon-uniform distribu-
tion of packets and their velocity, and makes it possible for of UDP packets increases without bound, their bandwidth

a flow to simultaneously maintain a large number of pack- share _approaches zero! An intqitive expl_anation is pro-
ets in the queue and receive a vanishingly small bandwidth vided in [17]: “the FIFO buffer is more likely to have
share. This is the main mechanism through which CHOKe packets belonging to a misbehaving flow and hence these

protects TCP from UDP flows. packets are more likely to be chosen for comparison. Fur-
ther, packets belonging to a misbehaving flow arrive more
numerously and are more likely to trigger comparisons.”
I. INTRODUCTION As a result, aggressive flows are penalized. This how-
ever does not explain why a flow that maintains a much
TCP is believed to be largely responsible for preventarger number of packets in the queue does not receive a
ing congestion collapse while Internet has undergone dfarger share of bandwidth, as in the case of a regular FIFO
matic growth in the last decade. Indeed, numerous megffer. It turns out that a precise understanding of this
surements have consistently shown that more than 9¢#enomenon requires a detailed analysis of the queue dy-
of traffic on the current Internet are still TCP packetgamics, the key feature of our model. A simple model of
which, fortunately, are congestion controlled. Without @HOKe is also presented in [17] that assumes a Poisson
proper incentive structure, however, this state of affair jsacket arrival process and exponential service time. The
fragile and can be disrupted by the growing number @loisson assumption is critical in order to use the PASTA
non-rate-adaptive (e.g., UDP-based) applications that qg@disson Arrival Sees Time Averages) property to com-
monopolize network bandwidth to the detriment of ratgute drop probabilities. This model however ignores both
adaptive applications. This has motivated several actiftg: feedback equilibrium of the TCP/CHOKe system and
queue management schemes, e.g., [13], [3], [7], [18], [1%fhe spatial characteristics of the queue.
[17], [2], that aim at penalizing aggressive flows and en- Here, we adopt a deterministic fluid model that explic-
suring fairness. The scheme, CHOKe, of [17] is particity models both features (Section I).Our model predicts,
larly interesting in that it does not require any state infoand simulation confirms, that as UDP rate becomes large,
mation and yet can provide a minimum bandwidth shar®t only does the total number of UDP packets in the
to TCP flows. In this paper, we provide a detailed angueue increase, more importantly, gyatial distribution
lytical model of CHOKe, and discuss some of its implicaef packets becomes more and more concentrated at the
tions. tail of the queue, and drops rapidly to zero towards the
The basic idea of CHOKe is explained in the followindnead of the queue. Hence even though the total number
quote from [17]: of UDP packets in the queue is large, all of them will be

dropped before they advance to the head. As a result the
UDP bandwidth share drops to zero, in stark contrast to a
non-leaky FIFO queue where UDP bandwidth shares ap-

TCPsources TCP destinations

proaches 1 as its input rate increases without bound.

Our current model is too complex to be solved analyti-
cally. We outline a numerical solution (Section II-F), and
compare our numerical results with detailed ns-2 simula-
tions. They match accurately not only with average be-
havior of CHOKe as reported in [17], but also with much

finer spatial characteristics of the queueing process.

The technigue presented here should be applicable to

C=1Mbps
(elay=50ms

UDPsource

analyzing the queueing process in other types of leakiy. 2. Network topology

buffer.

II. CHOKE MODEL

There are two main components of our model; the first
models the feedback loop between TCP flows and the

The basic idea of CHOKe is summarized in Section §ropping probability, and the other deals with the detailed
A flow chart describing its implementation with RED ilynamics of a “leaky queue”. Our main goal is to under-

given in Figure 1 from [17].

Arriving Packet

AvgQsize<=Minn?
Both packets
from same flow?

Y
Drop both packets

Nl
Draw apacket at
random from queue

Y
Admit New Packet

stand how bandwidth shares of UDP and TCP flows vary
with (the uncontrolled) UDP rate and the number of TCP
flows.

A. Notations

Quantities (rate, backlog, dropping probability, etc) as-
sociated with the UDP flow are indexed by 0. Those asso-
ciated with TCP flows are indexed by= 1, ..., N; since
the TCP sources are identical, these quantities all have the
same value, and hence we will usually refer to flow 1 as

Admit packet with
aprobability p

b

Fig. 1. CHOKe flow chart b:

Drop the new packet

In general, one can choose more than one packet fro?h
the queue, compare all of them with the incoming packet,
and drop those from the same flow. This will improve
CHOKe’s performance, especially when there are multi-
ple unresponsive sources. It is suggested in [17] that more
drop candidate packets be used as the number of unre-
sponsive flows increases. Here, we focus on the modelling
of a single drop candidate packet. The analysis can be Bi-
tended to the case of multiple drop candidates.

The general setup for our model and our simulations is
shown in Figure 2.

There is a single bottleneck link with capacitypack-
ets per second. We focus on the FIFO buffer at router
R1 where packets are queued. The buffer is sharedl by
identical TCP flows and a single UDP flow.All TCP flows
have a common round trip delay @seconds.We assume
the system is stable and model its equilibrium behavior.

the generic TCP flow.
We collect here the definitions of all the variables and
some of their obvious properties:

packet backlog from flow, i = 0,...,N; b; =
bi,i > 1.
total backlogp = by + b1 V.
RED dropping probability:
k(b —b) ifb<b<bd
r o= 0 ifo<b 1)
1 ifo>0b

wherek := p_maz/(b — b) is the slope of the RED
dropping profile.

The probability of incoming packets being dropped
by choke for flowi,i = 0,..., N:

)

overall probability that packets of flowis dropped
before it gets through, either by CHOKe or RED:

2hi + (1 —hy)r 3

pi =

The explanation of (3) is provided below.

3

x;. source rate of flow, i = 0,..., N. after it has been admitted into the queue. Even if a packet
7. queueing delay (not including the common propagé#s not dropped on arrival, it can be dropped afterwards be-

tion delay isd). cause a future arrival from the same flow triggers a com-
wi: bandwidth share of flowi, i = 0,...,N; up + parison. To see why; is related to CHOKe and RED
N =1, u; = py,i > 1. dropping probabilities according to (3), note that every ar-

pi(y): probability that the packet at positigne [0,b] inthe rival from flow i can trigger eithef packet loss from the

gueue belongsto flowi =0,..., N. buffer, 1 packet loss due to RED, or 2 packet losses due to
v(y): velocity at which the packet at positigne [0,b] in CHOKe. These events happen with respective probabili-
the queue moves towards the head of the queue. ties of (1 — h;)(1 — r), (1 — h;)r, andh;. Hence, each

As mentioned above, by symmetly, = b, h; = hy, arrival to the buffer is accompanied by an average packet
etc, fori > 1. RED does not distinguish between differloss of
ent flows and hence its dropping probabilitis common
for all flows i. CHOKe on the other hand differentiates 27 + (1 = ha)r +0- (1 = hi — (1 = hy)r)
between Tcp and UDP flows and herfepandh, are Hence we take the overall loss probability to be the
generally different.

. . _packet loss rat@h; + (1 — h;)r.
.We make tyvo remarks'. First, It is |mpo'rtant to keep |R We next explain how to derive the queueing detay
mind thatzq is the only independent variable; all other

h idth shane;, th le f f
variables listed above are functionsf, though this is and the bandwidth share;, the most subtle features o

not made explicit in the notation. Second,is the send- CHOKe.

ing rate of flowi. The rate at which flowi packets en- o _

ter the tail of the queue (after going through CHOKe an(a' Spatial distribution and packet velocity

RED on arrival) isz; (1 — h;)(1—1), and the rate at which If @ packet cannot be dropped once it has been admitted
flow—i packets exit the queue (throughput)jgl —p;) = into the queue, then, clearly, the queueing delayd the

pic. Clearly,z;(1 — p;) < x;(1 — h;)(1 —r) < ;. Our bandwidth sharg; under FIFO are

primary goal is to understand how throughput varies b b,

with zo. As we show now, this turns out to require de- T= and u; = —c (6)

tailed understanding of the queueing process in a “leaky b
queue”. For a “leaky queue” where a packet can be dropped while

it advances towards the head of the queue, (6) no longer

B. TCP/CHOKe feedback loop holds, and the queueing delay and bandwidth share de-
Recent studies have shown trety TCP congestion pend critically_on the spatigl characteristi_cs qf the queue.
control algorithm can be interpreted as carrying out a dis"€ k€Y to their understanding is the spatial distribution of
tributed primal-dual algorithm over the Internet to maxipaCthS in the queue and the. “velocity” at which pgckets
mize aggregate utility, and a user's utility function is (ofMOVe through the queue at different positions, defined as

ten implicitly) defined by its TCP algorithm, see e.g. [fe!lows. Lety < [0,b] denote a position in the queue,
[9], [11], [14], [10], [8], [5]. For TCP Reno (or its variants Wit ¥ = 0 being the tail and; = b the head of the
such as NewReno or SACK), this implies that the equilitfiu€Ue- Lepi(y) be the probability that the packet at posi-

fium source rater; and the overall dropping probability 10N ¥ Pelongs to flowi, i = 0,..., N; as usual, we have
p; satisfies pi(y) = p1(y),i > 1,and
1

- 22 Ci—1..N @ po(y) +p1(y)N = 1, forallye[0,b] (7)
2+ a3(d+7)?
The average number
This is equivalent to the well-known square-rgofor- of flow-i packets in the entire backlog satisfies
mula derived in, e.g., [6], [12], when the dropping prob- ,
ability p; is small. At equilibrium, the flows share the /0 pi(y)dy = b ®)

bandwidth according to

zi(1—pi) = pc (5) More importantly, the bandwidth shagg is the probabil-
ity that the head of the queue is occupied by a packet from
sothat)), z;(1 — p;) = c. flow i:
Here,p; is the probability that a packet from TCP flow
1 is dropped, either on arrival due to CHOKe and RED, or wi = pi(b) 9)

4

Hence, to findu;, we need to solve for the spatial density Consider a small volumeuv(y)dt of the (one-
p(y); we will return to this after modelling another cruciablimensional fluid) queue at positian The amount of
feature of CHOKe, the velocity at which packets moviiuid (packets) in this volume that belongs to flaws
through the queue. pi(y)v(y)dt, i = 0, 1. Forinstancep;(0)v(0)dt, i = 0, 1,

We make two remarks before proceeding further. Firés, the amount of fluid that arrives at the tail of the queue,
if the queue is not leaky, then the spatial distribution wifpackets that are not dropped by CHOKe or RED on arrival
be uniform,p;(y) being independent of positian Then and admitted into the buffer. Hence
pi(y) = w; for all y € [0,b] together with (8) implies .
thé E)andwidth share in [(6).}That is, the bandwidth share pi(0)u(0) = zi(l—hi)(L=r), =01 (11)
depends only on the total number of flaypackets in the Another boundary condition is the packet velocity at the

gueue, and not on details of their distribution. head of the queue mentioned above:
Moreover, it is exactly equal to the flow’s share of back-
1og yedq o(b) = ¢ (12)

When the queue is leaky, however, (9) says that theSuppose the small volumg;(0)v(0)dt of fluid (our
bandwidth share of flow depends on the spatial distri-tagged packet”) arrives at the buffer at time 0, and
bution of packets only at thieeadof the queue and doesreaches positiony = y(t) at timet. During this period
not depend directly on the distribution at other positiorl§, t], there arer;t packet arrivals from flow, and each
or the total number of flowi-packets, in stark contrast toof these arrivals triggers a comparison. The tagged packet
the case of non-leaky queue. This is the underlying réa-selected for comparison with probabilityb each time.
son why UDP packets can occupy half of the buffer, y&e model this by saying that the fluid is thinned by a fac-
receiving very small bandwidth share: when UDP rate 8r (1 —1/b)** when it reaches positiopat timet. Thus
high, po(y) decreases rapidly from = 0 to y = b with 1\ it
po(b) =~ 0; see simulation results in Section Il1. pi(0)v(0) (1 - b> = pi(y)v(y)

As we mention above, in a leaky queue, the queueing
delay of a packet that eventually exits the queue is d@king logarithm on both sides and using

longer the backlog it sees on arrival divided by the link U
capacity. This is because it advances towards the head t = /0 @ ds
both when packets in front of it exit the queue and wh% climinater. we have
they are dropped by CHOKe. To model this dynamics, '
definev(y) as the velocity at which the packet at position . v
y moves towards the head of the queue: In(p;(0)v(0)) + ; In <1 — b) / T) ds = In(p;(y)v(y))
o V(S
o(y) = % Differentiating both sides with respectgowe get
t
. . @ (oY -) Yl g
For instance, the velocity at the head of the queue equals ¢,y ™" 73) = 0y T 5 (13)
the link capacityp(b) = ¢. Then, the queueing delayis . 1 oy V()
given in terms of:(y) as T;) In (1 - b> = pi(y) + o) (14)
T b H
_ / 5 — / (1 >dy (10) (13) x po(y) + (14) x N x py(y) then yields
0 o v 1

o) = () e (1))
We have completed the definition of spatial distribution b
pi(y) and velocityv(t) of packets in the queue. We nowwhere we have used (7). Substituting (15) into (13), we
derive an ordinary differential equation model of thesget
quantities.

/ _ 1 1
5. ODE model o () ande(y oh(y) = In (1 - b) (a0 = 22) o(4)(1 = o) 5 19)

We will derive an ODE model foipy(y) and v(y); Hence the spatial distributign (y) and packet velocity
p1(y) can then be obtained from (7).The key is to careqy) is given by the two-dimensional system of nonlinear
fully model the dropping process after a packet has begifferential equations (15)—(16) with boundary conditions
admitted into the buffer. (11)-(12).

E. Model summary and implications

5

xg — o0, the exponent tends teoo and A(y; xg) — 0

To recapitulate, CHOKe is modelled by a mixed systefRf @nyy > 0. This implies in particular foy = b > 0

of nonlinear algebraic and differential equations. The kdkatuo = p(b) — 0.
equations are (4) that models the feedback loop betwee

O
An fact,the proof says something stronger: asymptoti-

TCP flows and the dropping probability due to CHOK&&!lY aszo — oo, not only doesup — 0, but all UDP
and RED, (15) and (16) that model the spatial distributid?ff:ckets are dropped near the tail of the queue by CHOKe!
and velocity of packets in the queue, with boundary conhis is confirmed in the simulation results in the next sec-

ditions (11)—(12). Other quantities in these equations

on bandwidth sharing, (7) om (y), (8) on flow backlogs,

and (10) on queueing delay. Our goal again is to und
stand the effect of UDP ratg on bandwidth shares, given

by (9), and queueing delay, given by (10). Although we
cannot solve the model analytically, we can deduce s
eral simple properties of CHOKe. These properties are
accurately validated in the simulation results presented in
Section Ill. The first property is the surprising feature of

CHOKe that is contrary to a non-leaky FIFO queue.

Theorem 1.

For all x0, bz < 1/2b, 1= 0, 1.

Aszy — oo, g — 0.

Proof. 1. From (3),2h; + (1 — h;)r = p; < 1 and hence
using (2), we have

1+7r
247

The right-hand side is a decreasing function for> 0
with a maximum value of /2 atr = 0.
2. From (16), we have

1

v(y)

oY)
po(y)(L = po(y))

whereg := In(1 — 1/b). Define

= [0

B(zo — z1)

Sheorem 2.

éfgn .

specified in (1)—(3) on dropping probabilities, (5) and (9) Some fine structures of the queueing process are also

éasy to derive. Generalizing (10), defin@) as the time

{or the packet in positiop to exit the queue:

r(y) = /ybf)

1) Packet velocityv(y) is a convex and
strictly decreasing function with(0) = (zo(1 —
ho) + z1(1 — h1)N)(1 —r) andv(b) = 0. ltis
linear if and only ifxg = x;.

2) Queueing delay (y) is a strictly concave decreas-
ing function.

3) The spatial distributionpy(y) of UDP packets is
strictly increasing iny if xg < x1, constant if
o = x1, and strictly decreasing ity > x1.

Proof. Using (7), (15) can be rewritten as

' (y) B(po(y)zo + pr(y)r1N) < 0

wheres = In(1 — 1/b) < 0. Differentiating again and
usingy’(y) + p'(y) N = 0 from (7), we have

v (y) B(p(y)zo + P (y)N)
Blzo — 21)po(y)

From (16), we have
N
" 2 0 — 1 2 v
(v) B (w0 — x1)"po(y)p1 (y)v(y) >
with equality if and only ifzg = x;. The boundary values
of v(y) follows from (11) (sum ovetf) and (12).
2. Itis easy to verify that’(y) < 0 andr’ (y) < 0 using

which can be interpreted as the time for a packet to reaey) andv’(y).

positiony from position0. Integrating both sides from 03- Follows from (16).

to y, we get
Po(y) po(0) R
In —In = [Bxg—z1)7(y
1—p(y) 1—p(0) (@0 = 1)7(w)
Hence,
aeﬁ(ﬂﬁo—xl)f’(y) A(y’ :1;0)
Po(y) = o\~ T Al
1 + gePl@o—z1)7(y) 1+ A(y; o)

for some constant > 0. All other quantities inA(y; x¢)
exceptzy are bounded:xz; < ¢/N by symmetry, and
given anyy > 0, 7(y) is bounded. Sinc@ < 0, as

O

We summarize these structural properties. First, the re-
maining queueing delay of a packet that eventually exit
the queue decreases more than linearly (in space) as it
progresses, due to the leaky nature of the buffer. Second,
whenz is large, the spatial distribution(y) decreases
rapidly towards the head of the queue. This means that
most of the UDP packets are dropped before they reach
the head. It is therefore possible to simultaneously main-
tain a large number of packets (concentrating near the tail)
and receive a small bandwidth share, in stark contrast to
the behavior of a non-leaky FIFO buffer. Indeed,zas
grows without bound, UDP share drops to 0.

F. Solution of CHOKe model Given anyg, we can solve (17) and (19) numerically to

The mixed system of nonlinear algebraic and differe@Ptaina(3) := a(y; 8), as a function ofj. Substituting
tial equations that model CHOKe is too complex to b@(/7) into (18), we obtain a fixed-point equationfn
solved exactly. In this subsection, we briefly describe how _ .
we solve it numerically. The numerical results are com- b = Gla®).p) 9(0) (20)
pared with ns-2 simulations in the next section. A solution of our CHOKe model is a fixed point of (20).

For ease of reference, we reproduce below the systeiowever, the straightforward fixed-point iteration of (20)
of differential equations with boundary conditions: does not converge to a solution of CHOKe.

Instead, we solved the nonlinear equation (20) approxi-
ph(y) = In <1 _ 1) (zo — 1) po(y)(1 = po(y)) 1 mately by minimizing the quadratic cost on the difference
b v(y) between3 andg():

Y0 = o)zo—)+ n (1) min J(9) = (3 o)W~ o(9)

0) = 1—ho)+ Nzi(1—hy))(1—
v(0) 7ol 0) 7 D) =) with an appropriate choice of positive diagonal weighting

po(0) = ao(l = ho)(1 —7)/v(0) matrix 1. A solution * of CHOKe satisfies/(3*) =
and the system of algebraic equations: ming J(6) = 0.
y g q Matlab is used to implement above procedure. The
o 2 1 N weighting matrix is chosen such that each component in
pi = 5 + 22(d + 1)%’ = e vector W3 is in range [10 100] nearby the fixed point.
o(d) = c A direct search method (Nelder,Mead [16])for multidi-

r = k(b—b) assuming < b < b in equilibrium mension_al unconst_rained nonlin_ear min_imiz_ation imple-
b, - mented in matlab, is used for this optimization problem.
hi = — The search algorithm will be stopped when thg) func-
b tion get smaller than 0.05. This is accurate enough! The

pi = 2hit(1—hir solutions are verified with the ns simulation in section I1I.
pic = (1 —p;)

wi = pi(b) [1l. SIMULATION RESULTS

L = po(y) +pi(y)N, forally We implemented a CHOKe module in ns-2 version
b q 2.1b9 and have conducted extensive simulations using the

T = /0 U(y)dy network shown in Figure 2 to study the equilibrium be-

b havior of CHOKe. There is a single bottleneck link from
by = / pi(y)dy router R1 to router R2 shared By TCP sources and one
0 UDP source. The UDP source sends data at constant rate

To outline our numerical method, denotedofy) the vec- (CBR). For all our simulations, the link capacity is fixed

tor function: at ¢ = 1Mbps and the round trip propagation delay is
d = 100ms. We use RED+CHOKe as the queue man-
aly) = (v(y),poly)) foryel0,b] agement with RED parameters: (ntimbp = 20 packets,
maxth b = 520 packets, pmax = 0.5). Packet size is
and by/3 the other variables: 1KB. The simulation time is 200300 seconds.
_ We vary UDP sending rate, from 12.5pkts/s to 1250
B = (@ipishisrs iy bis 7, p1,7= 0, 1) pkts/s and the numbeN of TCP flows from 12 to 64

Then the CHOKe model can be written into the foIIowiné?Hcg)}igrv\ejvéh:;;aeszfgt ;): dtggrfg;rlgbvcil:;n o??ﬁ%ﬂriggl

form: solutions, the following quantities
dy) = Flay),pB) (17) 1) aggregate queue size
8 = Ga(),B) (18) 2) UDP bandwidth shargy = po(b)
' 3) TCP throughput:;(1 — p1) = p1c = p1(b)c
with boundary conditions 4) spatial distributiorp, () of UDP packets
The results illustrate both the equilibrium behavior of
fi(a(0)) = 0 (19) CHOKe and the accuracy of our analytical model. They

show the ability of CHOKe to protect TCP flows and agree
with those aggregate measurements of [17]. Moreover,
they exhibit the fine structure of queue dynamics, and con-
firm the spatial character of our CHOKe model.

We next discuss these results in detail.

A. Effect of UDP ratex

First we study the effect of UDP sending rate on queue
size and bandwidth allocation. The number of TCP
sources is fixed alv = 32. We vary the UDP sending
ratex(from 0.1x link capacity to 1 link capacity. The
results are in Figure 3.

The aggregate queue lengthteadily increases as UDP
rate z rises. UDP bandwidth shayg = po(b) rises,
peaks, and then drops to less than 5%urgdncreases
from 0.1c to 10¢, while the total TCP throughput fol-
lows an opposite trend eventually exceeding 95% of the
capacity. We have shown both TCP throughput — the to-
tal number of TCP packets, from a¥l flows, transmitted
by the link during each simulation — and TCP goodput —
sum of largest sequence numbers in each simulation. TCP
goodput does not count retransmitted packets and is hence
lower than TCP throughput. These results match closely
those obtained in [17], and with our analytical model.

At first, one might expect that as UDP rate increases,
the number of UDP packets in the queue steadily rises,
and hence, under FIFO, UDP bandwidth share should
steadily rise too, contrary to the result in Figure 3(b). This
can be explained by the non-uniform spatial distribution
of packets in the queue. These distributions are shown in
Figure 4.

To get the packet distribution from each simulatiap (
value), we took/ = 3000 snapshots of the queue every
100ms for 300 seconds. From thiesample queue sizes
b/, we first calculated the averagg,, := >_;v’/J. The
distribution was estimated over this rar@eb,.,), as fol-
lows. For eachy € [0,b,.,], the sample distribution is
calculated as

ply) = ;le(y)

wherel;(y) is 1 if the packet in positiohy®’ /b, | of the

jth snapshot is UDP, and 0 otherwise. This distribution is
plotted in Figure 4, together with the numerical solution
of our CHOKe model.

Whenz, = 0.1c (Figure 4(a)), UDP packets are disfig. 3. Effect of UDP rate:, on queue size and bandwidth allocation.
tributed roughly uniformly in the queue, with probabilityN = 32, zo = 0.1cto 10¢c, ¢ = 1Mbps, simulation duration = 300sec.

close to 0.08 at each position. As a result, its bandwidth
share is roughly 10%. As increase,p(y) becomes a
decreasing function of; moreover, the rate of decrease

size (pkts)

10— — -

UDP sending rate (pktsis)

(a) Queue sizé

UDP bandwidth share

o
N
R

TCP Total

— - Simulation
— Model
xﬂzc‘share:0.2474
/ ot -
X;70.1c,share=0.0777
x0=105‘sh31950,0195
i
10°
UDP sending rate (pkis/s)
(b) UDP bandwidth sharg,
10*
T
L~
_ //]

UDP Sending Rate (pks/s)

(c) Total TCP throughpyt; ¢

UDP Packets Spatial Distribution
T

I N - VS P N = N N e |

— Simulation
— - Model

L
10

.
20 30 40 50 60 70 80 %
Queue Position

(a) UDP raterp = 0.1c¢

— Simulation
— - Model
09 B
08
5 07
E
2
06
a
E
Sospp
g iAo
goat - AR
« T
8 IR VAN
S03 MO
S |
02r
01
;
20 40 6 80 100 120
Queue Position
(b) UDP ratexo = ¢
1
\ — Simulation
\ ~ - Motel
09 B
v
08F T~
h \‘;\M\
507 o
E AN
Zos S0
] \
Sos BN
é W
2 04l 0
g
8 N
5 N
8 N
03 A
N
N
02 \\
N
.
01
K\,\
S
=
; . . . ; ; h
20 40 60 80 100 120 140
Queue Position
(c) UDP ratezy = 10c
1 T T
=== ’l» -\ — Simulation
AR — - Model
09 g \p\\‘ : 1
3
0\
osr \
)\
g1 i
:
g 06 o
z |
Sos A\
9 |
] '
S04t v
g 1|
o [
a |
Soal A
|
i
02 R
[
vy
o1 [
v\
L L AV L L
20 40 60 80 100 120 140

Fig. 4. Spatial distributiom(y) of packets in queue at different UDP
ratesro. N = 32, ¢ = 125pkts/s, simulation duration = 300sec.

Queue Posiion

(d) UDP ratexo = 100c

rises. This can be understood from equation (16) that says
thatp(y) is increasing iny whenzy < x1, uniform when
xo = x1, and decreasing whefy > ;.

As the CHOKe model predicts, the UDP bandwidth
share is determined only by the valuewét the head of
the queueyy = po(b). Hence, ag increasesy steadily
drops to zero. Also marked in Figure 3(b), are the UDP
bandwidth shares corresponding to UDP rates in Figure
4. As expected the UDP bandwidth shares in 3(b) are
equal top(b) in Figure 4. Whenry > 10¢, even though
roughly half of the queue is occupied by UDP packets, al-

most all of them are dropped before they reach the head
of the queue!

B. Effect of numbeiN of TCP flows

Figure 5 shows the effect @f on aggregate queue size
b and on per-flow TCP throughpptic = p1(b)c.

2001 o
e

180 P

g

g

e

°

N

0

o

]

3

]

<]

— Simulation
— - Model
|
15 20 25 30 35 40 45 50 55 60
Number of TCP Sources (N)

(a) Queue sizé

12001~

1000

800 \

600

TCP Thoughput per Source (pkts)

2000 . . T

— Simulation
— - Model
0 I I I I I I I I
15 20 25 30 35 40 45 50 55 60
Number of TCP Sources (N)

(b) TCP throughput per flow ¢

Fig. 5. Effect of numberV of TCP flows on aggregate queti@nd
per-flow TCP throughputiic. N = 12 — 64, zo = 1250 pkts/s,
¢ = 125pkts/s, simulation duration = 300s

Not surprisingly, the queue size increases and per-flow

TCP throughput decreases with as the queue becomes S it
more congested. Again, the simulation and analytical re- ol
sults match very well, further validating our model.

IV. ADDITIONAL DiscussioN ONCHOKE

The model proposed above captures the equilibrium be-
havior of CHOKe very well under the assumption that the
queue sizé is always larger than. A sampled queue
size can be found at figure(7). it is worth noting that this
assumption may not hold for relatively small

With smaller V, each TCP source gets larger band-
width share, and larger TCP sending rate requires lower I I T N I
dropping probability. However, wheh > b, the TCP
dropping probability is at least/N due to CHOKe, be- "9
cause the UDP packets can take at most half of the queue. o125k, N0 UDP 125
We can estimate the minima that will make CHOKe Ty T
always active. From (3)

ueue Size (pkts)

. 6. Queue Size at N=8

p; = 2h; + (1 — hi)’l“ > 2h; (21)

300

250

rewrite (4) here:

eue Size (pkts)

200

2 s
i — 9,7 . 9 ':].,...,N 150
pi 2 + m? (d+7)? ‘

Now] %

h; > — 22

v = 2N () 0 10 20 30 40 50 60 70 80 90 100
Simulation Time (s)

When UDP sending rate is large, TCP take almost all the
bandwidth, so Fig. 7. Queue Size at N=40

x; = c/N (23)
And aroundb same feature that the UDP packets will take almost half of

7 ble (24) the buffer when UDP’s sending rate is high enough. But
- the bandwidth sharing feature can be totally different.
In the example in last sectiody = 12 can guarantee Thjs is another possible CHOKe implementation called
CHOKe to be always on, bu¥' = 8 fails. Using the same perfect CHOKe. Suppose we have perfect information
parameters, we can estimate the miniméako be8.43. about the queue. When the packets fatmflow comes, it
WhenN = 8, queue size will oscillate arourtdwhich will be dropped with probability2b; /b. This implemen-
means CHOKe turns on and off regularly as shown in figation is easily modelled by a set of algebraic equations
ure (6). The model developed above cannot capture thjghout the leaky buffer. More theoretical result can be
situation. derived based on this model later.
For the similar reason, wheM is fixed, and- increases we showed UDP throughput in Figure 8. Unlike the

linearly, the TCP source rate; will aimost increase lin- pasic CHOke, the UDP source can get almost half of the
early. The dropping rate should decrease proportionajik bandwidth.

to 1/2? based on equations (4,23) However, the dropping
rate by CHOKe to TCP sources is at ledagtVv. This
means CHOKe may drop too aggressive for the future
high bandwidth network. CHOKe is completely stateless and extremely simple
All the discussion above is about basic CHOKe whoge implement, yet surprisingly effective in bounding the
flow chart is shown in figurel, In fact, the CHOKe can bbandwidth share of UDP flows. As shown in the simula-
implemented in different ways as mentioned in [17] fations of [17], as UDP source rate increases, its bandwidth
example: head CHOKe, tail CHOKe. They all have thghare eventually drops to zero, exactly opposite to what a

V. CONCLUSIONS

@ EY =
g 8 3
T T T

UDP Throughput Rate(pkis/s
IS
s

— - Simulation Value
— Model Result

UDP Sending Rate (pkts/s)

Fig. 8. UDP throughput rate (Perfect CHOKe)

regular FIFO queue behaves. To understand this precisely

(2]

(3]

[4]

[5]

(6]

requires a careful modelling of the queueing process un-

der CHOKe.

In this paper, we have derived a detailed model ofy)
CHOKe. Its key features are the incorporation of the feed-
back equilibrium of TCP detailed modelling of the queue
dynamics. We have introduced the concepts of spatial dis;,
tribution and velocity of packets in the queue, two quanti-
ties that are critical in understanding CHOKe. In a regular
FIFO, both quantities are uniform across the queue. As
a result, both the number of packets from a flow in thé!
gueue and its bandwidth share is proportional to its input
rate. CHOKe however produces a “leaky buffer” where
packets may be dropped as they move towards the heafl@f Steven H. Low, Larry Peterson, and Limin Wang. Understanding
the queue. This leads a non-uniform distribution of pack-

ets and their velocity, and makes it possible for a flow

1]

simultaneously maintain a large number of packets in the
queue and receive a vanishingly small bandwidth share.

This is the main mechanism through which CHOKe prélz]

tects TCP from UDP flows. As our model predicts, and
simulation confirms, as UDP input rate increases, more
and more UDP packets enter the queue. However, they

concentrate near the tail of the queue, and are mod#y!
dropped before they can advance to the head, resultmq

in small UDP throughput.

We also comment two features of CHOKe.One is that

CHOKe algorithm may be turned on and off regularl{£]

when the link capacity is high or the number of TCP
sources is small, which will make queue size oscillat@(;

aroundb The other is that different algorithms have dif-
ferent UDP throughput behaviors. We are still working tg7]

explore the details of these features.

REFERENCES

[1] Sanjeewa Athuraliya, Victor H. Li, Steven H. Low, and Qinghe

Yin. REM: active queue managemefEEE Network 15(3):48—

(18]

10

53, May/June 2001. Extended version Rroceedings of
ITC17, Salvador, Brazil, September 200http://netlab.
caltech.edu

W. Feng, K G. Shin, D. Kandlur, and D. Saha. Stochastic Fair
Blue: A queue management algorithm for enforcing fairness. In
Proceedings of INFOCOIWApril 2001.

S. Floyd and V. Jacobson. Random early detection gateways
for congestion avoidancelEEE/ACM Trans. on Networking
1(4):397-413, August 1993. ftp://ftp.ee.lbl.gov/
papers/early.ps.gz .

Frank P. Kelly, Aman Maulloo, and David Tan. Rate con-
trol for communication networks: Shadow prices, proportional
fairness and stability.Journal of Operations Research Society
49(3):237-252, March 1998.

Srisankar Kunniyur and R. Srikant. End—to—end congestion con-
trol schemes: utility functions, random losses and ECN marks.
In Proceedings of IEEE InfoconMarch 2000.http://www.
ieee-infocom.org/2000/papers/401.ps

T. V. Lakshman and Upamanyu Madhow. The performance of
TCP/IP for networks with high bandwidth—delay products and
random lossIEEE/ACM Transactions on Networking(3):336—
350, June 1997ttp://www.ece.ucsb.edu/Faculty/
Madhow/Publications/ton97.ps

Dong Lin and Robert Morris. Dynamics of random early
detection. In Proceedings of SIGCOMM'97pages 127—
137, September 1997http://www.acm.org/sigcomm/
sigcomm97/papers/p078.ps

Steven H. Low. A duality model of TCP and queue management
algorithms. InProceedings of ITC Specialist Seminar on IP Traf-
fic Measurement, Modeling and Management (updated version)
September 18-20 2000ttp://netlab.caltech.edu .
Steven H. Low and David E. Lapsley. Optimization flow con-
trol, I: basic algorithm and convergencéEEE/ACM Transac-
tions on Networking7(6):861-874, December 199%ttp:
/Inetlab.caltech.edu

Vegas: a duality model. of ACM 49(2):207-235, March 2002.
http://netlab.caltech.edu

L. Massoulie and J. Roberts. BandW|dth sharing: objectives and
algorithms. Ininfocom’99 March 1999.http://www.dmi.
ens.fr\%7Emistral/tcpworkshop.html

Matthew Mathis, Jeffrey Semke, Jamshid Mahdaw and Te-
unis Ott. The macroscopic behavior of the TCP congestion
avoidance algorithm ACM Computer Communication Review
27(3), July 1997. http://www.psc.edu/networking/
papers/model_ccr97.ps

P. McKenny. Stochastic fairness queueing. Pimceedings of
Infocom pages 733-740, 1990.

Jeonghoon Mo and Jean Walrand. Fair end-to-end window-based
congestion control. IEEE/ACM Transactions on Networking
8(5):556-567, October 2000.

T. J. Ott, T. V. Lakshman, and L. Wong. SRED: Stabilized
RED. InProceedings of IEEE Infocom’9®arch 1999.ftp:
//ftp.bellcore.com/pub/tjo/SRED.ps

Nelder, J.A. and Mead, R. A Simplex Method for Function Min-
imization InComput. J.pages 308-313, 1965

Rong Pan, Balaji Prabhakar, and Konstantinos Psounis. CHOKe:
a stateless AQM scheme for approximating fair bandwidth allo-
cation. InProceedings of IEEE InfoconMarch 2000.

I. Stoica, S. Shenker, and H. Zhang. Core-stateless fair queueing:
achieving approximately fair bandwidth allocations in high speed
networks. InProceedings of ACM Sigcomi998.

