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Performance of ARQ Go-Back-N protocol in Markov channels
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In this paper, an ARQ Go-Back-N protocol with time-out mechanism is studied. Transmissions on both the forward and the reverse
channels are assumed to be subject to Markovian errors. A recently developed approach, based on renewal theory, is further extended and
the steady state average number of packets in the ARQ system is evaluated. This allows us to determine analytically both throughput and
transmission delay of the system. Simulation results, that confirm the analysis, are also presented. Based on the analysis, the trade-off
involved in the choice of the time-out parameter is identified and discussed.

1. Introduction

Two types of error control techniques have been used
extensively to enhance the reliability of data transmissions.
In Forward Error Control (FEC), redundancy is introduced
in order to correctly decode a corrupted packet, and in Au-
tomatic Repeat reQuest (ARQ), erroneous packets are de-
tected and their retransmission requested [8].

With the resurgence of interest in wireless communica-
tion networks, it is important to be able to evaluate the
performance of error control schemes under assumptions
that accurately model the wireless communication channel.
In particular, the analyses which have been done in the
past, based on the assumptions of i.i.d. packet transmis-
sions and perfectly reliable feedback, will not be applicable
to situations where the errors in consecutive slots are not
independent, and where the feedback information may get
corrupted due to errors in the return channel. Therefore,
although related papers have appeared in the past, perfor-
mance evaluation of ARQ schemes over fading channels
has received renewed interest.

In particular, the combined effect of dependent transmis-
sions and erroneous feedback has been considered only by
Kim and Un [7], for the basic ARQ protocols, and by Cho
and Un [3], for some more elaborate protocols. In these
papers, the throughput analysis is done, by using the the-
ory of renewal processes or the flow graph technique [9].
Delay analyses are relatively easy when the delay associ-
ated with each retransmission is a constant. In such cases,
the average throughput and delay are directly related, and
throughput and delay analysis are essentially the same. In
the context of protocols in which the time between two
successive retransmissions of the same packet is difficult to
express, the delay analysis does not follow easily from the
throughput analysis. The Go-Back-N ARQ protocol with
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timer control is one such example. For such protocols, only
the throughput performance is available in the literature.

In this paper, we consider the Go-Back-N ARQ proto-
col with timer control, whose throughput performance was
recently presented in [3]. In [11,13], it is shown that the
throughput analysis given in [3] provides an upper bound,
and the exact performance is evaluated via a Markovian
analysis. This paper presents a non-trivial generalization
of the analysis in [11,13], that allows the transmission de-
lay of the same protocol to be computed as well. It must be
noted that, in order to accurately study the protocol perfor-
mance, both throughput and delay are needed. Additional
performance metrics, such as probability of undetected er-
rors, are not considered here. The analytical methodology
presented, although developed here for a specific protocol,
is applicable to the performance study of other protocols
with memory, for which standard techniques are not feasi-
ble and the flow graph approach is impractical.

In the following, the channel model (section 2) and the
protocol (section 3) are described. The proposed technique,
based on a Markov chain approach, is described in sec-
tion 4, and is applied to the study of the protocol in sec-
tion 5 (specific example) and section 6 (general case). Fi-
nally, some numerical results are discussed in section 7.

2. Channel model

We model the channel as in [3], i.e., by means of a
Gilbert channel [5] in each direction. This means that the
patterns of packet and feedback errors follow two inde-
pendent first-order Markov models, which are adequately
described by the transition matrices MF (x) = MF (1)x and
MB(x) = MB(1)x, with

MF (x) =

(
p(x) q(x)
r(x) s(x)

)
,

MB(x) =

(
a(x) b(x)
c(x) d(x)

)
,

(1)

 Baltzer Science Publishers BV



184 M. Zorzi, R.R. Rao / Performance of ARQ Go-Back-N protocol

MF (1) =

(
p q
r s

)
, MB(1) =

(
a b
c d

)
, (2)

where p(x) = 1− q(x) (r(x) = 1− s(x)) is the probability
that the forward slot i is successful given that the forward
slot i − x was successful (unsuccessful), and similarly for
the entries of MB(x), with reference to the backward chan-
nel. Note that 1/r and 1/c represent the average lengths
of the bursts of errors, which are described by geometric
random variables.

In the present context, unlike in most of the literature
on this topic, we are interested in very rough transmission
conditions, where the marginal probability of having an
unsuccessful slot is fairly high (say, about 5–10%) and the
length of an error burst may span a considerable number
of packets. This situation, which may seem unrealistic in
wired networks, is quite common in mobile radio channels,
due to fading [2,4].

We assume, in the following, that the packet length is a
constant, equal to one time unit. The round-trip delay from
the beginning of a transmission to the reception and decod-
ing of the corresponding feedback information is m slots.
Hence if a packet transmitted in slot i is negatively ac-
knowledged, it will be retransmitted in slot i+m. Positive
(ACK) and negative (NAK) acknowledgements can never
be confused with each other, i.e., the effect of backward
errors is to map the ACK and NAK symbols to an Erasure
symbol. Also, each ACK/NAK carries the identity of the
last correctly received packet. This implies that a packet
whose ACK is lost may be subsequently acknowledged by
feedback received in the future.

3. Protocol description

In the following, we consider the Go-Back-N (GBN)
ARQ protocol with timer control, as described in [3]. The
receiver follows the standard rules of ARQ GBN [1], i.e.,
it sends an ACK for every correctly received packet. When
it receives an incorrect packet, it sends a NAK instead, and
discards every successive packet, until a correct copy of the
negatively acknowledged packet is received.

The transmitter acts according to the following rules. It
sends packets in order, as long as it receives ACKs on the
backward channel. Upon reception of a NAK for packet
i, it goes back and retransmits in order all packets starting
from packet i. If the feedback about packet i is detected
in error, it is ignored. If it was an ACK, it is possible
that a future ACK/NAK will provide information that may
acknowledge packet i. In fact, the ACK/NAK of packet
k contains implicit acknowledgement of all packets i < k.
However, it is possible that the lost feedback was a NAK
(in which case no more feedback will be sent, and the
uncertainty could last for ever), or that the feedback channel
is undergoing a very long burst of errors, so that a large
number of ACKs get lost. To cope with such cases, a time-
out mechanism is used. This is provided by the use of a
counter, which causes the transmitter to retransmit packet

i after t slots (and all packet following i afterwards), if by
that time it is still unknown whether or not it was correctly
received. This allows the transmitter to avoid deadlock or
buffer overflow. Note that the transmitter buffer needs to
retain only t packets. Of course, it must be t > m. If
t = m we have the classic GBN scheme, in which if an
ACK is not received at the proper time, retransmission is
immediately performed.

For simplicity, the analysis is kept at the block level,
and the details of specific error detection schemes are not
considered. Therefore, we assume that an adequate CRC
code is used, so that the undetected error rate is negligible,
and do not explicitly consider the presence of overhead.

4. Analysis

4.1. Definitions

In order to precisely track the protocol evolution, one
must clearly distinguish between three types of packets.

• Outstanding packets, are packets that have been trans-
mitted but whose feedback is as yet unavailable. Note
that the time-out expiration implies a decision about the
transmission outcome: as a result, a packet can not be
outstanding for more than t consecutive slots.

• Packets in the system (PITS), are packets whose first
transmission has occurred, but which are not necessarily
outstanding. Note that an outstanding packet is in the
system, but not all packets in the system are outstanding.
Consider the following example: let the system be in the
state in which a NAK for packet 1 was lost. Since the
receiver will not send any other feedback information,
this situation will last until the timeout associated with
packet 1 expires, t slots after it was transmitted. By that
time, the transmitter will have transmitted t − 1 more
packets (2 to t) after packet 1. Upon timeout expira-
tion, the transmitter goes back to packet 1 and retrans-
mits it. By the time the ACK for packet 1 is expected
(m − 1 slots later), there will be m outstanding pack-
ets (in fact, m is the minimum number of outstanding
packets), i.e., packets 1 to m, whereas the number of
packets in the system will still be t (i.e., packets 1 to t),
until some correct receptions occur and this number de-
creases. Furthermore, if the number of packets in the
system is greater than m, upon a successful reception
(i.e., when a packet actually departs from the system)
an “old” packet (one that is already in the system) will
be transmitted.

• Pending packets are outstanding packets which have
been transmitted at least m slots earlier. Note that pend-
ing packets are outstanding packets whose feedback was
expected but has not been received, due to failures in the
return channel. Note also that the difference between
the number of outstanding packets and the number of
pending packets is always m.
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Figure 1. GBN with timer control protocol: embedded Markov chain, m = 5, t = 7.

4.2. Markov chain for the throughput analysis [11,13]

For completeness, we briefly describe the Markov ap-
proach used for the throughput evaluation of the protocol,
presented in [11,13].

The error pattern is described by four states: state 1,
corresponding to an erroneous packet and a correct feed-
back transmission (NAK); state 2, where both transmis-
sions are correct (ACK); state 3, corresponding to an erro-
neous packet and erroneous feedback; and state 4, where
the packet is correctly received but the ACK is lost. To
take into account the protocol memory, introduced by the
time-out mechanism, we need to split state 4 into a number
of states, Si, i = 0, 1, . . . , t − m, and S′i, i = 0, 1, . . . ,
t −m − 1. This chain of states corresponds to state 4, in
the sense that it is entered when a correct packet is received

but its ACK gets lost, and is exited when the resulting un-
certainty is resolved. All these states correspond to the
uncertain situation in which some feedback information is
lost. More than one of them is needed in order to keep
track of the number of outstanding packets, i.e., packets
which have been transmitted and not yet acknowledged,
and whose time-out has not expired. For example, figure 1
reports the complete chain for the case t−m = 2.

When the ACK relative to packet k is lost, the system en-
ters state S0. From state S0, a transition occurs to states 1
or 2, after one slot delay, if correct feedback relative to
packet k + 1 is received. Note that this feedback infor-
mation also acknowledges the outstanding packet k, whose
ACK was lost. Therefore, a transition to state 2 (ACK)
involves two correct receptions (the current, k+ 1, and the
outstanding, k), whereas a transition to state 1 (NAK) in-
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Figure 2. GBN with timer control protocol: generic stage of the embedded
Markov chain.

volves one correct reception (packet k). On the other hand,
if no correct feedback is received as to slot k+ 1, a transi-
tion to S′0 or to S1 occurs. If the lost feedback was a NAK
(transition to state S′0), no further feedback will be sent, and
the time-out expiration of packet k will resolve the uncer-
tainty. The transitions from S′0 then involve a delay of t−1
slots and no rewards, except for the transition to state 2. If,
on the other hand, the lost feedback was an ACK, state S1

is entered, with two outstanding packets (k and k + 1).
The pair of states (S1,S′1) is analogous to (S0,S′0), with

the difference that there is one more outstanding unac-
knowledged packet (and therefore the transitions to states
1 and 2 involve two and three rewards, respectively), and
that one more slot has passed, so that the transitions from
S′1 involve a delay of t − 2 slots. In general, as depicted
in figure 2, stage (Si,S′i), i = 0, 1, . . . , t−m− 1, involves
a delay of t− 1− i slots in exiting state S′i, and of 1 slot
in exiting Si. Moreover, there are i+ 1 and i+ 2 rewards
associated to the transitions from Si to state 1 and 2, re-
spectively, and only one reward for the transition from S′i
to 2. Note also that the transition probabilities from Si to
Si+1 and S′i do not depend on i.

For this Markov chain, state transition probabilities and
the sojourn time in each state can be identified. This leads
to a semi-Markov representation, with transitions weighted
by different delays, as in the treatment in [6]. The num-
ber of correctly received packets (rewards) is tracked by
counting rewards associated to the transitions.

Finally, the average throughput of the protocol, in pack-
ets per slot, can be expressed by [11,13]

η =

∑N
`=1 π`R`∑N
`=1 π`D`

, (3)

where R` and D` are the average reward and sojourn time
associated with state `, respectively, and π is the steady-
state distribution of the chain.

4.3. Extended Markov chain for the delay analysis

The Markov chain approach to the delay analysis is more
complex than the one outlined above. By Little’s theo-
rem [1], the average delay is given by the average number
in the system divided by the average throughput. Thus, one
way to compute delay is to “integrate” over a certain time
the number of PITS and divide the result by the number
of packets which were successfully received and acknowl-
edged during that time. If we accumulate over an infinite
interval, and ergodicity holds, then we can obtain the en-
semble averages of these quantities.

Thus, to compute delay, we must keep track of so-
journ times, transitions and rewards as well as the number
of packets which have already been transmitted once and
await retransmission. It is intuitively clear that the number
of such packets will be lower-bounded by m and upper-
bounded by t. Consequently, a stay of m slots in state 1
could contribute from a minimum of m2 to a maximum
of mt. Splitting each state into a number of new states,
each of which is further labeled by the number of PITS,
resolves this uncertainty.

As defined before, PITS are those whose first trans-
mission has already occurred and for which an acknowl-
edgement (explicit or implicit) has not been received. The
number of packets in the system is sampled at the instant
immediately before an outgoing transition from a state oc-
curs. At that time, the information about the outcomes on
the two channels (which determines the destination state)
is not known. Therefore, the number of PITS is an at-
tribute of the originating state, and does not depend on the
destination state.

We also define the cumulative number of PITS (CPITS)
associated with a transition as the sum of the number of
PITS in each slot over the number of slots the system will
stay in the destination. In general, this is not just the num-
ber of PITS multiplied by the time delay involved, since the
number of PITS may increase as time goes by. As an exam-
ple, consider the situation in which there are m packets in
the system and assume that a NAK is lost. The transmitter
will keep transmitting and finding no more “old” packets in
the system, it will transmit new ones. Therefore, the num-
ber of PITS in the first slot after the feedback was expected
will be m+ 1, then m+ 2, and so on, until the number of
packets reaches t, at which time the timeout of the oldest
packet in the system will expire, and the transmitter will
go back to that packet and transmit it again.
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In summary, for the delay analysis, the state representa-
tion must not only keep track of sojourn times, transitions
and rewards but also the number of PITS. The computation
of the CPITS associated with each transition requires some
careful book keeping.

In order to track the protocol evolution, we observe the
following methodology:

1. each state will be marked according to the number of
PITS, U , immediately before feedback is expected (in
the slot before the transition);

2. a transition with an associated reward will decrease U
accordingly (provided that U > m, see 4 below);

3. a transition with no reward will keep U constant, ex-
cept when U is equal to the number of outstanding
packets. In this latter case, in fact, all packets in the
system are outstanding, and in the next slot the trans-
mission of a new packet is triggered, i.e., a new packet
enters the system and U is increased. Note that U can
increase only by one at a time, since multiple entrance
is not permitted;

4. U > m always: whenever a transition that could lead
to U = m − 1 occurs, a new packet will enter the
system, and U will not decrease below m;

5. each transition is marked with the transition probabili-
ties and with the CPITS contributed by the stay in the
destination state;

Note that each state has a minimum and maximum admis-
sible value for the number of PITS. For example, state 3,
which is entered after a timeout expiration, can only have
U = t, and need not be split. The other states in general
will have to be split, so that state i will give rise to a num-
ber of states, i(U ), where U takes all admissible values in
that state. This enhanced state i(U ) is used in this study
to track the delay, whereas i, a state of the original chain,
was adequate to study the throughput. The state i will be
referred to as a superstate.

Each state continues to have four outgoing transitions,
corresponding to the four possibilities for errors on the for-
ward and reverse channels. The destination states for tran-
sitions from states within a superstate belong to a common
set of superstates. Also, the transition probabilities do not
depend on the number of packets in the system, i.e., all
transitions from i(Ui) to j(Uj) have the same probability
Pij , regardless of Ui and Uj (provided, of course, that the
transition from i(Ui) to j(Uj) is admissible). The transition
matrix of the state chain can therefore be found by “ex-
ploding” the individual entries of the superstate matrix into
blocks, according to the rules described above.

The non-zero entries within any block are all equal and
correspond to transitions between a pair of superstates.
Based on this it can be seen that the protocol evolution,
tracked in terms of the detailed states or in terms of the
superstates, is Markovian.

Similar observations apply for the delay and reward in-
volved in each transition, which depend only on the origin
and destination superstates. On the other hand, the CPITS
associated with each transition does depend on the num-
ber of PITS. This is the reason why the extended chain is
needed.

A specific example will be discussed in the next section.

4.4. Performance of Go-Back-N

We can define an appropriate semi-Markov process, to
keep track of the quantities of interest. If X1(τ ) and X2(τ )
are two reward functions, from the renewal reward process
theory, we have [10]

lim
τ→∞

X1(τ )
X2(τ )

=
E[X1]
E[X2]

, (4)

whereE[X1], E[X2] are the average rewards earned during
a renewal cycle. In the present context, we can define
two “reward” functions: R(τ ) keeps track of the number
of “departures” (i.e., correctly received and acknowledged
packets), and C(τ ) accounts for the CPITS “earned” up to
time τ .

As in [11,13], we can define the delay and reward matri-
ces, which have as entries ij (with reference to the transi-
tion from state i to state j) the delay, Dij , and the reward,
Rij , respectively, and a CPITS matrix, which has as entry
ij the CPITS, Cij . Also, we can find the transition proba-
bilities between any pair of such states, which will define
the Markov chain embedded in the semi-Markov process.
This is done by expanding the chain as described above.

At this point, the ergodicity of the process and the theory
of renewal reward processes allow us to express the average
packet delay from (4) as

Dp = lim
τ→∞

C(τ )
R(τ )

=
E[C]
E[R]

. (5)

Note that the throughput computation can be done by
using this more complex model (which is more detailed
than the one in [11,13]), through the relationship

η = lim
τ→∞

R(τ )
τ

=
E[R]
E[D]

. (6)

As expected, the result found through (6) is numerically
equal to the one given in [11,13].

The average number of packets in the system is given
by

E[U ] = lim
τ→∞

C(τ )
τ

=
E[C]
E[D]

, (7)

which, of course, is consistent with the above and with Lit-
tle’s theorem. Therefore, the above formulation allows us
to evaluate both throughput and delay performance by solv-
ing the same chain. If one is only interested in throughput,
there is no need to solve this big chain, and the smaller one
will do. For some values of the parameters, it may be that
the latter is numerically feasible whereas the former is not.
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The computation of the average delay relative to a state,
based on the transition probability matrix, was discussed
in [11,13]: it consists of averaging row i of the delay ma-
trix with respect to the distribution of the destination, con-
ditioned on the origin being state i. The same procedure
applies to the CPITS, to find the Ci’s, and to the rewards,
to find Ri. Once these computations are done, one needs
to solve for the steady state distribution, π, which finally
yields

E[Dp] =
E[C]
E[R]

=

∑n
i=1 πiCi∑n
i=1 πiRi

. (8)

This is similar to the relationship we found for the through-
put.

At this point, the problem is essentially solved, assuming
that we are able to actually compute the matrices and solve
for the stationary distribution. This is not very difficult, as
long as the number of states is not too large. It is usually
easy to get results for chains of a few hundred states.

5. Performance of Go-Back-N: a specific example

In order to clarify the above procedure, before dealing
with the general case, we give a specific example. Let
us consider the Go-Back-N protocol with timer control,
where m = 5 and t = 7 slots. The embedded Markov
chain transition diagram appears in figure 1 [11,13]. The
branches are labeled with transition functions of the form
`nxy = x(n)y(n)zn, where x(n) is one of the entries of the
transition matrix MF (n) (and y(n) is from MB(n)), de-
pending on the origin and destination of the branch. The
variable z is just a placekeeper, whose exponent gives the
time, in slots, the system stays in the origin before moving
to the destination. Also, each transition has an associated
reward. The transition functions and the reward matrix
contain all the necessary information about the possible
transitions and their probabilities, rewards and delays, as
discussed in [11,13]. The transition functions are found by
inspection from figure 1, and correspond to the following
transition matrix:

P =



P11 P12 P13 P1S0 0 0 0 0
P21 P22 P23 P2S0 0 0 0 0
P31 P32 P33 P3S0 0 0 0 0
PS01 PS02 0 0 PS0S1 0 PS0S

′
0

0

PS11 PS12 0 0 0 PS1S2 0 PS1S
′
1

PS21 PS22 PS23 PS2S0 0 0 0 0
PS′01 PS′02 PS′03 PS′0S0

0 0 0 0

PS′11 PS′12 PS′13 PS′1S0
0 0 0 0

 (9)

The delay and reward matrices are given by [11]

D =


m m m m 0 0 0 0
1 1 1 1 0 0 0 0
t t t t 0 0 0 0
1 1 0 0 1 0 1 0
1 1 0 0 0 1 0 1
m m m m 0 0 0 0
t− 1 t− 1 t− 1 t− 1 0 0 0 0
t− 2 t− 2 t− 2 t− 2 0 0 0 0

 , (10)

R =



0 1 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 1 0 0 0 0 0 0
1 2 0 0 0 0 0 0
2 3 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 1 0 0 0 0 0 0


. (11)

In the above, the states are ordered as follows:

( 1 2 3 S0 S1 S2 S′0 S′1 ) . (12)

The number of states needed to adequately represent the
channel conditions and the number of outstanding packet
was found to be 4 + 2(t −m) = 8 in [11]. We will split
each of these states according to the possible values of the
number of PITS, U , allowed in it.

• State 1 allows all values of U between m and t.

• State 2 does not allow U = t. In fact, if 2 is reached
from any state with U = t, U will then decrease to
U 6 t − 1. This is because a reward is associated
with the transition, and because no new packets may
enter the system, since there will be always old pack-
ets to be retransmitted (unless all pending packets are
acknowledged, in which case the destination will have
U = m < t anyway).

• State 3 allows only U = t, since it always involves the
timeout expiration. This is true for states S′0, S′1, S2 as
well.

• As to states Si, note the following. State S0 is reached
when an ACK is not received. As a result, in the slot
during which the system stays in S0, another packet will
be transmitted. This means that the minimum number
of packets in the system just before leaving S0 is m+1,
whereas the maximum is t. For the same reason, the
number of packets in state S1, which is equal to that in
state S0 (from which S1 is entered) plus one, must be
at least m+ 2, i.e., it has to be t.

The complete state vector is therefore given as follows
(the same order of the entries will be used in the matrix
representations):(

1(5) 1(6) 1(7) 2(5) 2(6) 3(7)

S0(6) S0(7)S1(7) S2(7)S′0(7) S′1(7)
)
.

(13)

5.1. Expanded transition diagram

The composite information, including transition proba-
bilities, transition times, rewards and CPITS, can be ade-
quately described by a semi-Markov model with 12 states.
The transition matrix, which is found by exploding the en-
tries of (9) into blocks when passing from (12) to (13), is
given in table 1, where the block structure of the matrix
has been highlighted.

According to the rules defined in the previous section, a
transition involving some reward will lead to a state whose
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Table 1
Transition matrix of the extended Markov chain, m = 5, t = 7.

1(5) 1(6) 1(7) 2(5) 2(6) 3(7) S0(6) S0(7) S1(7) S2(7) S′0(7) S′1(7)

1(5) P11 0 0 P12 0 P13 P1S0 0 0 0 0 0
1(6) 0 P11 0 P12 0 P13 P1S0 0 0 0 0 0
1(7) 0 0 P11 0 P12 P13 0 P1S0 0 0 0 0

2(5) P21 0 0 P22 0 P23 P2S0 0 0 0 0 0
2(6) 0 P21 0 P22 0 P23 P2S0 0 0 0 0 0

3(7) 0 0 P31 0 P32 P33 0 P3S0 0 0 0 0

S0(6) PS01 0 0 PS02 0 0 0 0 PS0S1 0 PS0S
′
0

0

S0(7) 0 PS01 0 PS02 0 0 0 0 PS0S1 0 PS0S
′
0

0

S1(7) PS11 0 0 PS12 0 0 0 0 0 PS1S2 0 PS1S
′
1

S2(7) 0 0 PS21 0 PS22 PS23 0 PS2S0 0 0 0 0

S′0(7) 0 0 PS′01 0 PS′02 PS′03 0 PS′0S0
0 0 0 0

S′1(7) 0 0 PS′11 0 PS′12 PS′13 0 PS′1S0
0 0 0 0

Table 2
CPITS matrix of the extended Markov chain, m = 5, t = 7.

1(5) 1(6) 1(7) 2(5) 2(6) 3(7) S0(6) S0(7) S1(7) S2(7) S′0(7) S′1(7)

1(5) 25 0 0 5 0 48 6 0 0 0 0 0
1(6) 0 30 0 5 0 48 6 0 0 0 0 0
1(7) 0 0 35 0 6 49 0 7 0 0 0 0
2(5) 25 0 0 5 0 48 6 0 0 0 0 0
2(6) 0 30 0 5 0 48 6 0 0 0 0 0
3(7) 0 0 35 0 6 49 0 7 0 0 0 0
S0(6) 25 0 0 5 0 0 0 0 7 0 42 0
S0(7) 0 30 0 5 0 0 0 0 7 0 42 0
S1(7) 25 0 0 5 0 0 0 0 0 35 0 35
S2(7) 0 0 35 0 6 49 0 7 0 0 0 0
S′0(7) 0 0 35 0 6 49 0 7 0 0 0 0
S′1(7) 0 0 35 0 6 49 0 7 0 0 0 0

U decreases accordingly, under the constraint that U >
m = 5. Therefore, from any state i(t) all transitions due
to the reception of an ACK and involving one reward will
lead to state 2(t − 1). Similarly, those from i(t − 1) will
lead to 2(t − 2) = 2(m), and those from i(m) to 2(m),
since the number of packets cannot be smaller than m.
Note, however, that transitions with multiple rewards can
occur, for example, from S0(t) to 2(m) (two rewards) and
from S1(t) to 2(m) (three rewards). In the latter case, all
pending packets are acknowledged, and a new packet enters
the system, so that the label of the destination is m =
t − 3 + 1. On the other hand, transitions entering state
1(U ) will come from states with U packets (i.e., through
transitions without any reward), except for the case in which
this state is reached from S0(U+ 1) or S1(U+ 2) and some
reward due to the implicit acknowledgement of outstanding
packets is earned. All transitions from 3(t) will lead to
nodes with maximum number of packets (i.e., 1(t), 2(t−1),
3(t) and S0(t)), as happens for transitions exiting S′0(t),
S′1(t) and S2(t).

As to CPITS, note that transitions not corresponding to
the timeout expiration will lead to a state where the number
of packets remains constant during the stay. The number
of slots of stay is also a constant depending only on the

state, and therefore for these transitions it is easy to find the
Cij’s. For example, a transition into node 1(U ) will involve
U packets for m successive slots, and therefore will have
a corresponding Cij = mU . On the other hand, transitions
to states 2(U ), S0(U ) and S1(U ) involve U packets for one
slot, and therefore the CPITS is just U .

When the system arrives at state S2(t), the timeout ex-
pires, and the next feedback is expected m slots later, dur-
ing which period the number of PITS will remain equal to
t, giving rise to a CPITS of mt slots. The same happens
upon entering state S′1(t), whereas in state S′0(t) there will
be t− 1 slots to the next expected feedback, and therefore
we have a CPITS of t(t− 1).

Finally, consider transitions to state 3(t). Those coming
from all states with U = t involve t packets in the system
on the first slot of stay in 3(t) and in all the following, so
that the CPITS will be t2. On the other hand, a transition
from a state for which U = m will correspond to the fol-
lowing situation: in the first slot of stay in 3(t) we have
m+ 1 PITS, in the following m+ 2 = t, and from then it
will remain constant for the following t −m slots. Also,
if the previous state had U = t− 1, in the first slot of stay
in 3(t) the number of PITS will not increase, since there is
still an “old” packet to be transmitted before a new packet
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enters the system in the next slot. In both cases, the CPITS
involved is given by t− 1 packets in the first slot, and t in
the following t− 1, i.e., t2 − 1.

Based on the above considerations, the CPITS matrix
for the process with m = 5 and t = 7 is given in table 2
(the order corresponds to the vector (13)).

6. Performance of Go-Back-N ARQ: general case

The above formulation can be generalized. First note
that the size of the state space depends only on the dif-
ference t − m, not on the individual values of the two
parameters. Therefore, when t −m = 2, the same model
as before applies. When t − m > 2, however, the state
space needs to be enlarged.

6.1. Number of states

The rules listed in section 4.2 about transitions and state
labeling still hold. It is fairly easy to verify that the ad-
missible value of U in any superstate must lie between the
bounds given in table 3. Table 3 also reports the num-
ber of states into which a superstate is to be split, given
by maxU − minU + 1. The value of the index i in the
table runs from 0 to t−m− 1.

The total number of states required is obtained by sum-
ming the last column of table 3, for all values of the index i,
to obtain (t − m + 6)(t − m + 1)/2. As anticipated, the
number of states grows as (t − m)2, since an increase in
t−m has the double effect of increasing the number of su-
perstates and the number of states into which a superstate
is to be split. To convey a sense of the complexity, we give
some values of the number of states vs. t−m in table 4.

6.2. Possible transitions

• For any state i(Ui) and any superstate j, such that the
two superstates are connected in the transition diagram
obtained by generalizing figure 1, there is exactly one

Table 3
Maximum and minimum admitted values of the number of PITS, U , in a
superstate, and corresponding number of states in which it is to be split.

Superstate min U max U Number of states

1 m t t−m+ 1
2 m t− 1 t−m
3 t t 1
Si m+ i+ 1 t t−m− i
St−m t t 1
S′i t t 1

Table 4
Number of states of the extended Markov chain vs. the amount of time-

diversity, t−m.

t−m 0 1 2 3 4 5 6 10 20

States 3 7 12 18 25 33 42 88 273

value of Uj such that a transition from i(Ui) to j(Uj)
is possible. This is due to the fact that the number of
packets in the destination is only a function of the origin
state and of the channel outcomes. As already observed,
a transition with some reward in the superstate chain
will decrease the number of packets accordingly, with
the constraint that U can never go below m. On the
other hand, transitions that do not involve rewards will
lead to the state with the same number of packets or,
if this state does not exist, to the state which has the
smallest number of packets in that superstate.
For example, for U > m, transitions exiting 1(U ) can
lead to 1(U ) itself, 2(U − 1) (reward), 3(t) or S0(U ).
On the other hand, for U = m, the destinations in
superstates 2 and S0 will be 2(m) and S0(m + 1).
The same is true for transitions exiting states in super-
state 2. Transitions from state 3(t) or from states S′i(t),
i = 0, . . . , t−m− 1, and St−m(t) always lead to states
with the maximum number of packets, i.e., 1(t), 2(t−1),
3(t), S0(t).

• As to state Si(U ), i = 0, . . . , t−m− 1, U = m+ i+
1, . . . , t, note that i + 1 gives the number of pending
packets, i.e., already transmitted packets (not including
the current one) which can potentially be acknowledged
by the currently expected feedback information. Note
that the difference between the number of outstanding
packets and the number of pending packets is m: when
there are m outstanding packets, there is none pending
(the current one is not counted). Therefore, a transi-
tion from Si(U ) to superstate 1 involves a reward of
i+ 1 packets, which will therefore be removed from
the system, leading to state 1(U − i− 1). The same ar-
gument applies to transitions to the superstate 2, which
involve i+ 2 rewards, and therefore lead to 2(U− i−2)
(with the usual exception that Si(m + i + 1) goes to
2(m)). Note that if the number of packets in the sys-
tem is larger than the number of outstanding packets, a
transition from superstate Si to Si+1 (the expected ACK
is not received) will keep the number of PITS constant,
since the next transmission will actually be the retrans-
mission of an old packet. On the other hand, if all pack-
ets in the system are outstanding (i.e., U = m+ i+1), a
new packet enters the system and is transmitted for the
first time. Therefore, we have transitions from Si(U ) to
Si+1(U ), U = m+i+2, . . . , t, and from Si(m+i+1) to
Si+1(m+ i+ 2) (note, in fact, that state Si+1(m+ i+ 1)
does not exist). Finally, in the event a NAK is lost, a
transition will occur from Si(U ) to S′i(t), for all possible
values of U .

6.3. Transition probabilities, delays and rewards

Note that the transition probabilities and the time delays
and rewards involved depend only on the superstates. In
fact, the delays are even independent of the destination.
Therefore, they can be found from the corresponding values
of the chain in figure 1 (or its extension).
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6.4. Cumulative number of PITS

To complete the approach described above, we need to
find the matrix of CPITS. For all transitions in which the
number of packets in the system does not vary during the
stay in the destination (i.e., all transitions entering super-
states 1, 2 and Si, i = 0, . . . , t−m), the CPITS is the prod-
uct of the number of PITS of the destination and the number
of slots the system stays in it. Therefore, a transition enter-
ing state 1(U ) will involve a CPITS of Um slots; similarly,
we find U for 2(U ) and Si(U ), i = 0, . . . , t −m − 1, and
tm for St−m(t).

The derivation of the CPITS involved in transitions cor-
responding to timeout expiration is a little more elaborate
since the number of packets in the system is in general not
constant during the stay in the destination. In order to elab-
orate further, we must divide the time of stay in any state
into three periods, some of which may be of zero length,
depending on the states. Let p and U > p be the numbers
of outstanding packets and of PITS corresponding to the
origin state, respectively.

• If a NAK is lost, the transmitter will transmit old packets
in the following U−p slots. After that, it will start trans-
mitting new ones, for the following t−U slots. Finally,
when the number of packets in the system reaches t, no
further increase is possible, and the numer of PITS re-
mains constant thereafter. Thus, we have a first period,
of length U − p, during which the number of packets
in the system remains equal to U (contributing a CPITS
of U (U − p)); a second period, of length t − U , when
the number of PITS increases by 1 in every slot; and a
third period, with number of PITS equal to t. Note that
the sum of the durations of the first two periods is t− p
slots.

• If the destination is state 3(t), which implies p = m, i.e.,
no pending packets, the system will remain in it for ex-
actly t slots, and therefore the length of the third period
and the contributed CPITS are m and tm, respectively.
If the destination is S′i(t), i = 0, . . . , t−m− 1, the cor-
responding time of stay is t− i− 1 slots, and the above
quantities are again given by p − i − 1 = m and tm,
respectively.

• Also, when the destination is state 3(t) the length of the
first period will be (U − m), with CPITS U (U − m).
When the destination is S′i(t), i = 0, . . . , t−m− 1, we
have p = m + i + 1, and the corresponding length of
the first period is (U −m− i− 1), with CPITS U (U −
m− i− 1).

• The middle period, during which the number of PITS
varies, results in a contribution to the CPITS equal to

t−U∑
k=1

(U + k) = U (t− U ) +
(t− U )(t− U + 1)

2
. (14)

Therefore, the total CPITS involved in a transition due
to a lost NAK is

U (U −m) + U (t− U ) +
(t− U )(t− U + 1)

2
+ tm (15)

for transitions to state 3(t), and

U (U −m− i− 1) + U (t− U )

+
(t− U )(t− U + 1)

2
+ tm (16)

for transitions to S′i(t), i = 0, . . . , t−m− 1. Note that the
notation could be unified by labeling state 3(t) as S′−1(t).

7. Results

Based on the analysis presented above, some numerical
results are presented in this section. Note that there are
four parameters which affect the throughput performance,
viz., the round trip delay, m− 1, the time-out period, t, the
marginal block error rate, ε, and the average burst length,
1/r. We assume that the forward and backward channels
exhibit the same statistics (i.e., MF (x) = MB(x)).

In figures 3 and 4, the average throughput, η, and the
average packet delay, Dp, are plotted vs. the average block
error rate, ε, for two values or r. Throughput is expressed
in packets per slot, and therefore tends to 1 as ε → 0,
although the throughput efficiency can never be equal to
100% due to the presence of the CRC bits. As expected,
an increase in ε produces a worse performance; also, note
that, for the same value of ε, long bursts (i.e., small r)
yield better performance, since the errors tend to be clus-
tered, and therefore are less harmful. It can be argued
from Information theoretic considerations that i.i.d. errors
are the most difficult ones to cope with. Similar consid-
erations suggest that it ought to be possible to exploit the
memory inherent in correlated errors to improve system
performance.

Figure 3. Average throughput, η, vs. block error rate, ε, for r = 0.3 and
r = 0.05, m = 5, t = 7 (�: simulation).
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Figure 4. Average packet delay, Dp, vs. block error rate, ε, for r = 0.3
and r = 0.05, m = 5, t = 7 (�: simulation).

Figure 5. Average throughput, η, vs. time-out period, t, for ε = 0.1 and
r = 0.1, 0.3, 0.5 and 1− ε (iid errors); m = 5 (�: simulation).

Figure 6. Average packet delay, Dp, vs. time-out period, t, for ε = 0.1
and r = 0.1, 0.3, 0.5 and 1− ε (iid errors); m = 5 (�: simulation).

Figure 7. Average packet delay, Dp, vs. throughput, η, for ε = 0.1 and
r = 0.1, 0.3, 0.5 and 1−ε (iid errors); m = 5, t = 6 to 15 (�: simulation).

Figure 5 shows the throughput, η, vs. the time-out pe-
riod, t. It is clearly seen that, for given m, ε and r, the
choice of the time-out is a trade-off, and there exists an op-
timum value, topt. This was to be expected, since t should
be short in order not to waste too many slots in the event of
an uncertainty to be resolved by time-out expiration, but,
on the other hand, a larger t enhances the time diversity
feature. Similarly, figure 6 shows Dp vs. the time-out pa-
rameter, t. When t is sufficiently large, further increase in
its value results in larger delay. Nonetheless, for large r,
corresponding to poorer performance, the length of a burst
of errors tends to be small. As a result, time diversity can
be exploited, and the beneficial effect of a limited increase
of t outweighs the potential increase in delay, so that the
overall performance turns out to be better. It should be
noted that the optimizations of throughput and delay lead
to different values of topt: a more effective way of studying
the throughput-delay trade-off is given next.

The analysis here presented makes it possible to compute
both throughput and delay for a given set of values of ε, r,
m and t. In particular, it is possible to choose one of them
as a parameter, and to plot Dp vs. η as the parameter varies.
The results obtained allow us to simultaneously study how
a parameter affects the performance, in terms of throughput
and delay. As an example, in figure 7 we have plotted Dp

vs. η for m = 5, ε = 0.1, and some values of r. The curves
are parameterized by the time-out period, t. Depending on
the value of r, the throughput-delay curve exhibits a variety
of interesting characteristics.

The curve can be monotonically increasing, as happens
for r = 0.1. In this regimen increases in throughput come
at the expense of delay. Somewhat more surprisingly, it is
possible for the curve to fold back on itself. This implies
that two values of delay may be associated with a common
value of throughput. Of the two, clearly the one with the
lower delay is more desirable. Each of the two delay values
of course corresponds to a different value of the time out
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period t. Consequently, the precise operating point can
be controlled and there is no danger of straying from the
desired point of operation to the undesired one. We also
find that for some r, the lower branch of the curve has a
negative slope. This means that both throughput and delay
can be enhanced at the same time. This is in contrast to
the first regimen described, where increases in throughput
occur at the expense of delay. Therefore, we are able to
explicitly identify the value of t that will make it possible
to exploit the burstiness of the errors.

The analysis of the performance vs. the value of the
time-out has not been addressed completely in previous
contributions dealing with this type of channel [2–4]. How-
ever, such a study is important, since t is the one design
parameter which can be easily altered. In fact, for a given
protocol, there is some (but not very much) flexibility in
choosing the data rate, packet and frame size (which affect
the parameters ε and r), whereas the parameter t can be
more easily chosen based on the above analysis. Also, if
the dependence of topt on r and ε is known, its adaptive
adjustment can be a feasible solution to be implemented
in non-stationary channels. On the other hand, as already
mentioned, it must be observed that t jointly affects the
throughput and delay performance, and this makes the opti-
mization more difficult. In fact, in the presence of stringent
delay limitations, one might be forced to accept a consid-
erably suboptimal throughput performance.

Application of the Markov model to transmission on a
radio fading channel was studied in [14,15], and results
for the performance of GBN on that channel appeared
in [11,12,15]. The combined throughput-delay analysis,
never presented so far in the literature for the case of depen-
dent errors and unreliable feedback, is a powerful tool for
the performance study and for the design of ARQ systems.

8. Conclusions

In this paper, we study a Go-Back-N ARQ scheme
which exploits time-diversity to recover from feedback er-
rors. A dependent structure for the error processes on the
two channels is assumed, and modeled as a Markov chain.
This allows us to compute exactly the throughput and de-
lay performance. The methodology enables us to study the
protocol performance as function of the average channel
error rate and of the amount of time diversity. The com-
bined throughput-delay analysis, never presented so far in
the literature for the case of dependent errors and unreliable
feedback, is key to the design of ARQ systems.

Further directions of this research include extensions to
more elaborate ARQ protocols, e.g., Selective Repeat, and
possibly to hybrid techniques.
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