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ABSTRACT 
In a wireless communications network, the movement of mo- 
bile users presents significant technical challenges to provid- 
ing efficient access to the wired broadband network. In this 
paper, we construct a new analytical/numerical model that 
characterizes mobile user behavior and the resultant traf- 
fic patterns. The model is based on a semi-Markov process 
representation of mobile user behavior in a general state- 
space. Using a new algorithm for parameter estimation of 
a general Hidden Semi-Markov Model (HSMM), we develop 
an efficient procedure for dynamically tracking the parame- 
ters of the model from incomplete data. We then apply our 
integrated model to obtain estimates of the computational 
and bandwidth resources required at the wireless/wired net- 
work interface to provide high performance wireless Internet 
access and quality-of-service to mobile users. Finally, we 
develop a threshold-based admission control scheme in the 
wireless network based on the velocity information that can 
be extracted from our model. 

Keywords 
wireless networks, mobility, traffic modeling, resource allo- 
cation, admission control 

1. INTRODUCTION 
In a wireless communications network, the movement of mo- 
bile users presents significant technical challenges to provid- 
ing efficient wireless access to the Internet. For an individ- 
ual mobile user, the point of contact to the wired network 
changes with time. It is therefore imperative to be able 
to track and to take into account dynamic mobile behavior 
when allocating resources to traffic at the interface b e t w e e n  

the wireless and wired networks. 

Construction of mobility patterns for analysis and simula- 
tion has attracted considerable attention in recent years (see 
e.g., [2, 13, 12]). Mobility models find application in geolo- 
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cation, the measurement of location information for mobile 
users. For example, mobility models can be used to compute 
how frequently geolocation of the mobile should be done. 
Given the cost of geolocation, which consists of the signal- 
ing delay and overhead for each geolocation transaction, we 
may wish to compute the probability of failure in reaching 
all mobiles that are in a target area. 

Chen [2] proposes a cellular-based location tracking system 
which utilizes the estimated distance between the mobile 
and the referenced base station, together with sector infor- 
mation and employs a Kalman filter for location estimation. 
Maass [13] develops a location information server based on 
directory data models and services. Liu and Maguire [12] 
propose a mobility management based on two algorithms: 
o n e  algorithm for detecting and storing the regular itinerary 
patterns of the user and the second algorithm for predicting 
the next state of movement of the user. Other references on 
dynamic location tracking include [9, 4, 11, 5, 19]. These 
works focus on modeling mobile location at the physical level 
in order to reduce location updating and paging signaling 
cost. 

Several works have modeled mobile behavior as a random 
walk or Brownian motion [20] on two-dimensional or three- 
dimensional (to model mobility in a multi-story building) 
grids. Such models can be used to drive simulation models 
of the wireless network. The street map of a city or the 
blueprint of a building can be used to provide input for the 
degree of freedom of realistic mobility patterns. In [10], a 
stochastic model for mobility called the Markovian highway 
Poisson arrival location model (PALM) is introduced and 
developed rigorously. This model uses a pair of coupled par- 
tial differential equations or ordinary differential equations 
to describe the evolution of the system. 

In this paper we introduce a new integrated model of mo- 
bility and traffic that differs from existing work in two key 
aspects: 1) The model allows us to exploit recent results in 
the theory of queueing and loss networks [8] to reduce signif- 
icantly the amount of information that needs to be tracked 
and stored; 2) The tracking model can be implemented in 
real-time using a computationally efficient parameter esti- 
mation algorithm that has been invented recently [24]. Our 
model is based on an underlying semi-Markov chain. A new 
method for estimating the parameters of an arbitrary hid- 
den semi-Markov model (HSMM), makes it feasible to char- 
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acterize the macroscopic mobility and traffic behavior in the 
wireless network. 

We apply the new model to the important problem of ef- 
ficient resource allocation in wireless networks. First, we 
show how the mobility information obtained from our model 
can be used in an adaptive admission control scheme that 
improves the blocking probability of in-progress calls. Sec- 
ond, we show how traffic information obtained from the 
model can be used to estimate the amount of bandwidth that 
should be reserved for wireless traffic at the wireless/wired 
network interface. 

The remainder of the paper is organized as follows. Sec- 
tion 2 develops our integrated model of user mobility and 
traffic in the wireless network. Section 3 discusses a novel 
algorithm for estimating the parameters of the model dy- 
namically. Sections 4 and 5 discuss applications of the mo- 
bility and traffic model, respectively, to resource allocation 
at the network interface and to admission control in the 
wireless network. Section 6 discusses a numerical example 
that illustrates the mobility/traffic state estimation. Finally, 
Section 7 concludes the paper. 

2. MOBILITY AND TRAFFIC MODEL 
2.1 Abstract Mobility State Space 
We define the state of a mobile user in terms of a vec- 
tor (x l , - - .  , x~), where the i th component, xi, represents a 
value from a finite attribute space ,4i. The attr ibute spaces 
represent properties of the mobile user such as location, 
moving direction, speed, etc. The set of possible states for 
a mobile user is an n-dimensional vector space given by 

8 = A l x - . . x A ~ ,  

where x denotes the Cartesian product. The abstract space 
$ can be made as rich as desired by including the appro- 
priate attributes as components in the state vector. The 
dynamic motion of a user, as defined by its time-varying 
attr ibute values, can then be described by its trajectory in 
this space. 

We enumerate all possible states in ,9 and label them as 
1 , . . .  , M  such that the state space S can more simply be 
represented as follows: 

S = { 1 , . . .  ,M}. 

We introduce two inactive states in addition to the set of 
active states 8: the source state s and the destination state 
d. A user enters the system by assuming the state s. A user 
exits the system by assuming the state d. Thus, the user can 
assume states in the augmented state-space 8 = 8 U {s, d}. 
The state transitions of a user are characterized by a Markov 
chain with transition probability matrix A = [a,~m : n, m E 
$]. 

No transitions occur from states j E ,9 to the source state, 
i.e., ajs : O. From any such state j ,  the user next assumes 
the destination state d with probability aid. No transitions 
are allowed from the destination state. Hence, the state d 
is considered to be the absorbing state of the Markov chain. 
Further, no transitions occur from state s to state d, i.e., 
asd = 0. ,~ = 8 U {s, d}. The transition probability matrix 

thus has the following form: 

d 
8 

M 

1 0 0 . . .  0 

0 0 a s l  • • • a s , M  

a l , d  0 a l l  ' ' '  a l , M  

a M , d  0 a M , 1  • " • a M , M  

We allow the dwell time of a user in state m E ,9 to be gen- 
erally distributed with mean din. Hence, the state process 
of a user is, in general, a semi-Markov chain. The aggregate 
behavior of the system of mobile users can be represented 
by the vector process 

N(t)  -- ( N l ( t ) , ' "  , N M ( t ) ) ,  (1) 

where N,~ (t) represents the number of mobile users in state 
m at time t. Given the assumptions above, N(t)  is also a 
semi-Markov chain. We further make the assumption that 
users arrive to the system in state s according to a Poisson 
process. In general, the average arrival rate, A(N) may be 
a function of the current system population: 

N = IINII = Y~ Nm. (2) 
m e 8  

Observe that  the above system is equivalent to an open 
queueing network with M infinite-server stations correspond- 
ing to the states in 8. Clearly, the source and destination 
stations of the queueing network correspond to s and d, re- 
spectively. Results from the theory of queueing and loss 
networks [8] show that  the steady state distribution of N(t)  
is insensitive to the distributions of the dwell times at each 
station. Furthermore, the steady-state distribution is given 
by a simple product form solution: 

(emdm) '~'* 
P[n] = P{N( t )  = n} = P[0]A(n) H (3) 

n m  ! s E 8  

where 

ko>-o , e s  J ' (4) 

and the values em satisfy the following equations: 

e~ = ~ . ,  + y ' ~ e ~ i m ,  r u e s .  (5) 
jE8 

The value em can be interpreted as the average number of 
visits that a user makes to state m during its sojourn in the 
system. 

Our proposed abstract mobility state space model differs 
from other proposed mobility models (cf. [20, 10] in that it 
leads to a simple parametric representation of the mobile 
behavior that  can be related to a general queueing network 
with multi-class users in which each service center is infi- 
nite server (IS) with multiple types. This representation al- 
lows us to capitalize on recents results in queueing and loss 
network theory [8] which show that  the steady-state distri- 
bution is surprisingly robust to all state time distributions 
and state transition behaviors. This result in turn  implies 
that  to obtain the state distribution of mobile users, we need 
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only have two sets of parameters :  the mean  dwell t ime,  din, 
in s ta te  m and the  expec ted  number  of visits, era, the  user 
makes to s ta te  m in its l ifetime per  user class. Thus,  only 
2M pieces of numeric  da ta  per user class provide sufficient 
statist ics of the  user mobility, as far as the  s teady-s ta te  dis- 
t r ibut ion  and related performance  measures  are concerned. 
This  da t a  can be es t imated  by means  of a new paramete r  
es t imat ion a lgor i thm to be discussed in Section 3. 

We can augment  the  basic mobi l i ty  model  by in t roducing 
s ta te -dependent  information.  Let  J = {1 , . . .  , J }  represent  
a set of user requirements .  We shall suppose tha t  a mobile 
user in s ta te  m requires da ta  of type  j (e.g., web content  
of a certain type)  from the  network with  probabil i ty  cm(j). 
Alternatively,  the  requi rement  j could represent  the  network 
resources (e.g., bandwidth)  tha t  a user requires to t ransmi t  
or receive a certain type  of real - t ime s t ream (e.g., real- t ime 
video). 

Dynamic  information on user traffic can be in tegrated into 
the basic mobi l i ty  model  via an appropr ia te  specification of 
the mobil i ty  a t t r ibu tes  a n d / o r  the  user requirements .  Thus,  
we can incorporate  bo th  mobi l i ty  and traffic informat ion 
in a single integrated model.  The  general i ty of the  model  
allows it to be applied in a variety of ways to enhance net-  
work performance.  As we discuss in Sections 4 and 5, the  
model  can be applied to improve resource allocation at the  
wireless /wired network interface and in the  wireless network 
itself. 

2.2  P r a c t i c a l  M o d e l  R e a l i z a t i o n s  
Any practical  real izat ion of the general  model  should bal- 
ance the desire for model  accuracy with  considerat ions of 
computa t iona l  complexity.  Suppose tha t  we are pr imari ly  
interested in t racking the  mobi l i ty  of a user wi thin  a cer ta in  
geographic region. Geolocat ion measurement  accuracy may  
be as high as 20 m or 100 m, bu t  for the  purposes of mobi l i ty  
modeling,  the  resolution need not  be tha t  high. For smooth  
handoff, it is usually sufficient to consider a small  number  of 
ranges of speed. Similarly, a handful  of direction a t t r ibu tes  
should be sufficient for most  applications.  As an example,  
a geographic area might  be subdiv ided  into about  one hun- 
dred impor tan t  locations. The  location space of mobile user 
locations could then  be represented as follows: 

/2 = {A1, A 2 , - . .  , A100} 

We may  specify the  feasible directions of movement  as fol- 
lows: 

7) = {north,  south,  east, west}. 

The  speed ranges of interest  are given as follows: 

12 = {stat ionary,  walking, city driving, highway driving}. 

Then  the sys tem state-space for this example  would be given 
by 

S = £ ~ x T ? x 1 2 .  

The  total  number  of states,  M,  for this example  will be on 
the order of one thousand.  We note, however, tha t  transi-  
t ions among the  s tates  is l imi ted  and we may  assume tha t  
from a given s ta te  t ransi t ions can occur to on the order of 

ten  neighboring states.  For example,  suppose tha t  the  geo- 
graphic area of interest  is represented  as a ten by ten grid of 
the 100 squares At ,  A 2 , . . .  , A100 in the  set L:. Each square, 
Aj,  has at most  four neighbors.  If we consider the location 
and direction a t t r ibu tes  together ,  i.e., the  Cartesian product  
/2 x :D, we observe tha t  each (location, direction) pair has 
exact ly one neighbor.  

Such considerat ions imply tha t  the  t ransi t ion probabil i ty 
mat r ix  will be highly sparse in pract ical  applications. As 
will be discussed below, our model  t racking algori thm has 
complexi ty  on the  order of the  number  of ma t r ix  elements,  
which should be significantly less t han  the  worst-case of M 2. 
This  makes our general model  amenable  to practical  imple- 
mentat ion.  

3. D Y N A M I C  S T A T E  T R A C K I N G  
3.1 H i d d e n  S e m i - M a r k o v  M o d e l  
The general mobi l i ty  model  was discussed in the context  
of a cont inuous- t ime pa rame te r  t. In practice,  t racking of 
the  sys tem parameters  must  be based on measured  obser- 
vations sampled  at discrete t ime  instances. Therefore,  we 
shall represent  the  user dynamics  by a discrete- t ime semi- 
Markov chain, where the  t is now discrete, taking values in 
{0, 1, 2 , . .  • }. Fur thermore ,  the  sys tem states cannot,  in gen- 
eral, be observed directly, i.e., the  s tates  are hidden. Hence, 
an appropr ia te  model  for the  sys tem is a discrete- t ime Hid- 
den Semi-Markov Model (HSMM).  

As in the  cont inuous- t ime model,  the  evolut ion of the user 
s ta te  is character ized by a s ta te  t ransi t ion probabil i ty  mat r ix  
denoted by 

" A = [ai; : i, j e gl. (6) 

We shall assume tha t  the  mobi le  user dwell t ime  in a given 
s ta te  is a r andom variables taking values in the  set {1 , . . .  , D},  
wi th  probabi l i ty  d is t r ibut ion funct ion denoted  bypm(d) ,  d = 
1 ,  • • • , D. We in t roduce  the  M x D mat r ix  

P = [pro(d) : m  • g ,  d = 1 , - . .  ,D]. (7) 

As discussed earlier, we character ize the  user requirements  
in te rms  of a finite set J = {1 , . - -  , J }  and a requirements  
probabi l i ty  d is t r ibut ion matr ix :  

C = Iota(j) : m  e g ,  j • Y]. (8) 

The  matr ices  A,  P and C cons t i tu te  an analytical  discrete- 
t ime semi-Markov mode l  t ha t  captures  the  dynamic  mobil i ty  
and requi rements  of a given user. 

In order to t rack user mobili ty,  the  parameters  of the  semi- 
Markov model  must  be es t ima ted  based on observations of 
the  user state.  This  leads to a Hidden  Semi-Markov Model 
(HSMM) described as follows. Let  St E {1 , . . .  , M }  denote 
the  s ta te  of the  user at t ime  t is the  discrete t ime parameter ,  
i.e., t takes values in {0, 1, 2, .. • }. We denote  the  sequence 
of states from t ime  a to t ime  b as S b = {S~,Sa+I, . . .  ,Sb}. 
Let rr = [Trm], m = 1,. • • , M ,  be the  initial s ta te  probabil i ty  
dis t r ibut ion vector,  where rrm denotes  the  probabil i ty  tha t  
the  initial s ta te  of the  user is s ta te  m. 

Let  ot denote  the  value of an observat ion of the  user s ta te  
at t ime  t. We assume tha t  there  are K dist inct  s ta te  obser- 
vat ion values, 1 , . . .  , K .  The  sequence of observations from 
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time a to time b is denoted by oba. Note that  the observation 
value ot is generally different from the true state St, due to 
geolocation and estimation errors. We define the following 
observation probabili ty distr ibution matrix: 

B = [ b m ( k ) : m  • S,  k = 1 , . . . , g ] ,  (9) 

where b,,~(k) denote the probabil i ty tha t  the observed value 
at an arbi t rary time t is ot = k, given that  the actual user 
state is St = m. The observation of the user requirements at 
t ime t is denoted by qt • o q. The corresponding requirement 
observation sequence from time a to b is denoted by q~. The 
5-tuple (A, B, C, P ,  r )  provides a complete specification the 
discrete Hidden Semi-Markov Model for the system. 

To track the state of a mobile user, we apply the forward- 
backward and re-estimation algorithms for HSMM parame- 
ter est imation to be discussed in Section 3. The main steps 
of the tracking algorithm are summarized as follows: 

Mobile User 

State 

Sequence: 

1 Sever q J 
User Requirements: 

Geo-location 

Measurement and ° l r  

Tracking: ol r 

HSMlVl T 

Parameter ~. ~r 

Estimation 
l Predict ql+l 

ql T 

1. 

2. 

3. 

Apply the HSMM re-estimation algorithm to obtain 
^ ^ ^ ^ 

initial estimates (A, B, (2, P ,  ~), of the HSMM model 
parameters  by using training data. 

Apply the HSMM forward-backward estimation algo- 
rithm to predict at t ime t the next requirement, qt+l, 
of the mobile user, based on the geolocation and re- 
quirement observation sequences o~ and q~, respec- 
tively. Find the maximum likelihood state sequence, 
s T, for given observation sequences qT and o T, where 
T is the active period of the mobile user. 

Obtain refined estimates, (A.k, I3k, Ck, Pk,  ¢rk), by ap- 
plying the HSMM re-estimation algorithm to the given 
observation sequences. 

Figure 1 illustrates the dynamic mobility tracking model. 
The mobile user generates the "true" state sequence S T . 
The observation sequence o T is obtained from geo-location 
measurement and tracking. A server a t tached to the wired 
network records the user requirements, producing the se- 
quence qT. The sequences Ol T and qT are inputs to the 
HSMM parameter  estimation algorithm. Finally, the HSMM 
parameter  estimation algorithm produces estimates, ( A,  t3, 
C, P ,  7? ), of the model parameters  and an estimate,  S~,  of 
the user s tate sequence. In addition, a prediction, qt+l, of 
the next user requirement, is produced as an output .  This 
information can be used to anticipate future Internet doc- 
ument requests from the user. Thus, the mobili ty model 
can be used to enhance the performance of prefetch caching 
algorithms [23, 22]. 

3.2 Estimation from Insufficient Data 
Estimation of the mobili ty model parameters  must in gen- 
eral be made based on missing data. Due to physical con- 
straints, geolocation measurement and/or  transmission of 
geolocation da ta  may not take place frequently enough to 
allow precise tracking of the user's s tate at all times. The 
task of estimation from insufficient da ta  involves two im- 
por tant  aspects: (a) est imation and prediction of the users' 
moving behaviors and requirements; (b) re-estimation of the 
model parameters  based on missing data. 

F i g u r e  1: Dynamic mobility/traffic state tracking model. 

There are two different cases for missing da ta  problem. The 
first case is when we know tha t  a s tate occurs but  have no 
observation. In this case, we can assume tha t  there is a 
complete observation sequence mixed with an independent 
random erasure process. Hence this case can be modeled 
as a discrete hidden Markov model (HMM) with an erasure 
process. The second case is tha t  we do not know when a 
state transit ion occurs because of missed observations. In 
this case, we do not know how many state transitions occur 
during the interval of missing observations. Therefore, we 
should explicitly consider the s ta te  durat ion so that  we can 
est imate the maximum likelihood s tate  sequence including 
the missed period. This case should be modeled as a hidden 
semi-Markov model (HSMM) with missing data,  where the 
state durat ion has some general probabil i ty distribution. 

The key issues in dealing with such an HSMM are: (a) 
finding an efficient algorithm for est imating the state se- 
quence and for re-est imating the model parameters  based 
on missing data; (b) proving tha t  the proposed algorithm 
provides the best estimates,  i.e., maximum likelihood esti- 
mates. The well-studied HMM can be viewed as a special 
case of the HSMM. Similarly, an HSMM with complete ob- 
servation da ta  can be t rea ted  as a special case of an HSMM 
with part ial  observation data.  

An HSMM is more general than an HMM since the lat- 
ter model that  assumes either a constant or a geometrically 
dis tr ibuted dwell t ime (cf. [17]). Although the statistical lit- 
erature addresses est imation procedures for missing data,  a 
computat ional ly feasible algori thm has not previously been 
reported for an HSMM with erasures. The well known 
Baum-Welch algorithm [21] applies only to the HMM. 

The main elements of the HSMM parameter  estimation al- 
gorithm. A detailed development of the algorithm and its 
validation by simulation are repor ted in [24]. Recall that  the 
HSMM is specified by a 5-tuple (A,  B, C, P ,  7r). The obser- 
vation interval is assumed to be segmented into T subinter- 
vals indexed by 1 ,2 , . - -  ,T.  Observations may not neces- 
sarily be available in each of the T subintervals. We de- 
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note the set of observation time instents by G = {tl = 
1 , t 2 , t 2 , ' "  ,t,~ = T } .  

estimates on the amount of network resource that should be 
allocated in both cases. 

3.2.1 Forward-Backward algorithm 
In [24], a forward-backward algorithm has been devised to 
estimate an HSMM from observations with erasures. The 
algorithm has a computational complexity proportional to 
D, where D is the maximum value of the dwell time for all 
states. The more general forward-backward algorithm re- 
duces to the Baum-Welch algorithm when D = 1. We note 
that the algorithm offers a significant improvement over an 
earlier algorithm by Ferguson (1980) [3] which has compu- 
tational complexity proportional to D 2. 

We define the forward variables (cf. [3]) as follows: 

s t ( m )  = P[o~, state m sojourn ends at t], t_> 1 

~ (m) = P[o~, state m sojourn begins at t + l ] ,  t >  1. 

The backward variables are defined by: 

fit(m) = p[oTlsojourn in state m begins at t], t < T, 

/3:(m) = p[oTlsojourn in state m ends at t - 1], t _< T. 

The forward variables are then computed inductively for 
t = 1, 2 , . . . , T  [24]. Similarly, the backward variables are 
computed inductively for t = T , T -  1,.--  , 1. After com- 
puting the forward and backward variables, the maximum a 
posterior (MAP) state estimate can be found. Define: 

"~t(m) = p[oT; st = m]. (10) 

Then the MAP estimate of st is given by 

"),,(m) 
~ t = a r g  max t = T , T - 1 , . . .  1. (11) 

l < m < M  P[o~]' 

3.2.2 Re-estimation algorithm 
A simple iterative procedure for re-estimating the HSMM 
parameters is reported in [24]. By applying the well-known 
EM (Expectation/Maximization) algorithm [21], it can be 
shown that this iterative procedure is increasing in like- 
lihood. The overall computational complexity of the re- 
estimation algorithm is essentially proportional to T. Thus, 
the parameters for the HSMM model caa be estimated ef- 
ficiently within the framework of dynamic mobility model 
tracking illustrated in Figure 1. 

4. R E S O U R C E  A L L O C A T I O N  
The information obtained from the mobility and traffic model 
can be used to characterize the traffic streams arriving from 
mobile users at the wireless/wired interface. Traffic charac- 
terization is a necessary step in determining the amount of 
network resource that  should be allocated for each user in 
order to meet their rfquirements on quality-of-service. We 
consider consider two main types of user traffic: 1) user re- 
quests for data (e.g., web content) from the wired network; 
2) real-time or non-real-time data transmission from the user 
to the wired network. The network interface should allocate 
sufficient computational resources to process user requests 
with a low probability of losing requests. The network in- 
terface should also allocate sufficient bandwidth and buffer 
resources to provide QoS for transmissions from the mobile 
user. Using the mobility and traffic model, we shall obtain 

4.1 Overal l  state trans i t ion  rate 
Let us examine how often the user state transitions occur in 
the HSMM model. Define the vector, a, of state transition 
probabilities from the source state s to the states in S: 

a : ( a s j  : j E S).  (12) 

and the submatrix, As, of the overall transition probability 
matrix A, which characterizes the state transitions within 
the set of active states S: 

Aa : [amn : m, n e S]. (13) 

It is convenient at this point to introduce a special inactive 
state, denoted 0, which subsumes the roles of the states s and 
d in a single state. The state 0 may be considered to consist 
of two substates s and d. The associated state process is an 
absorbing Markov chain, with fundamental matrix given by 
[7]: 

( [  ])1[ 1 F =  I -  0 a 0 qo (14) 
0 A.  = o Q ' 

where I denotes the identity matrix, 0 denotes a column 
vector of zeros and q0 is defined by: 

qo = aQ. (15) 

The element q,~n of Q, (m, n E S), is the expected number 
of visits to state n that a user makes starting from state m 
until  the user is finally absorbed into the destination sub- 
state d, and the element qon of vector bqo, (n E S)  is the 
expected number of visits to state n that the user makes 
during its active period starting from the source substate 
s until reaching the destination substate d. When the user 
reaches the destination substate d, it immediately transits 
to the source substate s. The dwell time of a user in state 0 
is denoted by d0 and has a general distribution. 

The total expected number of state transitions that the user 
makes during its active period is given by 

S = ~ qo,',, (16) 
nES 

and the expected total active time of a mobile is: 

T = ~ qond~. (17) 
h E 8  

The total expected state transition rate of a mobile user is 
given by A = S /T ,  which provides a measure the amount of 
system resources required for storing and transferring mo- 
bility tracking information. 

4.2 User  request  rate 
Let /~rm denote the expected number of users in state m in 
equilibrium (m = 0, 1 , . . .  , M). The mean departure rate 
from state m is given by 

M 

7,~ = l~,~/dm = ~-~ l~jaj , , , /dj ,= No/doqom (18) 
j = 0  
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where 70 = fifo/do is the total rate at which mobile users 
transit from state 0 to an active state, i.e., the total rate of 
entry into the system. The state process, N(t) = (Nl(t), 
• .., NM (t)), corresponds to the vector process N(t) defined 
in Eq.(1). 

The state transition rate, i.e., the expected rate that the 
active mobile users request state (or geolocation)-dependent 
content when they transit from one state to another, is given 
by 

R, = E gm/dm, (19) 
m E 8  

where the state transitions from state 0 to active states are 
included, but the transitions from active states to the state 
0 are not included. 

We assume that the mean rate at which a mobile user re- 
quests geolocation-independent content while it stays in state 
m is Rm. Then the overall request rate for geolocation- 
independent content is 

M 

Rr = E RmNm. (20) 
r n = l  

Therefore, the total request rate is 

M 

R = R~ + R~ = E (d~l + R'ONm" (21) 
m = l  

Define 

M 

R(t) = E (dml + Rm)Y,~(t), (22) 
rn=l  

where N(t) is now interpreted as a multiple-state Maxkov 
modulated rate process (MMRP). Since we allow the dwell 
times to have a general distribution, N(t) is actually a semi- 
Markov modulated rate process, which extends the model 
studied in [18]. Let X(t) be an M-dimensional diffusion pro- 
cess approximating N(t). Under a set of reasonable assump- 
tions, X(t) can be expressed as an M-dimensional Ornstein- 
Uhlenbeck (O-U) process. Hence, the process R(t) can be 
approximated by a Gaussian process 

M 

/~(t) = E ( d ~  1 + R .0Xm(t ) ,  (23) 

and the total number of active users, K(t) ,  is approximated 
by 

M 

[((t) = E Xm(t), (24) 
m = l  

which is also a Ganssian process. 

Suppose that the wired/wireless gateway can process at most 
C requests per second. Then the change of the queue length 
Q(t) can be represented by the stochastic differential equa- 
tion: 

d Qdt = { 0,/~(t) - C, otherwiseif/~ > C or Q(t) > 0 (25) 

As discussed in [18], the asymptotic complementary queue 
length distribution can be approximated by 

P { Q > x } ~  ~ - ~ - ~ - ] e x p  - ah / '  (26) 

where aft is the standard deviation of the rate process R(t) 
in equilibrium. The parameter 0 is given by: 

0k _ C - / ~ ,  (27) 
aft 

where #k is the mean of the rate process in equilibrium. 
The constants pfi, ak  and a k (in Eq. (26)) can easily be 
computed from the transition probabilities and rate values 
governing the rate process /~(~). Let B denote the number 
of requests that  can be held in a buffer. Requests are lost 
whenever the length. Q(t), of the request queue, exceeds 
B. In this case, the steady-state loss probability can be 
approximated by P{X > B}. 

4.3 User Traffic 
Information about the user's traffic patterns can be extracted 
from the mobility model and used to characterize the ag- 
gregate traffic stream arriving from the wireless network at 
the network interface. By developing an appropriate traf- 
fic model, we can obtain an approximation for the required 
bandwidth to satisfy the QoS requirements at the interface 
to the wired network (see [14, 15]). The required bandwidth 
can then be used to make admission control decisions and to 
set the parameters of the scheduler at the network interface. 

In constructing the mobility model, we can specify an at- 
tribute specifying the current transmission rate of a mobile. 
The associated at t r ibute space, T~, consists of a number of 
discrete rates: 

T~ = {r0 = 0, r l , - . .  ,rR}. (28) 

We can then define a function r(m) that  maps a user state 
m E S to the corresponding transmission rate. Let B = 
{1, 2, • • • , B} denote the set of base stations in the network. 
We define By C S to be the subset of states in which the 
mobile user is connected to base station j E B. 

With these preliminaries, we can express the aggregate mo- 
bile user traffic stream arriving at base station j E B as 
follows: 

Rj(t) = E Nm(t)r(m). (29) 
m E B j  

We observe that  R~ (t) has the form of a multiple-state Markov 
modulated rate process (MMRP). The process Rj (t) differs 
from the standard MMRP in that  the sojourn times in each 
state may be generally distributed. Such a process can be 
approximated using an Ornstein-Uhlenbeck diffusion pro- 
cess. 

Suppose that the quality-of-service (QoS) requirement at 
base station j is that  the packet loss rate should be less than 
ej. The diffusion process approximation leads to a simple 
form for the required bandwidth at base station j [18]: 

Cj = I~j + Ojaj, (30) 
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where #j and aj  are, respectively, the mean and variance 
of Rj(t) in steady-state. The parameters/zj and aj can be 
computed from the parameters of MMRP R(t). The pa- 
rameter 0j can be computed in two ways. If the network 
interface has only a small number of buffers available to the 
wireless traffic at the network interface, then the multiplex- 
ing system can be modeled as a loss system. In this case, 
the expression for Oj is as follows [18]: 

Oj = l.8-O.461Oglo ( ~ j ) .  

Alternatively, if the number, Bj, of available bufers  at the 
network interface is sufficiently large, then the network in- 
terface can be modeled as a multiplexer with an infinite 
buffer. In this case, the packet loss probability can be ap- 
proximated by the probability that the queue length Qj(t) 
exceeds Bj. In this case, the diffusion approximation leads 
to a required bandwidth of the form (30), but with 0j given 
as follows [18]: 

Oj = ~¢j  - 21n ( v ~ -  2aJ B.~ - 2aJ B . (31) 

(32) 

The parameter aj can be computed from the parameters of 
the MMRP R(t) (see [18]). In general, Cj tends to be a con- 
servative estimate of the bandwidth that  should be set aside 
at base station j for real-time mobile traffic. The estimate 
of required bandwidth could be further refined using traffic 
measurements at the base station (cf. [15]). 

5. ADMISSION CONTROL 
In the wireless network, the service area is divided into cells 
in order to distribute the allocation of network resources 
among multiple base stations. Nonadjacent cells share fre- 
quency channels to make efficient use of the limited spec- 
t rum allocated for mobile communication services. When a 
mobile user attempts a new call in a given cell, one of the 
available channels associated with the cell is allocated to it. 
If no channels are available, the call is blocked. After a call 
is established within a given cell, the mobile user may move 
to an adjacent cell while the call is in progress. In this case, 
the call must be handed off to the neighboring cell in order 
to provide uninterrupted service to the mobile user~ If no 
channels are available in the new cell, the handoff at tempt 
is blocked. 

A major issue in resource management for wireless net- 
works is to develop efficient schemes for channel allocation 
that maximize channel utilization subject to the satisfac- 
tion of quality-of-service (QoS) requirements. The typical 
QoS metrics include new call blocking probability, handoff 
failure probability, and handoff delay. Various channel al- 
location schemes have been proposed and analyzed in the 
literature (see e.g., [6, 16]). A relatively simple scheme for 
admission control is related to t runk reservation, whereby a 
pool of guard channels in the cell is reserved for the hand- 
off calls. Asawa [1] formulates the admission of new calls 
in a cellular network as a dynamic programming problem 
and proves that  the optimal admission policy is of threshold 

type. With g guard channels, new calls are blocked if the 
number of free channels is less than g, while handoff calls are 
accepted whenever there is an idle channel available. Both 
blocked handoff calls and blocked new calls may be queued, 
generally with priority given to the handoff calls. Such a 
scheme gives preferential t reatment  to the handoff calls by 
penalizing the new calls. A variation of this scheme admits 
new calls with a certain positive probability when the num- 
ber of free channels is less than g. 

From the mobility model, we may classify mobile users ac- 
cording to their average travel velocity. We shall consider a 
simple classification of users into two velocity types: slow- 
moving users and fast-moving users. We may then devise 
an admission control policy, based on velocity, to improve, 
in particular, the handoff blocking probability of the slow- 
moving users. Consider the following velocity-based ad- 
mission control policy: Suppose that  there are g channels 
in a given cell. A handoff call (type 1 or 2) is admitted 
provided there is at least one channel available. A new 
type 1 call is admitted if and only if the number of avail- 
able channels exceeds G1. A new type 2 call is admitted 
if and only if the number of available channels exceeds G2, 
where 0 < g2 < gl < g. Using Markov decision theory, one 
can establish the optimality of such a policy with respect to 
minimizing the expected discounted cost due to rejection of 
new call requests and handoff calls over the set of admissible 
policies (cf. [1]). 

In the following, we provide an analysis of the velocity-based 
admission control policy. First, we introduce some basic no- 
tation to characterize the system. Let the new call arrival 
rate to a given cell be denoted by F and let the average hand- 
off request rate be denoted by l~h. The average rate at which 
new calls are admitted the cell is given by Fa = F(1 - Pb), 
where Pb is the probability of blocking for new calls. Sim- 
ilarly, the average rate at which handoff calls are admitted 
is given by Fha = Fh(1 -- Pbh), where Pbh is the probability 
of blocking for handoff calls. We introduce several random 
variables associated with the system: 

• TH : the channel holding time in a cell. 

• TM : the connection holding time. 

• T ~  : the time period from the origination of a new call 
to the time it crosses the cell boundary and requires a 
handoff. 

• Th : the time period from the admission of a handoff 
call to the time when it requires another handoff. 

• THn : the channel holding time for a new call in a cell. 

• Tgh : the channel holding time for a (successful) hand- 
off call in a cell. 

Let PN be the probability that  a new call (which is not 
blocked) will require at least one handoff before completion 
and let PH be the probability that  a call which has already 
been handed off successfully will require another handoff 
before completion. These probabilities can be expressed as 
follows: 

PN = P { T M  > Tn}  and PH = P { T M  > Th}. (33) 
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Noting that THn = min(TM, Tn), the channel holding time 
distribution for new calls can be calculated as follows: 

FT~, (t) = FTM (t) + FT, (t)(1 -- FTM (t)). (34) 

The channel holding time distribution for handoff calls can 
be computed similarly. We now apply this general model 
to the type-based admission control policy, with some addi- 
tional assumptions. For concreteness and ease of exposition, 
we shall assume a "Manhattan Street" cell pattern which is 
a rectangular grid, wherein each cell has four neighbors. 

We shall assume uniform velocity distributions for each type 
of mobile user. Type 1 mobiles travel at a velocity V1, uni- 
formly distributed between 0 and v, while type 2 mobiles 
travel at a velocity V2, uniformly distributed between va and 
Vb. We assume further that  handoffs occur only between a 
given cell and its four neighbors and that  the mobile main- 
tains a constant speed and direction throughout its holding 
time. The latter assumption becomes more accurate as the 
cell size decreases. The overall call request rate to a cell is 
the sum of the arrival rates for new and handoff calls of both 
types: 

r = r l ,~  + r2,~ + r l ,h  + r2,h (35) 

where I~j,n and Fj,h denote the type j arrival rates for new 
calls and handoff calls, respectively. We can express the 
handoff call arrival rates in terms of the new call arrival rates 
and the probabilities, Pb, Pbh , PN, and PH, as follows: 

Pj,h ---- Pj,n(1 - Pj,b)/(1 -- Pj,H(1 -- Pj,bh)), (36) 

where the additional subscript j refers to the mobile type. 
The distribution of the cell residing time for a new type j 
call can be computed as: 

FTj., (t)-~ f / f j , s ,v(s ,v)dsdv,  (37) 
s<vt 

where f j , s ,v(s ,v)  denotes the joint probability density of 
position S and velocity V for type j mobiles. With our 
assumptions on the mobile, this probability takes a simple 
form and FTj., (t) can be computed easily. Similarly, the 
distribution of cell residing time for a handoff type j call, 
FTj,h (t), can be obtained. The quantities Pj,N and Pj,H can 
then be expressed using the relations in Eq. (33). 

The system can be formulated as a G(N)/G/g(O)  loss sta- 
tion, which has a product-form solution (see [8]). Using 
computational algorithms discussed in [8], one can obtain 
the equilibrium state probabilities pi, where the state i de- 
notes the number of occupied channels in the cell. The hand- 
off call blocking probability (same for both types) can then 
be obtained as Pbh = PP. Finally, the new call blocking 
probability for type j users can be computed in terms of the 
state probability as follows: 

g 

Pj,b = ~ ,  P,. (38) 
i=g--gj 

Using the above analysis, the guard channel thresholds, gj, 
can be set to achieve the desired tradeoff in call blocking 
probability for the various call types. In practice, the param- 
eters of the mobility model will change (slowly) with time. 
Therefore, the admission thresholds should be dynamically 
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Figure 2: Mobility state tracking example. 
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adjusted to reflect the current mobility parameters. We axe 
currently investigating this extension of the basic threshold- 
based admission control scheme discussed above. 

6. NUMERICAL EXAMPLE 
Figure 2 illustrates the mobility tracking algorithm for a 
wireless network covering a radius of several hundred me- 
ters. The attributes for the abstract mobility state space 
are location (subarea), direction and speed. The model con- 
sists of 500 active states, resulting in a 500 x 500 transition 
probability matrix A. We assume that  from each active 
state, a user can transit  to on the order of ten states in 
neighboring subareas. As a result, the matrix A is sparse. 
We have assumed that  the initial state probability distribu- 
tion is uniform and that  the state dwell time distribution 
is geometric. The state emission probability distribution is 
given as follows. The probability that  the observed state is 
m E S given that  the true state is m is set to 0.67. The 
probability that  the observed state is n E S, where n ¢ rn 
is uniform with a total probability of 0.33. 

In Figure 2, the observed state values are shown as open 
circles. The true state sequence is shown as a dashed line 
while the estimated state sequence is shown as a solid line. 
The observation interval T is 50 minutes. In this example, 
the average observation error is 42%, whereas the average 
estimation error is 8~o. The figure illustrates the ability 
of the algorithm to track the user's state in spite of the 
observation errors. 

7. CONCLUSION 
In this paper, we have introduced a new integrated model 
of mobility and traffic for the wireless network. The model 

• is very general and can capture user mobility, traffic and 
requirements. We have developed an algorithm for track- 
ing the parameters of a model based on the new parameter 
estimation algorithm for the general Hidden Semi-Markov 
Model reported in [24]. We have applied the model to re- 
source allocation at the wireless/wired network interface and 
admission control within the wireless network. 



We obtained an approximate expression for the computa- 
tional resource required to process user requests (e.g., In- 
ternet web pages) from the wireless network. Using the 
integrated model, we obtained an approximation for the 
bandwidth requirement at a base station to support real- 
time traffic streams from the mobile network. Finally, we 
demonstrated how the information obtained from tracking 
the mobile user's travel velocity could be used to improve the 
blocking performance of handoff calls via a threshold-based 
admission control scheme. 

We are currently gaining computational experience with the 
dynamic mobility tracking algorithm under various mobility 
and traffic scenarios. We plan to incorporate traffic mea- 
surements to refine estimating the bandwidth required for 
wireless traffic at the network interface. Finally, we plan to 
extend the velocity-based admission control described above 
to adjust the admission thresholds adaptively in accordance 
with state transition information obtained from the mobility 
model. 
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