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ABSTRACT 
We consider large cellular networks. The traffic entering the 
network is assumed to be correlated in both space and time. 
The space dependency captures the possible correlation be- 
tween the arrivals to different nodes in the network, while 
the time dependency captures the time correlation between 
arrivals to each node. We model such traffic with a Markov- 
Modulated Poisson Process(MMPP). 

It is shown that even in the single node environment, the 
problem is not mathematically tractable. A model with an 
infinite number of circuits is used to approximate the fi- 
nite model. A novel recursive methodology is introduced 
in finding the joint moments of the number of busy circuits 
in different cells in the network leading to accurate deter- 
mination of blocking probability. A simple mixed-Poisson 
distribution is introduced as an accurate approximation of 
the distribution of the number ofbusy circuits. 

We show that for certain cases, in the system with an infinite 
number of circuits in each cell, there is no effect of mobility 
on the performance of the system. Our numerical results 
indicate that the traffic burstiness has a major impact on 
the system performance. The mixed-Poisson approximation 
is found to be a very good fit to the exact finite model. The 
performance of this approximation using few moments is 
affected by traffic burstiness and average load. We find that 
in a reasonable range of traffic burstiness, the mixed-Poisson 
distribution provides a close approximation. 

1. INTRODUCTION 
The design of wireless cellular networks requires a thorough 
understanding of the traffic characteristics of new call ar- 
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rivals into the network. Cellular networks must be designed 
with adequate capacity in order to provide an acceptable 
Quality of Service (QoS). At the call level, QoS is gener- 
ally characterized by new call blocking (PB), hand-off block- 
ing (PH), and forced-termination. New call blocking occurs 
when no free channel is available in the cell where the mobile 
subscriber initiates the call. Hand-off blocking occurs when 
a mobile user enters a new cell while a call is in progress and 
there is no available channel to carry the call. In order to 
minimize blocking, an increase in capacity can be achieved 
by increasing the number of channels in a cell, reducing the 
cell size, or introducing efficient power control algorithms. 

Analytic models for traditional cellular networks are gen- 
erally based on Poisson arrival processes [7],[8]. However, 
a Poisson arrival process does not adequately characterize 
arrival traffic with correlation. A Markov renewal process 
such as a Markov-Modulated Poisson Process (MMPP) that 
can characterize correlation in arrivals is a more appropri- 
ate model. Use of an MMPP in single-cell analysis has 
been shown by Sohraby[9], where a moment-matching tech- 
nique is used to characterize arrival traffic. However, hand- 
off blocking, impact of mobility, and correlation of arrivals 
between cells cannot be analyzed through these single-ceU 
models. Models which provide multiple-cell analysis as well 
as correlation between cells must be developed. However, no 
product-form solution for multiple-cell analysis exists, and 
the resulting state-space explosion prevents an exact anal- 
ysis [3], [10]. Numerical approximation techniques for such 
systems must be developed. The fixed-point approximation 
(FPA) used by Kelly[3] for blocking provides a good approx- 
imation for large networks with low mobility. However, FPA 
is based on the assumption that all arrivals are Poisson and 
independent. Approximation techniques that do not require 
such an assumption must be developed. 

We model the arrival process into a cellular network as an 
MMPP. Arrival rates into the network vary randomly over 
time, being governed by an underlying Markov chain. The 
MMPP allows us to capture correlation in time, that is cor- 
relation between arrivals into a single cell, and in the case 
of a multi-cell network, to capture correlation in space, that 
is correlation between arrivals to different cells, as well. Let 
us consider the case where the arrival rate into a cell is ~,j 
when the underlying Markov chain is in state j. As the 

123 



MMPP changes state, there is a change in the arrival rates. 
Here, the arrivals are correlated in time. The arrivals may 
also be correlated in space, where there is correlation among 
the cells of the network. This can be seen in a case where 
as the MMPP changes state, there may be a change to a 
higher arrival rate in one cell, and to a lower arrival rate 
in the adjacent cell. This is a case of negative correlation 
among the cells. Similarly there may be positive correlation 
among cells when changes in arrival rates are similar among 
the ceils. A simplification of correlation in space may be 
seen in the following example. Consider two large cells in 
a town, one in the downtown area and the other in a resi- 
dential area. If most of the users are in the downtown cell 
during the day, there is a high arrival rate into that cell and 
a low arrival rate into the residential cell. At the end of the 
day as users travel back home, there is a high arrival rate in 
the residential cell and a low arrival rate in the downtown 
cell. Here, the arrivals into one cell are negatively correlated 
with arrivals into the other cell. 

Arrivals into different cells might also be governed by sepa- 
rate Markov chains. In a multi-cell analysis, the individual 
MMPP's of the cells may be superimposed, resulting in a 
larger MMPP. Our model allows the handoff rates to also 
be controlled by an MMPP. In such a case, the time to 
handoff, for a call in each cell is exponential, with a rate 
that depends on the state of the modulating chain. 

The cellular networks we consider consist of cells with a large 
number of circuits. Such a finite model of a large number 
of servers is not amenable to exact analysis. Since the cells 
contain a large number of circuits, we approximate the sys- 
tem by modeling it as a system with an infinite number of 
servers. A system with an infinite number of servers is of- 
ten more tractable and we show that  this approximation is 
in fact suitable for the size of cells we consider. For exam- 
ple, we may consider a cellular system of 12.5 MHz of total 
bandwidth, with 1.25 MHz allocated to CDMA. (12.5 MHz 
is the total spectral allocation for each service provider.) For 
this example, the reverse link may be able to support up to 
132 users per cell [2]. Note that  this with only 10% of the 
total bandwidth allocated to CDMA. The number of users 
supported in a cell can increase as more bandwidth is used. 

We present two methods to approximate the steady-state 
probabilities of the number of busy circuits. In the single.. 
cell environment, the steady-state probability of the number 
of busy circuits can be computed directly using a probabil- 
ity generating function. A recursive relation between the 
probabilities is also employed. However, the methods of us- 
ing the generating function and the recursive equations are 
not easily extendible to multiple cells. We derive a recursive 
relation to find the joint moments of the number of busy 
circuits in each cell. This moment information is used to 
approximate the probability distribution of the number of 
busy circuits in each cell as a mixed-Poisson distribution. 
This distribution can be approximated by matching only a 
few moments, thus reducing the computational complexity. 

The rest of this paper is organized as follows: In Section 2 
we present our model. In Section 3 we develop the single-cell 
analysis, including a recursive relation for the moments. The 
mixed-Poisson approximation method that  uses moment in- 

formation is presented in Section 4. We present the analysis 
for the multiple-cell environment in Section 5. Section 6 in- 
dudes numerical results that  show the impact of modeling 
bursty traffic on blocking, and on the performance of the 
approximation. Section 7 concludes the paper. 

2. M A T H E M A T I C A L  M O D E L  
We consider a large network consisting of K cells, with each 
cell having a large number of circuits. We model the arrival 
process of new calls to the network as a Markov Modulated 
Poisson Process (MMPP). The arrival rate of calls into the 
network is governed by an underlying Markov chain such 
that  when this Markov chain is in state j ,  new calls arrive 
into cell i according to a Poisson process with rate Aij. The 
holding time of a call arriving in cell i is exponential with 
rate .L As a user moves along the network according to 

P.i" 
some mobility pattern, a call is handed off from cell i to cell 
k with rate '7~. Our general model allows handoff rates to 
be governed by an MMPP also. In such cases, the handoif 
rate between cell i and cell k is %~j when the modulating 
chain is in state j .  

We let J(t) be the underlying Markov chain that governs the 
arrival rates and handoff rates, with state space (1, 2 ..... J). 
The system (N1(t),N2(t),...,NK(t),J(t)) then is a 
continuous-time Markov chain, where Nd (t) is the number 
of busy circuits in cell i at time t. The state space of this sys- 
temis  {(n l ,n2 , . . .  , nK , j )  : 0 < ni _~ m~,i = 1 ,2 , . . .  ,K,  1 
j _~ J} where mi is the total  number of circuits in cell 
i. Such a multidimensional continuous-time Markov chain 
does not have a product-form solution. 

We show as an example, a simple network of two cells with 
m circuits in each cell. We assume the underlying Markov 
chain has two states. The state space of this system is 
{(nx,n2, j )  :0  < nt _< ra, j = 1,2}. 

The infinitesimal generator Q for this chain has the following 
structure: 

Bo Ao 
Di Bi 

".. ".. 

Dra-I  Bin-1 Am-z 
Dra Bm 

(I) 

The generator Q has dimensions (J(m + 1) 2) x (J(ra + 1)2), 
with blocks of size (J(m + I)) x (Jim + I)). The blocks 
A~ : 0 < i < m and D~ : 0 < i < ra are as such: 

At = 

iM1 

Di = 

A1 
F21 AI 

2F21 A1 
• . . . .  

mF2j. At 

~ 1 2  
iMi irl2 

*Oo 

iM1 ~r12 
i(Mx +Flz) 
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The diagonal blocks Bi : 0 < i < m, and Bm are as such: 

B i  = 

C o  A s  
M s  C t  

2Ms 

A2 

C2 ". 

rams 
As 
Cm 

Btr t 

Co A2 
Ms + rsl c~ 

2(M~ + FSl ) 

A2 

C2 
• . .  •. 

re(Ms ~- r21) 
A s  
Cm 

Ck in block Bi is defined as: Q - l m A t -  l m A s - i ( M t  + r x 2 ) -  
k(M2 + rsa) where lmA~ = A~ if n~ < m, and 0 otherwise. 
We define Ai = diag(Ail .... ,A~j), M~ = #I ,  where I is 
an identity matrix, r~k = diag('7~l . . . .  ,'Ti~a), and Q is the 
infinitesimal generator for the underlying Markov chain. 

Such a multi-dimensional Markov chain does not have a 
product form solution. The dimensionality of the system is 
O(jmK), making exact analysis complex. For even a small 
network with a large number of circuits, solving this system 
can become quite complex. 

Analysis of a system with a finite number of servers is not 
usually tractable, and this is true even more so when we 
consider non-Poisson input processes such as MMPP. A sys- 
tem with an infinite number of servers, which is often more 
amenable to exact analysis, can be used to approximate the 
blocking probability in a comparable finite system• This ap- 
proximation is more suitable for finite systems with a large 
number of servers, such as the cellular networks we consider. 
If each cell has a T1 line, offering voice channels at 64Kb/s, 
this results in 24 circuits in each cell, making this a suitable 
approximation for cellular networks. Blocking in the finite 
system is approximated by a corresponding probability in a 
system with an infinite number of servers and parameters 
equal to those in the finite system. 

3. S I N G L E - C E L L  A N A L Y S I S  
We develop solution methods for a simple, but non-trivial 
one-cell case. Results for the one-cell analysis can be incor- 
porated into the analysis of muiti-cell networks, in the form 
of marginal analysis of the individual cells in the network. 

In this paper, we consider the time blocking, that is the 
probability that the system is in a state of blocking in gen- 
eral time. Call blocking, on the other hand, is the proba- 
bility that the system is in a state of being blocked to calls 
at arrival times. These two values are not identical here be- 
cause the arrivals are not Poisson, and therefore do not see 
time averages. The call blocking can be calculated easily by 
conditioning the time blocking over arrival times. 

The time blocking probability in a cell with rn circuits is 
PB,/ = Pr(n = m). In order to approximate this blocking, 
we consider a corresponding system with an infiuite number 
of servers. The blocking in the infinite system is represented 
as the probability that m circuits are busy, conditioned on 
m or less than m circuits being busy. 

P.v,i = Pr(n = m[ n _< ra) 
Pr(n = m, n < m) Pr(n = m) 

= Pr(n  < m) - Pr(n _< m) (2) 

3.1 P o i s s o n  A r r i v a l s  
We begin with the simplified case of Poisson arrivals into one 
cell. New calls arrive into the network according to a Poisson 
process, at a rate of A. A call has an exponential service time 
with average 1/p. For a finite system with m circuits in a 

In 

cell, the blocking probability for this cell is PB,y = ~ . ~  

where p = x_ is the offered load. The corresponding blockin 9 
in the mfimte system is: 

Pr(n = m )  e=*-" ~"  = ~t = ~t (3) 
- -  /--..'v = 0  v! 

The approximation using the equivalent infinite system, in 
the case of Poisson arrivals then, is exact. 

3.2  B u r s t y  A r r i v a l s  
Next we consider a single cell with new calls arriving ac- 
cording to an MMPP process. The new-call arrival rate is 
Aj when the underlying Markov chain is in state j .  Each 
call has an exponential s~vice time with average 1/p. The 
underlying Markov Chain J(t) with J states is such that 
w~j is the infinitesimal rate of going from state i to state 
j .  Such a system is modeled as a multi-dlmensional Markov 
chain with state space {(n , j )  : n _> 0, 1 _< j _< J} where n 
is the number of busy servers in the cell, and j is the state 
of the underlying Markov chain. We define p(n, j) to be 
the probability that there are n circuits busy and that the 
MMPP is in state j .  This probability distribution is such 
that p(n,j) = 0, for n < 0. The system of balance equations 
for this system is as follows: 

(A j+i#+ E wj,)p(i . j )  = 
l <k<_J.t~j 

(i + 1)#p(i + 1.j) + Ajp(i- 1.j)  

+ E wkjp(i,k) l < j < J ,  i > 0  (4) 
l ~ k < J , k ~ j  

The probability generating function of the system is defined 
as follows: 

oo 

P(z) = EPCi)z i (5) 
i = 0  

where p( i) = p( i, 1) + p( i, 2) + . . -  + p( i, J) 
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We rewrite this as 
J 

P(z) = ~ Pj (z) (6) 
j=1 

oo 

where P~ (z) = ~ p(i, j)z t is the probability generating func- 
i=0 

tion for each phase in the MMPP. 

We now follow the methodology for a system with a two- 
phase MMPP in order to keep the analysis tractable. From 
the balance equations (4), we obtain a set of first-order dif- 
ferential equations for P1(z) and P~(z): 

(Ai(1 - z) + w~2) P,(z) + p(z - 1)P[(z) = o~21P2(z) 
(A~(1 - z) + w~I)P2(z) ÷ p(z - 1)P~(z) = Cgl2Pl(Z) 

(7) 

Here, A'(z) denotes the derivate of A(z), dAd~zZ. A second- 
order differential equation for each phase can be obtained 
from the above equations, with a change of variable ~ = 

. ( ~ )  ( z -  1). The differential equation for P1 (z)is shown, 

and the equation for P2(z) is similar, with parameters cor- 
responding to phase two. 

~G~ (~) + (a  - ~)G~ (~) + ( ~  - 7)G, (~) = 0 (8) 

where: 

+ w12 + w2, AiA2 
a ~" ' ~ = (A1 "~- A2) 2 ' 

W12A1 + W21A2 -~- A l p  
and 7 = /.~(A+ I + A ~ )  

Solving Equation (8), we get: 

(9) 

/0 --ct a--1 t)b-a+ldt where U(a, b, c) 1 o o  = r ~  e t ( 1 +  

is the confluent hyper-geometric function and 

F1 (a, b, c) = £ 
(a), C t 

i=o (b)i  i! 

is the Kummer confluent hyper-geometric function with 

(a)i = a(a -I- 1)(a + 2 ) . . .  (a + i -- 1), (a)o = 1 

As proposed in [9], the initial conditions Pi(1) and P~(1) 
are used to determine cl and c2 in Pl(z). Pi(1) = ~ '  W12+~21 
is the steady-state probability that  the MMPP is in state 
1. P~(1), the average number of busy circuits in ceil 1 is 
determined by taking a derivative of Equation (4) 

P~(1 )  • w21A(1)(~  ~" w21) -~- w12A(2)w21 

P(z) simplifies for certain cases, when the parameters are 
integers, because of simplification in the hypergeometric se- 
ries. For example, for A1 = 10, A2 = 15, w12 = 1, w21 = 2, 
and p = 1, we have: 

p(~)= - -  
125(Z--1) s 

1 
+ e ~ ( Z - l ) 1 0 ( z  

e 15( ' -1)  -- elO(z--*)(17 -- 40Z + 25Z 2) 

- ,--('-~4si~h~z~ '~' - I)) J 
(10) 

This numerical solution for P(z) can then be expanded around 
z = 0. The coefficients of this expansion correspond to the 
probabilities such that  p(i) is the coefficient of z i. 

In general, obtaining exact solutions for P1 (z) and P~ (z) in- 
volves hyper-geometric functions which include infinite se- 
ries. The numerical solution is not trivial due to the infi- 
nite series, and introducing many numerical errors. For cer- 
tain simplifying cases of integer-valued parameters,  P1 (z) in 
Equation (9), and P2(z) reduce to a function involving expo- 
nentials. However, when P(z) is in terms of hyper-geometric 
series, obtaining the probabilities from P(z)  is not trivial. 
The probability generating function must be evaluated at 
many values of z to obtain the probabilities, and this can be 
quite complex. 

The probabilities may also be solved recttrsiv@y. Let A = 
diag(A1,... , A j ) ,  M = diag(pl,... , p  j ) ,  and Q be the gen- 
erator of the underlying Maxkov chain. We then write the 
balance equation (4) recursively as such: 

Hi+l = Fffli  - GiHi-a  (11) 

Hi = [p(i, 1 ) . . . p ( i ,  j ) ] r  where T denotes the transpose, 

( 1 )M_I (A~_ ,M_~T ) and F i =  

To obtain a first-order recursion from this second-order equa- 
tion, we let Wi = [IIi,Hi+l] T. Then 

w i  = HiWi-~ i > 1 (12) 

where: 

o , s=EII J, and 
Hi = -Gi Fi ' i = l  j=l 

Wo satisfies (I + S)Wo = [ C_CHo ] 

I is an identity matrix of appropriate dimensions, and C = 
~1,. . .  ,pj]T is the steady-state probability vector of the 
underlying Markov chain. We solve for Wi ' s  recursively, 
then normalize according to Wo, computed with a truncated 

When the offered load is very high, probabilities W0 and Wi 
for i close to 0, may be very small. If the recursion is started 
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at W1, numerical inaccuracies may compound for probabil- 
ities of higher number of circuits. Also, if the probabilities 
near zero are very small, in the order of 10 -1°, recursion 
might not continue for more than a few terms, leading to 
an inaccurate probability distribution after normalization. 
To alleviate this problem, we start near the average, and 
perform backward and forward recursions. The average is 
easily calculated from the z-transform of the probability dis- 
tribution, as shown in the next section. We assume a value 
for W~. where k* is close to the average. On the forward 
recursion, Equation (12) is used, stopping at WM, where 
the probabilities are negligible. Backward recursion is per- 
formed using 

W ,  = W i + l H ~ ' g  1. (13)  

Using this recursive method, we avoid encountering numeri- 
cal difficulties early in the recursion. The recursion is started 
near high probabilities so that the problem areas of very 
small probabilities are the stopping points for the recursion. 

Generalizing this recursive procedure to a network with K 
cells is not possible. The probability vector for the system 
will have K - 1 more dimensions. Calls can be transfered 
between cells, so each state will have transitions to many 
other states. Each cell has an infinite number of servers and 
the state transitions will not occur along a single dimension. 
Therefore, recursions of this type for a multi-cell network is 
not possible. 

We must use approximations to solve for such systems. The 
fixed-point method, a widely used approximation, cannot 
be used here because the arrival process is MMPP. The 
fixed-point approximation inherently assumes the arrivals 
are Poisson ([3]). 

We approximate the probabilities by using moments, which 
are relatively simple to compute. We demonstrate this tech- 
nique now for the single-cell case. The differential equation 
for the generating function can be used to determine mo- 
ments of the number in the system recursively. 

Let P(z) = (Pl(z), P2(z) . . . .  , Pj(z)).  The set of differential 
equations in Equation (7) can be written in matrix form as: 

P(z)A(z) = P' (z)B(z) (14) 

where A ( z ) = ( z - 1 ) A + ¢  and B(z) f ( z - 1 ) M  

By repeatedly taking derivatives of this equation, moments 
of the system can be determined. We have the following 
recursive relation for the moments: 

P(")(1) = nP("-x)(1)A'(1)(nB'(1) - A(1)) -1 

= np( . - x ) (1 )A(nM_ ~) - I  (15) 

d"  where P(")(1) = ~ P ( z ) l ~ = ~ .  Note that P(1) is the steady- 
state probability of the underlying Markov chain satisfying 
P(1)Q = 0 and P(1)e = 1, e is a s,,mming vector of ls. 
P'(1)e = E[n], and P(~)(1) are factorial moments, so that 

P(k)(1)e = E[n(n - 1) . . .  (n - k + 1)] (16) 

The factorial moments arise in the expansion of the prob- 
ability generating function about z = 1. By equating the 
coefficients of z n in this expansion, we obtain the the fol- 
lowing relation ([1]), with p(n) = ~ = 1  p(n, j):  

m[,] f r~ (17) p(. )  = 
k n /  r_>n 

where m[r] = P(r)(1)e is the r th  factorial moment. This 
infinite sum is truncated at k where m[k]/(k - n)! is negli- 
gible. In our experimentation, however, we have found that 
the computation of ~p(n)} can be numerically unstable. The 
summation in Equation (17) has an alternating series where 
the terms are very large. This presents high numerical er- 
rors in the computation of p(n). Also, moments of very 
high order are required for an acceptable approximation of 
the blocking. This method cannot be used suitable to ap- 
proximate the blocking. 

In the next section we introduce an approximation without 
numerical instability, that requires fewer moments. 

4. MIXED POISSON APPROXIMATION 
We approximate the distribution of the number of busy cir- 
cuits in a single cell for an infinite system, by a Mixed- 
Poisson distribution of L terms: 

pin) = ~ ~, where Z ai = 1 (18) 
i=1 i=1 

In order to approximate {p(n)} with an L-term mixed-Poisson 
distribution, only the Krst 2L - 1 moments are required. 
These moments for the single-cell case are calculated using 
Equation (15). We then find the parameters a~ and ~i that 
satisfy the given moment information. A system of 2L - 1 
nonlinear equations is formed, using the expression for the 
factorial moments of ~ (n)} :  

L 
m[r]=~ai~ 0<r<2L-I and mo=l (19) 

i=i 

Using the given moment information, the above system of 
nonlinear equations is solved to obtain a~ and ~ .  When 
~(n) has a distribution of two terms, we obtain quadratic 
equations for the solutions of ai  and for the solutions of ~i. 
Specifically, ai  are the solutions to the following equation, 
quadratic in a 

ha  2 - ha  - (m~l] - m[23) s = 0 (20) 

where h = -3m~l m~2 +4m[31 m[s ] - 6 m  1 m 2 m s + 4ms + m2 [] [] [] [] [1 [] [2] IS] 

When m~q = m[2], as in the ease of a Poisson distribution, 
the solutions to the above equation for ai  are 0 and 1. This 
corresponds exactly to the Poisson distribution, with a = 1 
aud/3 = m[E , the average. 

A three-term distribution for iN(n) results in cubic equations 
for the solutions of a~ and ~i respectively. It can be ar- 
gued that the solution for a k-term l~(n) results in equations 
that are polynomial in ai  and ~ ,  of order k respectively. 
A good approximation to blocking in the finite system can 
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be obtained by using relatively few moments, as shown in 
Section 6. 

5. MULTIPLE-CELL ANALYSIS 

5.1 Poisson Arrivals 
We consider a simple network of K cells with Poisson arrivals 
into the network. New calls arrive into cell i according to 
a Poieson process with rate A,. The call holding time for 
a call in cell i is exponential with mean 1//~,. A call is 
handed off from cell i to cell j with rate ~/,j, and 7 ,  = 0. 
Each cell has an infinite number of servers. The system 
state is described by (f~) = (nl,n2,... ,nK), where ni is 
the number of busy circuits in cell i. We denote by p(f~), 
the steady-state probability that the cells ( 1 , . . . ,  K) have 
n l , . . .  ,nK) circuits busy, respectively. We introduce the 

notation: a, ~ (0, . . .  , n, = a , . . .  ,0). This system has the 
following equilibrium equation: 

p(ff) A, + n,#i + nl %.~ = 
/ = I  i = 1  .~=1 

. /¢ i  

K K 

E p ( ~  -- l,)A, + E p ( ~  + l , ) (n ,  + 1)~ 
i = l  i = l  

K K 

+ E(ni + 1) Ep(n + 1, - -  lj)(n~ + 1)Vii 
j = l  i = 1  

(21) 

Such a system results in a continuous time Markov c h a i n ,  

with the following product-form steady-state probability dis- 
tribution: 

f i  p~e-p' (22) 
P(~) = m! 

b----1 

where p, = .__At_ r, = ~#K=i 'TiJ, and A,, the offered load is 
obtained through the following system of linear equations: 

K 

A,=Ai+~ ~L' A. (23) 
.= pj + rj "ffi~ 

The probability distribution of busy circuits in any particu- 
lar cell is dependent on other cells only through the offered 
load, A. The probability of the number of busy circuits in 
cell i, then is independent of the distribution in other cells, 
as follows: 

p(n,)  = P~'e-P' (24) 
nd 

We consider cellular systems with 24 channels in each cell, 
based on a T1 line with 6AKb/s voice channels. For such a 
large number of circuits, the infinite-approximation of the fi- 
nite system performs well, as shown in Table 1, for a two-cell 
network. In addition, we consider systems where suitable 
blocking is in the range of 10 -2 to 10 -s. Table 1 shows the 
accuracy of the approximation for various values of offered 
load. 

Table  1: A p p r o x i m a t i o n  of  b locking  in  a f inite sys-  
t e m  wi th  t he  co r r e spond ing  probabi l i ty  in the  infi- 
n i te  sys tem,  for Po i sson  Arr ivals .  

Offered 
Load Finite System 
m PB,/(xl0 C-2)) 
14 0.397103 
14.5 0.552335 
15 0.746494 
15.5 0.982649 
16 1.262687 
16.5 1.587239 
17 1.955739 

Blocking Relative 
Infinite System Error 
Ps,t  ( x l 0  (-2~) % 

0.432942 
0.611177 
0.839351 
1.123796 
1.469818 
1.881385 
2.360932 

9.03 
10.65 
12.44 
14.36 
16.40 
18.53 
20.72 

The results in Table 1 are for the new call blocking experi- 
enced in one cell of a two-cell network. The system param- 
eters are as such: A, = A, #i = 1, andT ,  j = 1 for i ~  j .  
The infinite approximation is an overestimate, and performs 
better for smaller values of offered load, p. This is because 
at higher loads, the probability distribution of the number 
of busy servers has a greater mass at higher values of n, pos- 
sibly higher than m since there is no limit on the number 
of sexvers. So Pr(n = i) for i > m, now have larger val- 
ues, impacting on the approximation of PB,I. In the range 
of blocking suitable in cellular systems, 10 -2 to 10 -s ,  the 
infinite approximation of the finite system is acceptable. 

5.2 Bursty Arrivals 
We now consider bursty arrivals into a multi-cell network. 
We assume a network of K cells with an infinite number of 
circuits in each cell. The arrival rate of new calls into the 
network and the handoff rates between cells are governed 
by a Markov chain. When the underlying chain is in state 
j ,  new calls arrive into cell i with a Poisson rate Aij and 
the handoff rate between cell i and cell k is %kj. The call 
holding time of a call in cell i is exponential with rate p,. 
This system is modeled as a continuous-time Markov chain 
with state space {(nx,n2, . . .  , n K , j )  : n, _> 0,1 _< j _< J} 
where n, is the number of busy circuits in cell i, and j is the 
state of the underlying Markov chain. 

The arrival and handoff rates in the cells may be controlled 
by different Markov chains, such that the rates in cell i are 
controlled by the modulating chain J,(t). This refers to the 
case where each cell has a independent pattern of correla- 
tion in the arrivals and handoffs. In addition, the handoff 
rates and arrival rates may be governed by separate chains. 
These various MMPP-s may be superimposed, resulting in 
one MMPP with an expanded state-space, for the whole 
network. Suppose we have n individual MMPP-s with gen- 
erators Q, aud rate matrices Ai. The generator Q and rate 
matrix A of the composite MMPP is as follows: 

where ~ is the Krouecker sum. The Kronecker sum ~ de- 
fined as follows: 

A ~ B =  IB®A+ B®IA 
where ® is the Kronecker product. 
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We assume p(n t ,n2 ,  . . .  ,nK) = 0 when ni < 0 for any i. 
The following balance equations satisfy the continuous-time 
Markov chain resulting from a two-cell network: 

[ Atj +Azj +ntDt  +n2#~+ ] 
J J p~(na,n~) n t T t 2 j  + nz'721j + ~ o~jk 

k = l  

(2~) 

= ~ t j p j ( n l  -- 1 , n2 )  + A 2 j p ~ ( n x , n z  - t )  

+ (nt + 1)#~p~(nt + 1,nz) + (n2 + l)mp~(m,n2 + 1) 

+ 
J 

~ o~p~(nt,n2) + (hi + 1)712./p./(n1 + 1,n2 - ~) 
kml 

+ ( n 2 + l ) 7 2 x j p ~ ( n x - l ,  n 2 + l )  nl,n2_>0, l < j < J  

The reeursive method used in the one-cell analysis to solve 
for the steady-state probabilities cannot be used here. From 
the balance equation above, it is clear that  p(nt ,  n2, j )  is in 
terms of p ( n l , n 2 , k )  for k ~ j ,  p (n t  - 1,n2,j), p(nx,n2 -- 
1,j) ,  p(nl  + 1,n2, j) ,  p(n l ,  n2 + 1,j) ,  p (n l  -1- 1,n2 - 1 , j ) ,  
and p(nl  - 1,n2 + 1,j) .  Both cells have an infinite number 
of circuits and the state transitions occur along multiple 
dimensions. Therefore,we cannot write recursive relations 
between the IInx,n2s. Approximation techniques must be 
applied to networks with more than one ceil. The moment 
information for this system can be used to approximate the 
probabilities. 

We derive a partial differential equation for the probabil- 
ity generating function for the number of busy servers in 
each cell in the system. Let A~ = diag(Ail, Ai2, . . . ,  Aij), 
ri~ = d iag(~i~ t , ' y i~ , . . .  ,'yi~3) and Q is the generator of 
the underlying Markov chain. We denote the following: 

~ = (z~,z2, . . . ,ZK) 

P J ( ~ =  ~ p ( n l , . . . , n ¢ , i ) ~ [ l " " ~  K 
hi_>0 

P(~ = (P~(~, . . . ,Pj(~)  

From the bolance equations for a K-cell network, similar to 
Equation (26), for this system, we get the following partial 
differential equation for the probability generating function: 

i= l  

where 
K 

A ( ~  = ~ ( z ,  - 1)A, + 0, 
i l l  

K 

B,(~3 = (~  - 1)M, + ~ ( ~ ,  - ~,)r,~ i =  1 , . . .  , K  

There is no closed-form solution for P(g)  in this case. We 
can use this equation to obtain a recursive relation for the 

joint moments of the network. We demonstrate this for a 
two-cell network to keep the analysis simple yet non-trivial. 
Note that  P(1, 1) is the steady state probability vector of 
the underlying Markov chain. We define some notation: 

A ( ' " ) =  0:~ .A(~1,.2)b,=.,=1 
Oz~ oz~ 

Then from Equation (26) we get: 

p(i,j) (A(o,o) _ iB~t,o) - jB(o,I)) (27) 

_ p O - l , ~ + l ) ( i B ~ l , O ) )  _ p O + l , j - 1 ) ( j B ~ o , 1 ) ) =  

- P( i - t 'J ) ( iAO'°))  + P( i ' J - t ) ( jA(° ' t ) )  (28) 

Let N( i )  = (p(i,o), p ( i - l , t ) , . . . ,  p(O,i)) be the ith order mo- 
ment. We then have the following recursive relation: 

N( i )  = N ( i  - 1 ) A ( i ) ( - B ( i ) )  - t  i > 0 (29) 

where N(0) = P ( I ,  1), A(1) = (A1,A2), 

A2 
iA1 ( i -  1)A1 2A2 

A(i) = ... ... 
2A~ (i - 1)A2 

A1 iA2 

and B( i )  has the following structure: 

-- iK1 P12 

(~-x)r21 

0 -  a ) rm 

O -  Ki - O - a ) g z  
P21 

IF12 

K i = M i + F a 2  and K 2 = M 2 + P 2 1  

The probability of the number of busy circuits in the system, 
p ( n t , . . .  , nK)  = ~ = 1  p ( n l , . . .  , nK, j )  can be obtained us- 
ing the joint moment information calctflated using Equa- 
tion (29). Let rn[ra,r2 ...... K] = p(~t,r2 ..... rx)(1).  Then, by 
writing the Taylor series expansion of P(g) at  (zl - 1)(z2 - 
1 ) . . .  (ZK -- 1) and equating the coefficients of z~ 1 z~ 2 nK " ' ' K  ' 
the probabilities are obtained as follows: 

p (m , . . .  ,nK) = mt,.__._~,:..,rK____.j (_l)r,_n, r~ 
~iffin i r l ! "  " ' r K ]  -- n t  

tffia,... , g  

(30) 

As in the case of the single-cell network, we encounter nu- 
merical difficulties in computing p (nx , . . .  ,nK) using this 
method. It is impractical to use Equation (30) in obtaining 
the joint probabilities of the number of busy circuits and 
performance measures such as blocking. We focus on new- 
call blocking as the performance measure of interest, and use 
the marginal information on the number of busy circuits in 
each cell to this end. From Equation (29) we obtain the 
marginal moments. For a two-cell network, mx [rt] = m[rx,o] 
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and ms[r2] = m[o,rM. We then use the Mixed Poisson 
tribution presented in Section 4 to approximate the marginal 
probabilities of busy circuits in each cell, 
i.e., p(nl) = ~n2 >o pl (m, n2) 

5.3 I m p a c t  o f  M o b i l i t y  
We consider the impact of mobility in the above models with 
an infinite number of circuits in each cell. We find that in 
certain cases, mobility has no effect on p(~). When arrivals 
are Poisson, we observe this result in the case where the 
network is symmetric, such that A~ = A, p~ = p, and that 
the handoff rate into a cell is equal to the handoff rate out 
of that cell, that is, F~ and ~ r _  I 'TJ~ are equal for all i. For 
such conditions, p~ in Equation (22) is independent of mo- 
bility and reduces to ~. The probability distribution is thus 
independent of the mobility parameter, and the distribution 
in each cell is as for the singie-cell case with no mobility. 

For a system with bursty arrivals and an infinite number of 
servers, we see a similar result when the marginal densities 
of the number of busy circuits in the cells are equal. This 
includes the condition that the network be symmetric, as 
described above, for each phase in the MMPP. Under such 
conditions, the recursive relation for the marginal moments 
of the network reduces to that of a single-cell case, with no 
mobility parameters. For example, for a two-cell network, 
the generating function for the marginal distribution of busy 
servers in cell 1 is: 

F(z) = ( F l ( Z ) , . . .  ,Fj(z)) = E P(nl'n2)znl 
nl=O n2=0 

We consider the marginal information about cell 1 from the 
balance equations shown in Equation (26). We find that if 
the marginal densities of the cells are equal, we arrive at the 
following for the recursive relation of the moments: 

G(n)(1) = nG(n-x)(1)Ai(nM, _ Q) - i  (31) 

This is identical to Equation (14), the recursive relation for 
the single-cell case. All the moments of marginal distribu- 
tion are thus are independent of the mobility parameter. 
Therefore, the marginal distribution of the number of busy 
circuits in the cells is independent of mobility when con- 
ditions mentioned above are met and there are an infinite 
number of circuits in each cell, even when the arrivals follow 
an MMPP. 

We claim that in spite of the above observation, the infinite 
model is still a good approximation of the finite system. The 
model with an infinite number of circuits serves to model 
systems with a large number of circuits. As mentioned ear- 
lier, when we consider cellular networks with even just 10% 
allocation of bandwidth to CDMA, up to 132 channels may 
be supported in one cell. When we consider CDMA cellu- 
lar networks, we can easily expect a very large number of 
channels per cell. In order to study numerically, the im- 
pact of mobility in a system with a very large number of 
circuits, we look at the system with 24 circuits, and a low 
average load. A very low average load in a system with 24 
circuits is analogous to a system with very large number 
of circuits and moderate load, in terms of system utiliza- 
tion. We look at the point probability Pr(n = 0) to study 
the impact of mobility on the system. We show only one 

point in the probability distribution, however note that this 
trend is seen for the distribution as a whole. 'Ikble 2 shows 
Pr(n = 0) with increasing mobility for a 24-circuit system, 
an average load of 4. We represent mobility with the pa- 
rameter r~ = ~'~=1%J, and here, r = r~ for all cells i. This 
table shows that mobility does not have a big impact on 
Pr(n = 0). This supports the claim that for cells with a 
very large number of circuits, mobility has less of an impact 
on the system. 

Tab le  2: I m p a c t  of mob i l i t y  o n  Pr(n = 0) 
Mobility Pr(n = 0) (×10 -~) 

0 
2 
4 
6 
8 
10 

9.276712663 
9.276712924 
9.276713126 
9.276713325 
9.276713521 
9.276713714 

In the next section we provide numerical results for new-call 
blocking in the network. 

6. N U M E R I C A L  R E S U L T S  

6.1 Single-Cell Network 
We assume one cell in the network, with an infinite number 
of servers. The MMPP process has two states such that 
w~j is the infinitesimal rate of going from state i to state 
j .  The arrival rate is ~i in state i, and the average load 
is ~ = ~1pl + ~2p2 where p~ is the steady-state probability 
of the underlying Markov chain being in state i. The call 
holding time, 1/p, is normalized to 1. We study the accuracy 
of the mixed-Poisson approximation at various loads, and 
the effect of burstiness in traffic on the new call blocking 
and on the performance of the approximation. 

We study the two-term mixed-Poisson approximation (MPA- 
2) for blocking when arrivals are non-Poisson, by setting 
~1/A2 = 0.8, and varying the average offered load, ~. Ta- 
ble 3 compares the MPA-2 with blocking in the finite system 
with 24 circuits, in the range of 10 -2 to 10 -3 . The approxi- 
mation is very good, and becomes more accurate for smaller 
values of average offered load. Even at a relatively high 
average load of 17, the approximation is very accurate as 
compared to blocking in the finite model, with only 1.88% 
relative error. The two-term MPA provides a close approx- 
imation to blocking in the finite system for blocking in the 

2 3 range of 10- to 10- and average load in the range of 14 
to 17, for ~1/~2 = 0.8. 

To describe the burstineas in the arrival tratBc, we use the 
following measure, as defined in [6]: 

w12w21 (A1 - ,X2) 2 (32) 
O= (w12+w21) s 

We use 0 as a measure of deviation from a Poisson process 
with the same average arrival rate, ~. For a Poisson process, 
it is apparent from the above equation that 0 = 0. The 
arrival traffic is characterized as increasingly bursty, as the 
value of 0 is increased. 
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Table  3: Mixed-Po i s son  A p p r o x i m a t i o n  for a Single- 
Cell  Network  

Offered 
Load 
A 

Blocking 
Finite System ] Infinite, MPA 
Ps,/ (xl0 -z) [ Ps,¢ (xl0 -z) 

14 0.502509 
14.5 0.698195 
15 0.944740 
15.5 1.247618 
16 1.611185 
16.5 2.038460 
17 I 2.531007 

0.497613 
0.690621 
0.933270 
1.230643 
1.586661 
2.003881 
2.483400 

Relative 
Error 
% 

0.97 
1.08 
1.21 
1.36 
1.52 
1.70 
1.88 

For the above two-phase MMPP, all four parameters A1, A2, 
toz2, and w2z affect the arrival process. In order to keep 
the numerical analysis tractable, we consider here, cases of 
balanced mean where AZpl = A2p2. We find that the triplet 
(s,X,T) can fully characterize the source, where s = ~, 

is the average load, and T = 1/wz2 is the average time 
spend in state 1 of the MMPP before transition to state 2. 
For further numerical results, we set T = 1 and vary s and 
A. From (s, A,T), we set the parameters of the system as 
follows: 

I I A(I + s) A2 = Az 

Figure 1 shows the effect of time correlation in the arrival 
process on blocking in a single-cell network. The MPA-2 
refers to approximation in the model with an infinite num- 
ber of servers and the exact finite result is for the finite sys- 
tem with 24 circuits in each cell. We observe that as arrivals 
are more highly correlated, new calls to the cell experience 
higher blocking. As traffic becomes increasingly bursty, a 
bursty period will result in a higher number of circuits be- 
ing occupied. This causes an increased blocking not only 
during this bursty period, but also following it, since call 
holding times are unaffected. We Mso observe from this fig- 
ure that the MPA-2 performs very well in approximating the 
blocking in the finite system. The approximation becomes 
relatively poorer as traiBc burstiness increases. However, 
for reasonable correlation, in the range of 0 = 0 to 12, the 
relative error is less than 10%. The MPA-2 provides a good 
approximation of blocking in the finite model. 

6.2 Multiple-Cell Network 
We study the effect of space correlation on blocking in a 
multi-cell network. Figure 2 shows the results on blocking 
for a pair of negatively correlated cells. The arrivals to the 
two cells are correlated such that when the arrival rate in cell 
1 increases, the arrival rate in cell 2 decreases, and vice versa. 
In Figure 2, when the MMPP is in state 1, the arrival rates 
to cells 1 and 2 are ~ and ~ 2 0  , respectively, and 
vice versa when the MMPP is in state2. The average load 
in ceil 1 is kept constant, at 16. Due to correlation between 
the cells, the average load in cell 2 increases as 0 increases. 
The figure shows that as correlation among cells increases, 
blocking increases. There is a greater increase in blocking 
in cell 2 because its average load increases as 0 increases. 
The difference in blocking between the two cells is greater 
at higher values of 0. The higher the correlation between 
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Figure  1: Blocking vs Cor re l a t i on  in  Arr iva ls  

arrivals to the two separate cells, the greater the difference in 
blocking experienced by users of these two cells. The MPA-2 
performs fairly well, although it provides a relatively poorer 
approximation as the cells become more highly correlated. 
The relative error in the approximation for the higher values 
of 8, is still acceptable, at 10%-15%. We observe that MPA-2 
is quite accurate in the range of 0 = 0 to 20. 

We now study the impact of mobility on the finite model 
with 24 circuits in each cell. The average load is kept con- 
stant at 16. Figure 3 shows the impact of mobility on block- 
ing for two values of 0. As mobility increases, blocking de- 
creases in both cases. Blocking is higher for larger values of 
0. The difference between the blocking at the two values of 
0 decreases as mobility is increased. At very high rates of 
mobility, correlation in the arrival traiBc has a smaller effect 
on blocking. 

7. CONCLUSION 
We have modeled large cellular networks with MMPP ar- 
rivals to capture correlation in new-call trafllc. Models of 
networks containing multiple cells result in multi-dlmension- 
al Markov chains, which do not have product-form solutions. 
We approximate the finite system with an equivalent infinite 
system. This approximation is exact for a single-cell case 
with Poisson arrivals, and very good for a multi-cell network 
with Poisson arrivals. We have introduced the methodology 
of recursively computing moments of a multiple-cell net- 
work with bursty arrivals. These moments are then used 
to approximate the steady-state probabilities. We have in- 
troduced the mixed-Poisson distribution as a good approxi- 
mation of the distribution of the number of busy circuits for 
multiple-cell networks with bursty arrivals. 

For a system with an infinite number of circuits in each cell, 
we have found that for certain cases, there is no effect of 
mobility on the steady-state distribution of busy circuits. 
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For Poisson arrivals, this result is seen when the network 
is symmetric. For bursty arrivals, we observe this result 
when the marginal densities of busy circuits in the cells are 
equal, and the network is symmetric. This important result 
shows that for a network with a very large number of circuits 
in each cell, this is very little impact of mobility on the 
performance of the system. 

We have found the two-term mixed-Poisson approximation 
to be a very good fit to the exact finite model. Even at high 
loads and moderate correlation in arrival traffic, the relative 
error in approximation is less than 5%. For the range of 
blocking we are concerned with, 10 -2 to 10 -3 , the mixed- 
Poisson distribution is a very close approximation. In the 
exact analysis of a single cell, we found that an increase 
in burstiness in the arrival traffic increases blocking. The 
mixed-Poisson approximation is quite accurate for reason- 
able traffic burstiness, that is 0 in the range of 0 to 15. In 
a multiple-cell network where arrivals into separate cells are 
negatively correlated, we found that blocking increases as 
the cells more highly correlated. Also, for a two-cell net- 
work, the higher the correlation, the greater the difference 
in blocking between the two cells. We have also studied the 
impact of mobility of users in a network with few circuits, on 
blocking. As users are increasingly mobile, they experience 
a smaller blocking. In addition, at very high mobility, the 
correlation structure of the arrivals has a smaller impact on 
blocking. 
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