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Abstract 

Techniques for modeling and simulating channel conditions play an 
essential role in understanding network protocol and application behavior. 
In [11], we demonstrated that inaccurate modeling using a traditional ana- 
lytical model yielded significant errors in error control protocol parameters 
choices. In this paper, we demonstrate that time-varying effects on wireless 
channels result in wireless traces which exhibit non-stationary behavior 
over small window sizes. We then present an algorithm that divides traces 
into stationary components in order to provide analytical channel models 
that, relative to traditional approaches, more accurately represent charac- 
teristics such as burstiness, statistical distribution of errors, and packet loss 
processes. Our algorithm also generates artificial traces with the same sta- 
tistical characteristics as actual collected network traces. For validation, 
we develop a channel model for the circuit-switched data service in GSM 
and show that it: (1) more closely approximates GSM channel characteris- 
tics than a traditional Gilbert model and (2) generates artificial traces that 
closely match collected traces' statistics. Using these traces in a simulator 
environment enables future protocol and application testing under different 
controlled and repeatable conditions. 

1 Introduction 

As communication networks evolve, the design of communi- 
cation protocols increases in complexity. Evaluating the perfor- 
mance of  existing networks provides insights into techniques for 
optimizing future communication protocols. The most common 
techniques include simulation, analysis of empirical data, and an- 
alytical models (e.g., channel models). Accurate modeling of net- 
work events, especially the error behavior, at link layer and above 
is essential to the understanding of network behavior and to the 
design of communication protocols. For example, a detailed un- 
derstanding of the packet loss process and burstiness of the errors 
is necessary for the proper design and parameter tuning of error 
control protocols, such as Automatic Repeat reQuest (ARQ) pro- 
tocols. 

Streaming audio and video multimedia applications can also 
benefit from a better understanding of the underlying network be- 
havior. For example, video and audio codecs can perform real- 
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time predictive rate control by using a model of network traffic 
characteristics to estimate traffic conditions in real-time. 

The traditional network modeling approach to error modeling 
is to create a Gilbert model [17] (i.e., a two state discrete Markov 
chain) based upon collected network traffic traces. Using this 
model, one can then dynamically generate artificial network traces 
for the network under study and use the traces to simulate, and 
thus, better understand the performance of existing and new net- 
work protocols and applications. These traces provide network 
protocol and application developers with ease of  use and repeata- 
bility, two critical characteristics for developing and improving 
network and application performance. More importantly, for new 
networks that are under development (or for which there are only 
limited prototype facilities), it is often difficult to collect a reason- 
able amount of traces or run experiments. By generating synthetic 
traces that simulate the network being tested, multiple users can 
simultaneously gain network access and perform experiments. 

Unfortunately, as we will show, the Gilbert model has sev- 
eral significant shortcomings in the accuracy of its error modeling, 
which directly affects the validity of results based upon traces gen- 
erated by a Gilbert model. Models based upon Marker processes 
require that the error statistics remain constant over time. Many 
networks experience time varying effects, such as congestion-related 
losses. Wireless channels, in particular, experience over small time 
periods effects such as Raleigh fading, multipath fading, shadow- 
ing, etc. While previous work has not focused on stationarity of 
traces, we hypothesize that wireless traces exhibit non-stationary 
behavior over small window sizes, and that by isolating and ana- 
lyzing stationary trace segments, more accurate models can be de- 
veloped. Utilizing a previously published, but not widely known 
algorithm for testing stationarity [2], we tested 215 minutes of 
wireless traces and confirmed its non-stationarity with a derived 
window size. This implies that traditional stochastic analysis of 
wireless traces are likely to be less accurate than ideal. 

Thus, we propose and evaluate a novel algorithm, the Markov- 
based Trace Analysis (MTA) algorithm, for the design of channel 
error models. Our approach is to derive a statistical constant from 
the wireless trace, and use this constant to divide the previously 
non-stationary trace into stationary subtraces representing lossy 
and error-free segments of transmission. By analyzing the length 
distributions of these segments, we can effectively characterize the 
transitions between them, and create a model that more accurately 
represents the original trace. 

In practice, this MTA algorithm allows a more accurate analy- 
sis of network traces which accounts for their non-stationary be- 
havior. This characteristic makes MTA a general purpose algo- 
rithm, meaning that it can be applied to network traces such as 
wireless traces which experience different error statistics over time. 
However, the purpose of this work is not to show that the MTA al- 
gorithm is general purpose, but to argue that the MTA algorithm 
generates accurate analytical models for wireless channels. 
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We validate the benefits and accuracy of the MTA algorithm 
by applying it to 215 minutes of GSM digital wireless cellular net- 
work [15] data traces collected at the reliable link layer (Radio 
Link Protocol layer [5, 7]) to generate a model we call the MTA 
GSM channel model. We then show that, unlike traces generated 
by the Gilbert model, artificial MTA model network traces have 
the same statistical properties as traces collected from the actual 
network. Such traces will provide more accurate simulations of 
the network being tested, yielding results that more closely match 
the results obtained on actual networks. 

In particular, we generate artificial traces using both the MTA 
and Gilbert models, and perform retrace analysis [11] on these ar- 
tificial traces. Retrace analysis emulates an enhanced RLP layer 
using a fixed data frame size and fixed per frame overhead (e.g., 
checksums, sequence numbers, etc.), and calculates the predicted 
throughput over a range of fixed RLP frames sizes. In our en- 
hanced RLP implementation, frame sizes are multiples of the phys- 
ical radio block size of 30 bytes 1 . For a given frame size, there is 
a trade-off between the increased throughput from reducing over- 
head and the retransmission delay caused when a radio block of an 
RLP frame is lost and the entire frame is retransmitted. In other 
words, a greater frame size leads to (1) lower overhead, and (2) 
longer retransmission delay (more radio blocks have to be retrans- 
mitted) when a radio block is corrupted. Thus, throughput perfor- 
mance results for each frame size are highly correlated with a col- 
lected or synthetic trace's error statistics. In [11], we used retrace 
analysis to show that for bursty error traces (where errors tend to 
occur in clusters), larger frames yield higher throughput. Further- 
more, we showed that incorrectly assuming an even distribution of 
errors in GSM leads to the wrong choice of optimal frame size. 

These results show that the distribution of errors within traces 
has a significant influence on models, analysis, and simulations 
based upon such traces. This conclusion is especially true when 
the goal is to artificially generate traces for the design, simulation, 
and analysis of new networking protocols. To replicate and further 
explore the results from our earlier work, we generate an artificial 
trace that we call even error distribution (EED) trace, which has 
the same error rate as collected traces, but with an even error dis- 
tribution, (i.e., errors are individual events, isolated, and have a 
constant distance between each other). 

The rest of this paper is organized as follows: We start by 
discussing related work in the next section. Section 3 provides 
background information about the GSM's Circuit-Switched Data 
(CSD) service and an overview on Discrete Time Markov Chains. 
Next, in Section 4, we describe our measurement platform for col- 
lecting frame level error traces on the GSM wireless link. Then 
Section 5 shows the development of the MTA algorithm, followed 
by Section 6, where we develop two analytical models for GSM 
wireless traffic: the MTA model and the Gilbert model. In Sec- 
tion 7, we present our algorithm for generating artificial traces and 
evaluate the MTA algorithm by comparing the traffic statistics of 
the collected and artificial traces. We conclude and discuss our 
plans for future work in Section 8. 

2 Related Work 

Several researchers have explored ways of characterizing the 
loss process of various channels. Bolot et al. [3] use a characteri- 
zation of the loss process of audio packets to determine an appro- 
priate error control scheme for streaming audio. They model the 

1Note that the existing GSM RLP implementation uses a frame size of one radio 
block. 

loss process as a two-state Markov chain, and show that the loss 
burst distribution is approximately geometric. Yajnik et al. [20] 
characterize the packet loss in a multicast network by examin- 
ing the spatial (across receivers) and temporal (across consecutive 
packets) correlation in packet loss. Of particular interest is their 
modeling of temporal loss as a third order Markov chain. Both 
these efforts analyze the loss process of traces with static error 
statistics (i.e., the error rates do not vary over time). However, our 
work addresses the additional challenge of modeling traces with 
time-varying error statistics. 

There is also interesting related work in wireless traffic model- 
ing. Nguyen et al. [16] use a trace-based approach for modeling 
wireless errors. They present a two-state Markov wireless error 
model, and develop an improved model based on collected Wave- 
LAN error traces. Building on this, Balakrishnan and Katz [ 1 ] also 
collected error traces from a WaveLAN network and developed a 
two-state Markov chain error model (i.e., Gilbert model). Zorzi 
et al. [21] also investigates the error characteristics in a wireless 
channel. They compare an independent and identically distributed 
(liD) model to the Gilbert model, and claim that higher order mod- 
els are not necessary. Their results are drawn by applying these 
models to artificial traces generated by assigning a fixed-average 
burst length and a constant bit error rate. 

While these previous works confirm that the Gilbert model im- 
proves upon the simple liD model, we offer proof in this paper that 
the Gilbert model has several significant shortcomings in its error 
modeling accuracy. Furthermore, we argue that there is a need to 
develop a more accurate model based on real world statistics that 
better describes and handles time-varying wireless channel error 
characteristics. Previous work such as that done by Yajnik et al. 
modeled loss processes using higher-order Markov chains for im- 
proved accuracy, but was limited to stationary traces. We show 
that traces on wireless links are non-stationary, and provide an al- 
gorithm that successfully models such behaviour. 

3 Background 

In this section we present a brief background on the technology 
behind circuit-switched data in GSM networks. We also define 
Discrete Time Markov Chains (DTMC) and some of their relevant 
properties. 

3.1 Circuit-Switched Data in GSM 

The Global System for Mobility (GSM) wireless digital cel- 
lular network is a second generation cellular network, providing 
nearly 700 million subscribers with global roaming capabilities in 
several hundred countries. GSM implements several error control 
techniques, including adaptive power control, frequency hopping, 
Forward Error Correction (FEC), and interleaving. The primary 
uses of the GSM network are for Circuit-Switched Voice service 
(CSV) and Short Message Service (SMS). However, an increas- 
ing number of subscribers are using GSM's Circuit-Switched Data 
service (CSD), which provides an optional reliable link layer pro- 
tocol, the Radio Link Protocol (RLP). We provide a brief summary 
below; more details about GSM, the CSD service, and RLP can be 
found in [15]. 

GSM is a TDMA-based (Time Division Multiple Access) circuit- 
switched network. At call-setup time, a mobile terminal is as- 
signed a user data channel, defined as the tuple <carrier frequency 
number, slot number>. The slot cycle time is 5 milliseconds on 
average. This timing allows 114 bits to be transmitted in each 
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slot, yielding a gross data rate of 22.8 Kbil:/s. The fundamental 
transmission unit in GSM is a radio data block. A Forward Er- 
ror Correction (FEC) radio data block is 456 bits, representing the 
payload of 4 time slots. In GSM-CSD, the size of an unencoded 
data block is 240 bits, resulting in a raw data rate of 12 Kbit/s (240 
bits every 20 milliseconds) [6]. 

Interleaving is a technique that is used in combination with 
FEC to combat burst bit errors. Instead of transmitting a data block 
in four consecutive slots, the block is divided into smaller frag- 
ments. Fragments from different data blocks are then interleaved 
before transmission. The interleaving scheme chosen for GSM- 
CSD interleaves a single data block over 22 TDMA slots [8]. A 
few of these smaller fragments can be completely corrupted while 
the corresponding data block can still be reconstructed by the FEC 
decoder. The primary disadvantage of this deep interleaving is 
that it introduces a significant one-way latency of approximately 
90 milliseconds 2. This high latency can have a significant adverse 
effect on interactive protocols [ 12]. 

RLP [5, 7] is a full-duplex logical link layer protocol that uses 
selective reject and checkpointing for error recovery. The RLP 
frame size is fixed at 240 bits aligned to the above mentioned ra- 
diO data block. RLP introduces an overhead of 48 bits per RLP 
frame, yielding a user data rate of 9.6 Kbit/s in the ideal case (no 
retransmissions) 3. RLP transports user data as a transparent byte 
stream (i.e., RLP does not "know" about IP packets). However, 
RLP may lose data if a link reset occurs (e.g., after a maximum 
number of retransmissions of a single frame has been reached). 

3.2 Discrete Time Markov Chains 

A Discrete Time Markov Chain (DTMC) [17] is a random pro- 
cess {Xn I n > 0} that takes values in a discrete space E.  A 
DTMC is defined by its memory and its transition probabilities 
and is characterized as follows, 

Pr(X,~+I = j  I Xo = io, Xx = i , , . . . ,X ,~  = i,~) = 

Pr(Xn+~ = j I x . _ z + x ,  1 < z < K) ,  (1) 

where Pr(X,~+I = j [ X n - z + l ,  1 _< z _< K)  are the K~t~p 
transition probabilities, and K defines the memory. 

To calculate the memory of a DTMC, we find the order of the 
Markov chain as first proposed in [14]. To aid in determining the 
order of the Markov chain, we introduce the concept of  condi- 
tional entropy. The conditional entropy is an indication of the ran- 
domness of the next element of a trace, given the past history. We 
determine the amount of past history necessary by calculating the 
i th order entropy for 1 < i < M,  where M is an upper bound 
on the maximum amount of history we want to record. We choose 
M to be 6 because maintaining history for 26 or 64 states yields 
a reasonable level of implementation and processing complexity. 
An i th order entropy of 0 indicates that knowing the last i ele- 
ments of the chain totally predicts the next element on the chain. 
As the entropy value increases, there is more randomness in the 
next element on the chain. We follow the same procedure used by 
Yajnik et al [20] to calculate the conditional entropy for each value 
of i: 

i 

~Note that voice is treated differently in GSM. Unencoded voice data blocks have 
a size of 250 bits and the interleaving depth is 8 slots. 

aNote that the transparent (without RLP) GSM-CSD service inU-oduces a wasteful 
overhead for modem control information, reducing the user data rate to 9.6 Kbit/s, 

~(~) ~ ~(y,~)  log 2 ~(y,~7) H ( i )  
Tsamptes ~ ~ ( ~ )  ~(~,) (2)  

I 

In Equation 2, £ represents the vector [Xl...xi] which corre- 
sponds to one of the 2 i different patterns of/consecutive elements 
in the chain; Tsampt~s represents the total number of samples of 
length / in the chain; ~(£) indicates the number of times the pattern 
:~ = [xl.. .xi] shows up in the chain; and the term ~(y, £) corre- 
sponds to the number of times the pattern £ = [xl ...x~] appears in 
the chain followed by y, where y E {0, 1}. 

Given the implicit tradeoff between entropy and complexity of 
the Markov model, we choose the order of the Markov chain K,  
such that we gain the minimum entropy possible at an acceptable 
complexity level. As entropy decreases, the order K increases, 
meaning the number of states (i.e., 2 k) increases exponentialy. 

4 Data Collection 

In this section, we first introduce the concept of frame error 
traces. Then we describe the measurement platform we developed 
to collect these traces. 

4.1 Frame Error Traces 

An accurate representation of a wireless channel's error charac- 
teristics for a given time period can be captured by a bit error trace. 
A bit error trace contains information about whether a particular 
bit was transmitted correctly (i.e., a "1" represents a corrupted bit, 
while a "0" represents a correctly transmitted bit). The average Bit 
Error Rate (BER) is the first-order metric commonly used to de- 
scribe such a trace. The same approach can be applied on a frame 
level instead of on a bit level. A frame error trace consists of a 
binary sequence where each element represents the transmission 
state of a data frame. There are two frame states, a "1" represents 
a corrupted data frame, while a "0" represents a correct data frame. 
Corrupted frames are detected using an error detection code (e.g., 
Cyclic Redundancy Check). In this paper, we refer to frame error 
traces simply as traces. We also use the Frame Error Rate (FER) 
of a trace to define the average rate of corrupted data frames. For 
a trace, we define an error burst to be a run of consecutive l 's ,  and 
an error-free burst as a run of consecutive O's. 

We have collected traces under several different scenarios. As 
shown in Figure 1, we vary the movement of the mobile host 
(fixed, walking, and driving) while keeping the other endpoint 
fixed. We collected 215 minutes of traces in a fixed environment, 
where the mobile host's signal strength was below 4 on a scale of 
1 to 5. In the following sections, we refer to this trace as the GSM 
trace. In Section 6, we use the GSM trace to develop an analyt- 
ical traffic model for RLP. Note that the error characteristics we 
have measured in these traces are only valid for the particular FEC 
and interleaving scheme implemented in GSM's Circuit Switched 
Data network (see Section 3.1). To analyze other types of network 
channels, the first step is to collect frame or packet level traces and 
then to apply the analysis described below. 

4.2 Measurement Platform 

We depict our measurement platform in Figure 1. A single- 
hop network running the Point-to-Point Protocol (PPP) [18] con- 
nects the mobile host to a fixed host that terminates the circuit- 
switched GSM connection. We used the sock tool [19] to generate 
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Figure 1. The GSM network and measurement platform. 
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Figure 2. The separation of an error trace into two stationary traces. 

traffic on the link. To collect traffic traces at the RLP layer, we 
ported the RLP protocol implementation of a commercial avail- 
able GSM data PC-Card to BSDi3.0 UNIX. In addition, we de- 
veloped RLPDUMP, a protocol monitor tool for RLP. RLPDUMP 
logs whether or not a received frame could be correctly recovered 
by the FEC decoder. This determination is possible because ev- 
ery RLP frame corresponds to an FEC encoded radio block (see 
Section 3.1). Thus, a received block suffers an error whenever the 
corresponding RLP frame has a frame checksum error. We used 
sock to generate bulk data traffic and used RLPDUMP to capture 
frame error traces. 

5 The MTA Algorithm 

The basic concept behind the MTA algorithm is the assumption 
that a trace with non-stationary properties can be decomposed into 
a set of piecewise stationary traces consisting of what we define as 
"lossy" and "error-free" states. The MTA algorithm defines these 
states, and parameterizes transitions between them as a function of 
a preset parameter, the change-of-state constant. 

Error-free states contain only correctly transmitted frames, while 
lossy states exhibit stationarity, and a sequence of lossy states can 
be modeled by a traditional DTMC. The MTA algorithm com- 
putes the distribution of lengths for both error-free and lossy states, 
along with the memory and parameters for the DTMC used on the 
sequence of lossy states. 

In this section, we first discuss stationarity properties and how 
to test a trace for stationarity. We then present the MTA algorithm 
and show how it is applied to a trace. 

5.1 Stationarity 

We consider a network traffic trace to be a random process 
{Xn I n > 0} with adiscre te  space E = {0,1} where a 1 
denotes a corrupted frame, and a 0 denotes a correct transmitted 
frame. IfX,~ = i, then the process is said to have value i at time n. 
A process X,~ that takes values on the discrete space E = {0, 1} 
is also called a binary time series [4]. One major challenge in the 
analysis of time series is the concept of stationarity. A process X,~ 
is strictly stationary if the distribution of (Xv+~, :.., Xp+k) is the 
same as that of (X1, ..., Xk)  for each p and k. X,~ is second-order 
stationary if the mean m,~ = E ( X ,  0 is constant (independent of 
n), and the autocovariance only depends on the difference k for all 
n (Coy(k,  n) = Cov(X,~, X n  - k) = Coy(k)).  Given a binary 
time series X,~ that is second-order stationary, the process can be 
modeled as a DTMC where the value of the chain at time n is de- 
termined by the memory of the process [10]. However, checking a 
trace for stationarity is mathematically challenging. 

We define a trace to be stationary whenever the error statistics 
remain relatively constant over time. This definition depends on 
the window size we are using to examine the trace. Figure 3 shows 
that GSM trace consist of error and error-free bursts, where the 
length of error-free bursts are significantly longer than the length 
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of error bursts. In other words, the traces consist of long error-free 
segments interrupted by small error clusters [13]. Note that for 
channels with relatively small error clusters;, examining traces us- 
ing a large window size value not only lowers the perceived chan- 
nel error rate, but also distorts the statistics needed by DTMC's, 
resulting in less accurate models. As the window size decreases 
towards the length of the average error burst, the channel exhibits 
significantly different error characteristics. 

We identify trace sections that exhibit stationary properties by 
finding error-free bursts of length equal to or greater than the change- 
of-state constant C. The value of C is a design decision that we 
define as the mean plus one standard deviation of the length of 
error bursts of a trace. By removing trace sections consisting of 
error-free bursts of length equal to or greater than C, we guaran- 
tee that the resulting trace will have stationarity or constant error 
statistic properties, We explain the reasoning behind our choice 
in more detail in Section 6.1. We next define a lossy state as a 
sequence of zeros and ones (always started by a one), where each 
run of zeros is not greater than the change-of-state constant C. To 
test for stationarity in wireless traces we need to choose a window 
size close to the average size of the lossy state. 

We use the test for stationarity introduced by Bendat and Pier- 
sol called the Runs Test [2], summarized as follows: 

1. Define a run as a number of consecutive ones (also referred 
to as an error burst). 

2. Divide the trace into segments of equal lengths. 

3. Compute the lengths of runs in each segment. 

4. Count the number of runs of length above and below the 
median value for run lengths in the trace. 

5. Plot a histogram for the number of runs. 

For a stationary trace, the number of runs distribution between 
the 0.05 and 0.95 cut-offs will be close to 90 percent [2]. 

We apply the Runs Test to test GSM trace for stationarity. We 
first calculate the mean and standard deviation for the error burst 
length. In this case, the mean value was found to be 6 frames and 
the standard deviation was 14 frames, yielding a state-of-change 
constant value C of 20 (6 + 14) frames. The average error cluster 
siZe was found to be 26 frames and the standard deviation was 54 
frames. We choose the window size for the Runs Test to be 50. 

Figure 4 shows that only 17 percent of the runs distribution lie 
between the 0.05 and 0.95 cut-offs, and 83 percent lays outside 
the left and right cut-offs. Thus, from the Runs Test, we conclude 
that GSM trace is a non-stationary process for a window size of 
50. In the following sections we use the term stationarity to refer 
to stationarity for window size of 50. 

5.2 Algorithm 

The MTA algorithm views a trace as a process with two types 
of states: lossy and error-free. The algorithm divides the trace 
into a lossy trace consisting of a concatenation of lossy states (as 
defined in Section 5.1),and a error-free trace consisting of a con- 
catenation of error-free states (see Figure 2). 

We define two random processes with a discrete space E = 
{0,1, 2, ...}: 

• The lossy state length process {Bn I n > 0}, where Bn 
represents the number of elements in the n t h  lossy state, 
(i.e, the length of the state). 

• The error-free state length process {Gn I n > 0}, w h e r e  

Gn represents the length of the n t h  error-free state. 

The distributions of B~ and Gn are found by plotting the cu- 
mulative density function (CDF) and finding the "best" fitting dis- 
tributions. We provide an example of how to determine these dis- 
tributions in Section 7.1. 

The error-free trace is a deterministic process, where all values 
are zero. The lossy trace is an stationary random process, therefore 
it can be modeled as a DTMC with a certain memory. The MTA 
algorithm calculates the memory of the lossy trace, and determines 
its transition probabilities. 

The application of the MTA algorithm to an input trace can be 
summarized as follows: 

1. Calculate the mean (mr) and standard deviation (sd~) val- 
ues for error burst lengths in the trace. 

2. Set C, the change-of-state constant, equal to (mr +sde). 

3. Partition the trace into lossy state and error-free state por- 
tions using the following definitions: 

• Lossy state: runs of  l ' s  and O's, with the first element 
being a 1, and with runs of O's that have length less 
than or equal to the C. 

• Error-free state: runs of O's that have length greater 
than C. 

4. Create lossy trace and error-free trac e stationary traces from 
the lossy and error-free state portions of the trace. 

• Lossy trace: concatenate the lossy state portions of the 
trace. 

• Error-free trace: concatenate the error-free state por- 
tions of the trace. 

5. Model lossy trace as a DTMC, and calculate its order and 
transition probabilities. 

6. Determine the best fitting distributions of the length pro- 
cesses B,~ and G,~. 

In summary, to take advantage of the Markov Process proper- 
ties in non-stationary traces, we have used a novel approach to traf- 
fic modeling: a Markov-based Trace Analysis (MTA) algorithm 
that divides a trace into subset traces that have stationary proper- 
ties. 

6 Modeling GSM Wireless Channel 

In this section, we demonstrate the process of extracting char- 
acteric statistics from a given trace using both the MTA and Gilbert 
models [17]. We apply both algorithms to GSM trace to generate 
the statistics which we will later use to generate artificial traces 
based on each model. 

6.1 MTA GSM Channel Model 

This section presents an application of the steps of  the MTA 
algorithm (as described in section 5) to GSM trace. 

First, the MTA algorithm analyzes the error-free and error bursti- 
ness experienced by GSM trace (see Figure 3), and calculates the 
state-of-change constant value C. Section 5.1 calculated C to be 
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Figure 4. The Runs Test applied to GSM trace. 

20. Since our goal is to isolate and analyze sections that expe- 
rience stationafity, we use the MTA algorithm to create two new 
traces, called lossy trace and error-free trace, each consisting of 
stationary trace sections. The MTA algorithm creates these traces 
(as described in Section 5) by first identifying error-free and lossy 
states and then concatenating error-free states to form error-free 
trace and lossy states to form lossy trace. Figure 5 shows the error- 
free bursts and error burstiness experienced by lossy trace. In this 
plot, the average error free burst is 3.26 frames, with a maximum 
value of 20 frames (recall that the change-of-state constant C was 
defined to be 20). The error free burst mean and maximum values 
in lossy trace are much smaller than the error burst mean and max- 
imum value in GSM trace. Thus, our choice of C guarantees that 
lossy trace will experience constant error statistic properties and 
therefore stationarity. To prove that lossy trace is an stationary 
process we apply the Runs Test. Figure 7 shows that 87 percent of 
the runs distribution lie between the 0.05 and 0.95 cut-offs. There- 
fore, this result proves that lossy trace is a stationary process and 
can thus be modeled as a DTMC. 

Next, the MTA algorithm models lossy trace as a DTMC with 
memory K.  To determine the memory K of the DTMC, the MTA 
algorithm first calculates the conditional entropy values. Table 1 
shows the conditional entropy calculated for different K values. 
Figure 6 illustrates how the complexity of the DTMC measured in 
number of states increases exponentially as entropy decreases. For 
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Figure 5. Burst length in lossy trace. 

X _o 
Q. 

E 
0 
o 

• Order 6 

• Order 5 

• Order  4 

• Order  3 
• Order 2 

o~ o ~  o53 osas o54 os4s 

E n t r o p y  

• ,Order 1 

o ~  o ~  o~ osas 

Figure 6. Complexity versus Entropy in lossy 
trace, 

this trace we chose K to be 4 (i.e., 16 number of states), which cor- 
responds to only 0.38 percent increase in entropy from the chosen 
upper bound of K = 6. We could have chosen K to be larger than 
4, but we did not want to significantly increase the complexity of 
the Markov model. 

Table 2 shows the probabilities of the trace being in each state 
and the associated transition probabilities. The transition proba- 
bilities were also calculated by frequency counting. 

The last step of the MTA algorithm is to determine the best 
fitting distribution for the lossy state length process B,~ and error- 
free state length process Gn. Figures 8 and 9 show the CDF for 
the processes B,~ and G,~. Each figure shows two plots, one plot 
is the CDF as calculated from the empirical data, (i.e, the distri- 
bution of GSM trace), and the other plot corresponds to the CDF 
of an exponential distribution with parameter c~. We assume that 
the distributions of B,~ and G,~ are exponential with parameter c~, 
(i.e. the CDF F ( x )  = 1 - e - ~ ,  where x is the error-free or lossy 
state length). For each distribution, B,~ and G,~, the MTA algo- 
rithm plots the CDF of the exponential distribution with c~ ranging 
from 0 to 1 in steps of  0.001, and then chooses a value of a that 
provides the best approximation to the empirical data's CDE (i.e., 
the distribution for GSM trace). We denote £" as the vector with 
the CDF values based on the empirical data, and ff as the vector 
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Figure 7. The Runs Test applied to lossy trace. 

Order  K I E n t r ° p y l  

6 0.5228 
5 0.5240 
4 0.5248 
3 0.5290 
2 0.5422 
1 0.5585 

Table 1. Entropy for the lossy trace. 

with the CDF values based on the predicted exponential distribu- 
tion. We use the s tandard error as a measure of the error between 
plots, and choose the distribution with smallest standard error. The 
equation for the standard error of the predicted ff is 

i 1 [ n~ - '~zy -~x~"~y ]  21 S . . . . .  (Y, ~) = [ ~ ] [ f ( y )  -- 
f ( x )  

(3) 
where f ( a )  = n ~ a 2 - ( ~  a) 2, and n is the dimension of 

the vectors ff and :g. 
The predicted distributions for the lossy and error-free state 

I Statei I Pr(i) I Pr(1 l i) I Pr(OIi )  I 
0000 0.1254 0 . 1 6 9 9  0.8301 
0001 0 .0305  0.6414 0.3586 
0010 0 .0172 0 . 1 8 3 2  0.8168 
0011 0.0344 0 . 8 0 0 9  0.1991 
0100 0 .0166  0 . 3 0 7 3  0.6927 
0101 0 .0033  0 . 8 1 2 9  0.1871 
0110 0 .0087 0 . 2 6 8 3  0.7317 
0111 0 .0415  0.8889 0. I l l l  
1000 0 .0305 0.3022 0.6978 
1001 0.0210 0 . 7 0 3 7  0.2963 
lOlO 0 .0027 0 . 0 5 4 7  0.9453 
1011 0 .0159  0.8820 0.1180 
1100 0 .0350  0.4556 0.5444 
1101 0 .0153  0 . 8 6 2 3  0.1377 
l l lO 0 .0415  0 . 3 1 1 8  0.6882 
l l I1  0 .5604  0 . 9 3 4 1  0.0659 

Table 2. Fourth order Markov model statistics. 
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Figure 8. Lossy state length distribution. 
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Figure 9. Error-free state length distribution. 

lengths are exponential distributions with parameters c~b -- 0.037 
and ag = 0.04, respectively. The standard error values for the 
predicted distributions of Bn and G,~ are 0.013 and 0.025 respec- 
tively. Note that a lower standard error value indicates a more 
accurate prediction. 

6.2 The Gilbert GSM Model 

To study the performance and accuracy of the MTA algorithm, 
we compared the MTA model to the traditional Gilbert model. The 
Gilbert model is a DTMC of order  one (i.e., with two states). In 
our traces, the Gilbert model states correspond to the states of the 
data frame {0, 1}, where a 1 denotes a corrupted frame and a 0 
denotes a correct frame. The Gilbert model predicts the state of 
the next frame by just looking at the previous received frame. Fig- 
ure 10 shows the Gilbert model state transition diagram. Finally, 
Table 3 shows the results of the Gilbert model transition probabil- 
ity calculations for G S M  trace. 

State/ Pr(i) P r ( l l i )  P r ( O I i )  

0 0.9449 0.0087 0.9913 
1 0.0551 0.8509 0.1491 

Table 3. Gilbert model statistics. 
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Figure 10. Gilbert model state transition dia- 
gram. 

7 Trace Generation and Evaluation 

A key capability of the MTA algorithm is the ability to generate 
artificial traces (of any duration) with the same statistical charac- 
teristics as traces collected from any given network. In this section, 
we demonstrate how to generate an artificial trace given character- 
istic statistics from the MTA model. We also generate an artificial 
trace based on the Gilbert model, and compare both artificial traces 
against the G S M  trace. We show that with respect to key charac- 
teristics such as error burst length distribution and throughput vs 
frame size, the MTA artificial trace provides a much improved ap- 
proximation of the original G S M  trace. 

7.1 MTA Artificial Trace Generation 

The algorithm for trace generation from an MTA model is as 
follows: 

1. Choose the number of frames, N,  to generate in the artificial 
trace. 

2. The algorithm repeats the following steps until all N frames 
have been generated: 

(a) Determine gt~,~, the error-free state length from the 
error-free state length distribution Gn. 

(b) Determine bl,,~, the lossy state length from the lossy 
state length distribution Bn. 

(c) Generate gten error-free frames (i.e., a sequence o f "0"  
of length gz~,~). 

(d) Generate bl~n frames that are either lossy or error-free 
frames depending on the transition probabilities calcu- 
lated for the lossy trace in the MTA model. 

Recall that in the MTA model, we observed that the lossy and 
error-free state distributions, B,~ and G,~, fit exponential distri- 
butions. Thus, to calculate bl~,~ and g~n we can use the inverse 
transformation method from [9]. Given a random variable X with 
a CDF F(x ) ,  the variable u is uniformly distributed between 0 and 
1. We can generate a sample value of X by generating u and cal- 
culating x = F -1 (u). In the exponential case with parameter ~, 
u = F ( x )  = 1 - e  - ' ~ ,  x can be determined from x = - l n ( u ) / c ~ .  
In each case, z corresponds to either gte,~ o r  blen. 

It should be clear by inspection that an artificial trace created by 
the above algorithm is guaranteed to have the same characteristics 
as those extracted by the MTA algorithm. 
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Figure 11. Error burst length distribution. 

7.2 Trace Comparison 

Here we evaluate the MTA algorithm by comparing the error 
statistics of the G S M  trace against the two artificial traces. Fig- 
ure 11 plots each CDF for the error burst lengths of the three 
traces. The mean, standard deviation, and maximum values are 
summarized in Table 4. Note that G S M  trace and the MTA artifi- 
cial trace experience similar burst characteristics with 95 percent 
of the error burst lengths being smaller than 22 frames long, while 
in the Gilbert trace 95 percent of the error burst lengths are of 
size one. These results show that the error burst distribution of the 
MTA trace represents a much closer approximation to the collected 
trace, G S M  trace. 

Trace I Mean I St Deviation I Maximum ] 
G S M  trace 6 14 126 
MTA trace 7.0 8.1 82 

Gilbert  trace 1.8 0.4 4 

Table 4. Error Length Statistics 

To demonstrate the importance of an accurate model for setting 
system parameters, we cite an example where a naive assumption 
about the channel statistics can lead to poor performance. In [11], 
we showed how an inaccurate channel model can lead to poor deci- 
sion on the optimal RLP frame size of an enhanced multiple radio 
block implementation (see Section 1). We repeat this demonstra- 
tion using the G S M  trace, artificial traces from MTA and Gilbert, 
and an artificial trace based On trivial assumptions we call even er- 
ror distribution ( EED) trace. We artificially generated EED trace 
with the same FER as G S M  trace, but with an even error distribu- 
tion. We then perform retrace analysis on the four traces, yielding 
the results shown in Figure 12. Note that the throughput for EED 
trace decreases dramatically as frame size increases, yielding an 
optimal frame size of only 60 bytes or 2 radio blocks. The Gilbert 
trace experiences higher throughput values for small frame sizes, 
but throughput decreases rapidly as the frame size increases. Its 
optimal frame size is 150 bytes (5 radio blocks). In contrast, the 
throughput plots for G S M  trace and the MTA trace follow simi- 
lar paths. Furthermore, they both yield an optimal frame size of 
210 bytes (7 radio blocks). In this particular case, retrace analysis 
shows that the improved accuracy of the MTA artificial trace over 
the Gilbert artificial trace leads to a more optimal design decision. 
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Figure 12. Retrace analysis of four traces. 

We used the standard error equation (see Equation 3) to mea- 
sure how closely each artificial trace approximates the GSM trace. 
The standard error for LED trace was 48, for Gilbert trace was 22, 
and for MTA trace was 8. Small standard error values signify that 
the traces experience similar error statistics. 

In summary, we used the characteristics from the MTA and 
Gilbert models to generate artificial traces, and used these traces to 
measure how accurately both algorithms model real traces. Both 
CDF and retrace analysis show that the artificial trace from the 
MTA model more accurately portrays the original GSM trace. Thus, 
we conclude that the MTA model provides a more accurate ap- 
proximation technique than the traditional Gilbert model. 

8 Conclusion 

In this paper, we present a novel algorithm for modeling net- 
works channels that experience time varying error statistics. The 
time varying nature of wirelss and some wired channels has been 
a limiting factor in the analysis or modeling using Discrete Time 
Markov Chains. However, our Markov-based Trace Analysis algo- 
rithm and techniques allow us to separate a non-stationary network 
trace into stationary traces and to accurately model the traces using 
DTMCs. 

We compare the application of the MTA model and the tradi- 
tional Gilbert model to traces collected in the GSM wireless digital 
cellular networks and show that MTA model synthetic traces have 
burst error distributions that are closer to the real distributions of 
collected traces than the distribution of traces generated from the 
Gilbert model. 

We further show that when using retrace analysis to calculate 
the throughput for different frame sizes, our MTA model yields the 
correct optimal frame size decision, whereas less accurate models 
including the Gilbert model and an even error distribution model 
yield incorrect and non-optimal frame sizes. The results of the re- 
trace analysis gives an example where a less accurate traffic model 
leads to the wrong design decision. 

We are in the process of applying the MTA model to the prob- 
lem of modeling next-generation 2.5 generation and 3rd gener- 
ation GSM networks, including the General Packet Radio Ser- 
vice (GPRS). Both networks currently have limited prototype de- 
ployment, making experimentation difficult. However, by creating 
MTA models for each network, we will enable easy, rapid experi- 
mentation and prototyping. 
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