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Abstract. In this paper, a non-preemptive prioritization scheme for access control in cellular networks is analyzed. Two kinds of users
are assumed to compete for the access to the limited number of frequency channels available in each cell: the high priority users represent
handoff requests, while the low priority users correspond to initial access requests originated within the same cell. Queueing of handoff
requests is also considered. The research for the best access policy is carried out by means of a Markov decision model which allows us
to study a very wide class of policies which includes some well known pure stationary policies, as well as randomized ones. The cutoff
priority policy, consisting in reserving a certain number of channels to the high priority stream of requests, is proved to be optimal within
this class while using an objective function in the form of a linear combination of some quality of service parameters, when no queueing
device is considered. Numerical results confirm the optimality of the cutoff priority policy when queueing of handoff requests is allowed.
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1. Introduction

A very important result achieved in the field of wireless com-
munication is the capability to support global roaming. The
user, no longer tied to a particular fixed station, has ubiq-
uitous access to a wide variety of services from voice com-
munication to data exchange and elaboration, while roaming
throughout the area covered by the wireless network. In or-
der to allow frequency reuse, the geographic area covered
by the network is divided into small zones called cells. The
base station of each cell in the network has to serve two
streams of requests, one coming from the cell itself (ini-
tial access requests), the other coming from neighbor cells
(hand-off calls). Once a call has started, the mobile station
(MS) might leave the initial cell, entering a neighbor one,
while remaining connected to the network. Mobiles crossing
the cell boundary cannot continue to use the same frequency
channel because different channels are assigned to adjacent
cells to avoid radio interferences in the shared transmission
medium. Intercellular handoff is the procedure by which the
user, while releasing the old frequency channel belonging
to the initial cell, is provided with a new one by the base
station of the destination cell. This procedure is fundamen-
tal to avoid any interruption of the initiated connections. If
the destination cell does not have enough channels to sup-
port the handoff, the call is blocked. It is important to limit
the probability of forced termination, because from a user’s
perspective, the forced termination of an ongoing call is less
desirable than getting a busy signal due to the block of an
initial access attempt.

The system can reduce the chances of unsuccessful hand-
off by assigning higher priority to handoff requests than that
assigned to initial access requests. These handoff prioritiz-
ing schemes provide improved performance at the expense
of a reduction in the total admitted traffic. The purpose of
this paper is to propose a wide class of policies which in-

cludes some commonly studied as well as new policies. An
original Markov decision model, which allows queueing of
handoff requests, is proposed and the formulas for the most
important Quality-of-Service parameters are also given. By
means of this decision model, we search for an access con-
trol policy that gives a solution to the tradeoff between the
high priority service of handoff requests and the risk of com-
promising the whole traffic because of an insufficient weight
to initial attempts of connections. Recently various call ad-
mission control schemes have been proposed. In many of
the proposed schemes, the control policy is strictly based on
the number of free channels available in the cell.

• Under the cutoff priority policy (CPP) [1–5], priority to
handoff calls is ensured by reserving a certain number
of channels, also known as guard channels. According
to CPP, an initial attempt request is accepted only if the
total number of calls in progress, regardless of their type,
is below a cutoff value and a free channel is available.

• Under the threshold priority policy (TPP) [1,6], like with
CPP, a handoff call is accepted as long as a channel is
free. However, under TPP, an initial attempt is accepted
only if the number of ongoing calls at the initial access is
below a threshold value and a free channel is available.
The concept of TPP was used earlier for congestion con-
trol and store-and-forward networks.

• Under the hysteresis policy (HysP) [7,8], a handoff call
is accepted as a channel is free, but the decision to accept
or not an initial access request is taken on the basis of the
number of free channels following a cycle of hysteresis
(more details will be given in section 2.1).

TPP, CPP and HysP, can be studied through the decision
model introduced in this paper. An optimization analysis,
using an objective function in the form of a linear combina-
tion of the loss probabilities of the two streams of arriving
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requests, is carried out in two steps. Linear programming
methods permit to discard not stationary and randomized
policies from the search for the optimum. The real optimiza-
tion phase is instead realized through dynamic programming
methods. The main contribution of this paper is the ana-
lytical proof of the optimality of CPP when the objective
function gives higher priority to the handoff stream when
queueing of requests is not allowed. Simulation results con-
firm the good behavior of CPP with respect to other poli-
cies in a more general condition, when a queueing device is
used. This result has an immediate practical application be-
cause the optimal cutoff value can be easily computed once
known few statistic parameters defining the traffic of re-
quests. These parameters are used to formulate the analytical
models that can be solved by means of very commonly used
methods of operations research. The originality of the results
comes from the observation that in literature other compar-
isons among access policies are either based on simulations
[1,7] or, when analytical, they are limited to few policies [3].

The paper is organized as follows. In section 2 the
continuous-time Markov decision model is described. In
section 3 this model is uniformized and discretized, in or-
der to apply methods and results of the theory of discrete-
time processes, and it is proved the optimality of CPP when
queueing of requests is not allowed. In section 4 the formu-
las of the most important quality of service parameters are
illustrated. In section 5 some numerical results that confirm
the analytical results achieved in the previous sections are
introduced. Section 6 concludes the paper with some final
remarks.

2. Analytical model

Our traffic model consists of a Markov decision process in
which a single cell is modeled as a service center with C

servers corresponding to the available frequency channels.
Arriving users, representing requests of connection to the
base station, belong to two priority classes: high priority
for handoff calls and low priority for initial access requests.
Arrivals are assumed to be generated according to Poisson
processes with rates λH and λL for high and low priority
users, respectively. Service requirements for both streams
are identical and exponentially distributed. The assumption
of exponentially distributed holding times has been justi-
fied by Guerin [2] and is required for the tractability of the
model. Blocked initial requests are lost, while a blocked
handoff call can wait in the handoff queue for a channel of
the new cell by continuing to use a channel of the previ-
ous cell. The queueing scheme is briefly described as fol-
lows. No initial access request is granted a channel before
the handoff requests in the queue are served. When a MS
reaches the overlapping region between two adjacent cells,
also called handoff region (HR), and no free channels are
available in the destination cell, the call remains queued un-
til either an available channel in the new cell is found, or the
MS abandons the HR before a channel becomes available,

thus causing the forced termination of the handoff call and
its departure from the queue. In the case of high demand
for handoff, handoff calls will be denied queueing due to the
limited size of the handoff queue. The queueing device has a
finite number of places MH; an upper bound to this number
is the total number of channels available in the cells adjacent
to the one we are considering.

In this model a call may disappear from the control of the
base station in different ways:

(1) the conversation is completed (it may happen even with
a queued handoff request, which thus abandons the
queue);

(2) the MS goes out of cell;

(3) a waiting handoff call is terminated because it is not
served before passing the HR, thus it abandons the
queue.

The distribution of these events is supposed to be expo-
nential with parameters µ1, µ2 and µ3, respectively.

The service requirements (channel holding time) for
handoff and initial access requests could be different, but
an average figure used in the model should be sufficiently
accurate.

Figure 1 shows our model configuration.
The switches represent the two actions (accept or refuse)

that can be chosen by the access control policy when a call
arrives. A refused call is definitively lost, regardless of its
priority class.

The evolution of a call as a consequence of the control
policy and possible movements of the MS is represented by
the state model of figure 2.

The double rounded states are the decision steps during
the lifetime of a call. A call generated within a cell can be
accepted or not, according to a certain control policy. If ac-
cepted, it can be completed before the MS goes out of the
cell, otherwise the handoff procedure is initiated. The base
station of the destination cell may decide to refuse the hand-
off request, to provide it with a new channel, if available, or
to put it into the handoff queue while waiting for a new avail-
able channel. While in the handoff queue, the call continues
to use a channel of the old cell. During the time the call
spends in the queue, the user may exit from the HR before
obtaining a new channel, terminating the handoff procedure
unsuccessfully, or may also decide to conclude the call.

2.1. Markov models of access control policies

In this section, the algorithms of CPP, HysP and TPP are de-
scribed and a Markov model is formulated to describe the be-
havior of the system under the application of these policies.

2.1.1. Cutoff priority policy
CPP reserves a fixed number of channels to the handoff
stream. When the number of busy channels is less than a
fixed cutoff value T < C, the system is considered in nor-
mal load condition and all streams of requests are served.
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Figure 1. System configuration.

Figure 2. Call state model.

Figure 3. Load conditions (CPP).

When the workload exceeds the cutoff, the system enters
the overload condition and begins to serve handoff requests
only (figure 3).

The Markov chain of figure 4 represents the system under
the application of CPP with cutoff value T . The states of the
process are defined through an index i which corresponds to
the sum of the number of busy servers Sb with the number
of queued handoff requests. Notice that if i < C then i =
Sb, otherwise, if i � C, then i = C + qH where qH is the
occupancy level of the handoff queue. If the process is in
the state k an arrival brings the system to state (k + 1) with
rate (λH + λL) for k < T , and λH for k � T because initial
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Figure 4. Transition diagram of CPP.

Figure 5. Load condition of HysP.

accesses are lost. The death rate in state k is k(µ1 + µ2) for
0 � k � C and C(µ1 +µ2)+ (k −C)(µ1 +µ3) for k > C.
The term (k − C)(µ1 + µ3) comes from the rate that each
mobile waiting in the handoff area either completes the call
at rate µ1 or goes out of the HR with rate µ3.

2.1.2. Hysteresis policy
HysP takes into account the total occupancy level of the ser-
vice center to determine the access control decision. Under
HysP, if all channels are free, the load condition is consid-
ered normal and the system serves both streams of requests.
The system remains in this condition until the number of
busy channels reaches the threshold M ′. When the system
enters the overload condition, it accepts only requests which
belong to the high priority stream. Once reached the thresh-
old M ′, the system remains in overload condition until its
occupancy level falls to another defined threshold value M ,
where 0 < M < M ′ � C (figure 5).

The Markovian model of HysP is shown in figure 6. The
index associated to each state has the same meaning of the
state index in the CPP model. However, now it is duplicated
for those occupancy levels in which the system may behave
differently according to its past history in correspondence to
the same occupancy level.

2.1.3. Threshold priority policy
Under TPP a handoff call is accepted as long as a channel
is free or a waiting place is available in the queueing device.
An initial access is accepted if the number of ongoing calls
at the initial access is below a threshold value K � C and
at least one channel is free. In the TPP Markov model of
figure 7, each state is represented through a couple of in-
dexes (i, t), with t � i, where the first index has the same
meaning of the state index of the CPP and HysP models, and
the second index t corresponds to the number of ongoing
calls at their initial access. If the system is in the state (i, t),
with t < K , the acceptance of a new request may bring the
system to two different states with occupancy level (i + 1).
If the accepted call is an initial access, the system goes to

(i + 1, t + 1) with rate λL, while it goes to (i + 1, t) with
rate λH, if the arrival is a handoff request. If the system is
in the state (i, t) and an ongoing call at its initial access dis-
appears from the base station control, because either the call
is completed or the MS goes out of cell, the system goes to
the state (i − 1, t − 1) with rate t (µ1 +µ2) regardless of the
value of i. If the occupancy level is i < C and a handoff call
disappears, because either the call is completed or the MS
goes out of cell, the system goes to the state (i − 1, t) with
rate (i − t)(µ1 + µ2), while if i � C the handoff call dis-
appears from the base station control, bringing the system to
state (i−1, t) with rate (C− t)(µ1+µ2)+(i−C)(µ1+µ3).
The contribution (C− t)(µ1 +µ2) denotes the rate that each
mobile with an ongoing connection either completes the call
with rate µ1 or abandons the cell coverage area, with rate µ2.
The term (i − C)(µ1 + µ3) comes from the rate that each
mobile waiting in HR either completes the call with rate µ1
or expires the residence time at rate µ3.

2.2. A general decision model

The algorithms described in section 2.1 can be seen as par-
ticular instances of the general decision model we are intro-
ducing. In this model the definitions of the traffic parame-
ters λH, λL, µ1, µ2 and µ3 are the same used for the models
of CPP, HysP and TPP. We consider a base station with C

available channels and a queueing device for handoff calls
with a finite number MH of waiting places. The memoryless
property of all probability distributions in a Markov process
makes impossible to represent policies for which the behav-
ior of the system strictly depends on its past history, unless
we use several different states to represent the same occu-
pancy level. Each state s, belonging to the finite state space
E of the Markov decision process, can be defined through
a couple of indexes (i, t), where i represents the number of
busy servers, while t is a state tag, with t ∈ {1, 2, . . . , n} in-
troduced to allow different decisions in correspondence with
the same occupancy level i. Let us consider the following
set of possible actions that can be undertaken at each state of
the process:

• a1: accept requests belonging to both streams,

• a2: deny access to initial attempts,

• a3: deny access to handoff calls,

• a4: deny access to both streams of requests.

We define the function n(s) as follows. Given s ∈ E, n(s)
is the occupancy level characterizing the state s. Thus, n(s)
is the sum of the number of busy channels and the number
of busy places in the queueing device. If s = (i, t), then
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Figure 6. Transition diagram of HysP.

Figure 7. Transition diagram of TPP.

n(s) = i. If C � n(s) < C + MH, the set of feasible actions
reduces to a2, a4 because we have no queueing device for
initial access requests and to a4 if n(s) = C + MH.

Consider now a partition of the set E into classes Ei with
the following properties: E = ⋃C

i=0 Ei , where Ei = {s ∈ E,
n(s) = i}.

From any state s ∈ Ei , a new request acceptance leads
the system to any state q of the class Ei+1, denoted by
Succ(s). The choice of the next state among the members
of this class follows a certain probability distribution π+

sq,
where q ∈ Succ(s), with

∑
q∈Succ(s) π

+
sq = 1.

The transition rate from s to any state q of the class
Succ(s) is λ(a)π+

sq, where

λ(a) =


λH + λL if a = a1,
λH if a = a2,
λH if a = a3,
0 if a = a4.

(1)

On the other hand, from any state s ∈ Ei , the termination
of a service, either due to call completion or to the MS move-
ments outside the cell, brings the system to any state k of the
class Ei−1 denoted by Prec(s) with rate n(s)(µ1 +µ2)π

−
sk, if

n(s) � C and {n(s)µ1+Cµ2+[n(s)−C]µ3}π−
sk if n(s) > C,

where
∑

k∈Prec(s) π
−
sk = 1.

The transition diagram of the process is represented in
figure 8.

The transition probabilities matrix is decision dependent.
It can be written as follows:

pa
sk =



λ(a)π+
sk

λ(a) + n(s)(µ1 + µ2)

if k ∈ Succ(s) and 0 � n(s) � C,

λ(a)π+
sk

λ(a) + n(s)µ1 + Cµ2 + [n(s) − C]µ3

if k ∈ Succ(s) and n(s) > C,

n(s)(µ1 + µ2)π
−
sk

λ(a) + n(s)(µ1 + µ2)

if k ∈ Prec(s) and 0 � n(s) � C,

{n(s)µ1 + Cµ2 + [n(s) − C]µ3}π−
sk

λ(a) + n(s)µ1 + Cµ2 + [n(s) − C]µ3

if k ∈ Prec(s) and n(s) > C,

0 otherwise.

We now show how to set the parameters π+
sq, π−

sq and the
stationary state-decision associations to turn our general de-
cision model into the models of figures 4, 6 and 7.
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Figure 8. Possible transitions from state (i, k).

CPP can be obtained by selecting π+
sq and π−

sq with s =
(is, js) and k = (ik, jk), in the following way: π+

sq =
π−

sq = 1 if js = jk = fixed_tag for any fixed_tag, else π+
sq =

π−
sq = 0, and taking the decision a1 for all the state s with is

lower than the cutoff value T , the decision a2 if T � is < C

and the decision a4 if is = C. HysP can be obtained by se-
lecting two different tags tag1 and tag2; π+

sk = π−
sk = 1 if

js = jk = tag1 and is , lower than the threshold M ′, π+
sk =

π−
sk = 1 if js = jk = tag2 and is higher than the thresh-

old M , π+
sk = 1 if s = (M ′ − 1, tag1) and k = (M ′, tag2),

π−
sk = 1 if s = (M, tag2) and k = (M − 1, tag1) and else

π+
sk = π−

sk = 0, and taking the decision a1 for all the states s
with js = tag1, the decision a2 for the states with js = tag2
and is < C and the decision a4 in the state (C, tag2) as
shown in figure 6.

The TPP model with threshold K can be obtained as a
particular instance of the general model by allowing the state
tag t to represent the number of accepted initial accesses
with an ongoing call. If s = (i, t) with t � i � C,

π+
sk =



λL

λH + λL
if k = (i + 1, t + 1) and t < K ,

λH

λH + λL
if k = (i + 1, t) and t < K ,

1 if k = (i + 1, t) and t � K ,

0 otherwise,

(2)

and

π−
sk =


t

i
if k = (i − 1, t − 1),

(i − t)

i
if k = (i − 1, t),

0 otherwise,

(3)

while if C � i � C + MH,

π+
sk =

{
1 if k = (i + 1, t) and i < C + MH,
0 otherwise,

(4)

and

π−
sk =


t (µ1 + µ2)

iµ1 + Cµ2 + (i − C)µ3
if condition_A,

1 − t (µ1 + µ2)

iµ1 + Cµ2 + (i − C)µ3
if condition_B,

0 otherwise,
(5)

where condition_A means that

k = (i − 1, t − 1),

and condition_B means that

k = (i − 1, t − 1) and i > t.

Under TPP the system takes the decision a1 in state s = (i, t)

if i < C and t < K , the decision a2 in any other state except
if i = C+MH where the system cannot choose anything but
the decision a4. It has to be noted that the generality of the
defined model consists not only in the shape of its transition
diagram, but also in its including both pure stationary and
not stationary policies of the randomized kind. Examples
of randomized policies that can be represented through this
model can be obtained from the models of CPP and of HysP
by allowing the system to take not deterministic decisions in
correspondence to particular states.

In [3] a policy called Limited Fractional Guard Channel
(LFG) is proved to be optimal among a restricted class of
policies for the problem of minimizing the blocking proba-
bility of the initial attempt requests, with a strong constraint
on the blocking probability of the handoff stream. LFG is a
randomized modification of CPP, and consists in accepting
all requests if the occupancy level is lower than a given cut-
off value T , and in refusing initial attempts if the occupancy
level is greater than T . However, if the occupancy level is
exactly T , the decision is not deterministic and the system
can accept requests coming from both streams with proba-
bility p, and accept only handoff requests with probability
(1 − p). A randomized version of HysP can also be ob-
tained by allowing a not deterministic decision in the states
(M ′ − 1, tag1) and in (M, tag2).

3. Optimization within the general class

The optimization procedure can be summed up as follows.

• The continuous-time process introduced in the previous
section is uniformized and discretized in order to apply
discrete-time optimization methods. The objective func-
tion is introduced with direct application to this discrete-
time model.

Then the analysis of the discretized model follows.

• We analytically prove that it exists an optimal determin-
istic stationary policy, i.e. not randomized, for which the
decision chosen in correspondence to each state is always
the same, independently of the particular instant of time.
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• Moreover, we prove the existence of an optimal policy
for which the optimal decision does not depend on the
state tag, but on its occupancy level only.

• The optimality of CPP is proved through the analysis of
the structural properties of the optimal cost function.

3.1. Discretization technique

From now on, we will refer to Xn as to the state of the
process at the moment of the nth transition, and with un(Xn)

to the particular decision chosen in the set {a1, a2, a3, a4}.
The Markov chain {X(t)} related to the process de-

scribed above is continuous-time. The dwell time of the
process in each state is exponentially distributed with den-
sity φ(s, a)eφ(s,a)t . The parameter φ(s, a) is the total out-
going rate from a state in which the decision a has been
chosen, and depends both on the decision a and on the
state s. The set of rates which characterizes the process is
bounded by the maximum outgoing rate which is less than
C(µ1 +µ2)+MH(µ1 +µ3)+λH +λN. Hence, we can con-
clude that the process is uniformizable. Adding dummy tran-
sitions from states to themselves, a uniform Poisson process
can be constructed which governs the epoch at which tran-
sitions take place. The uniformization technique transforms
the original continuous-time Markov chain with not identical
transition times into an equivalent continuous-time Markov
process in which the transition epochs are generated by a
Poisson process at uniform rate. The transitions from state
to state are described by a (discrete time) Markov chain that
allows for fictitious transitions from a state to itself. The uni-
formized Markov process {X̂(t)} is probabilistically identi-
cal to the not uniform {X(t)} [9,10,15].

The theory of discrete Markov processes can be used
to analyze the discrete-time embedded Markov chain of
the uniformized model. Let us assume uniform rate � =
C(µ1 + µ2) + MH(µ1 + µ3) + λH + λH.

The transition probabilities of the uniformized process
are:

p̂a
sk =



λ(a)π+
sk

�
if c1,

n(s)(µ1 + µ2)π
−
sk

�
if c2,

{n(s)µ1 + Cµ2 + [n(s) − C]µ3}π−
sk

�
if c3,

λ − [n(s)(µ1 + µ2)] + λ(a)]
�

if c4,

λ − [n(s)µ1 + Cµ2 + (n(s) − C)µ3 + λ(a)]
�

if c5,

0 if c6,
(6)

where

c1 : k ∈ Succ(s),
c2 : k ∈ Prec(s) and 0 � n(s) � C,

c3 : k ∈ Prec(s) and n(s) > C,

c4 : k = n(s) and n(s) � C,

c5 : k = n(s) and n(s) > C, and
c6 : otherwise.

In order to give higher priority to the handoff stream,
rather than to the initial access stream, we introduce a cost
function which assigns different penalties to the loss of the
two kinds of requests. The system is forced to pay a high
penalty H if a handoff call is refused or if it is firstly queued
but no channel is assigned before the MS exits from the HR.
If service is denied to an initial attempt of access, the sys-
tem pays a lower penalty L < H . The penalty is not paid
all the times the system enters a state in which the chosen
decision is to refuse a request. The penalty cost must be
paid only in case of actual refusal, that is when the system
decides to refuse a certain call which is actually already ar-
rived, or when a MS, with a queued ongoing call, exits from
the HR before being served. In the uniformized process, all
the penalties must be weighted with the probabilities that the
event which causes a penalty actually occurs. We can define
the cost function in the following way:

r̂(s, a) =



0 if a = a1,
LλL + H max{0, [n(s − C)]µ3}

�
if a = a2,

HλH

�
if a = a3,

LλL + HλH + H max{0, [n(s) − C]µ3}
�

if a = a4,
(7)

where the decisions a1 and a3 are not feasible if n(s) � C.
The objective is to determine an optimal policy for ad-

mitting customers so as to minimize the expected long run
average cost. Using the previous notation and denoting with
N(T ) the number of transitions being completed at time T ,
the long run average cost function can be written as

lim
T →∞

E{∑N(T )
n=0 r[Xn, un(Xn) | X0 = i]}

T
. (8)

We refer to [11] for the proof that the optimization proce-
dures can be applied directly to the discrete-time Markov
process described by the embedded Markov chain of the uni-
formized one. The optimal policy is the same for the initial,
the uniformized and the discretized process, while the opti-
mal values of the objective functions only differ in a constant
factor.

3.2. Linear programming formulation

The most important results of the theory of discrete-time
Markov decision processes can be applied to the discretized
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model formulated in section 3.1. In particular, observing the
shape of the transition diagram of figure 8, it can be affirmed,
without loss of generality, that the decision model can be re-
stricted to include the only processes with no transient states
and with only one communicating class, that is to the only
unichain processes. Refer to S as to the finite set of all fea-
sible couples of the kind (state, decision). The unichain as-
sumption, together with the finiteness of S implies the ex-
istence of a unique stationary state probability distribution
which is independent of the initial state of the process. The
existence of a stationary optimal policy allows us to con-
clude that an optimal solution can be expressed through a
vector D∗ whose generic component D∗

sa represents the sta-
tionary probability that, in correspondence to the state s, the
system takes the decision a. We can write

Dsa = P {an = a | sn = s},
Dsa � 0 and∑
a∈As

Dsa = 1, s ∈ E,

where As is the set of all actions that can be taken in state s.
The expected value of the cost function can now be ex-
pressed in the form

z =
∑

(s,a)∈S

Ds,apŝr(s, a), (9)

where ps denotes the stationary probability that the system
is in the state s, and the product Dsaps represents the joined
probability for the system to be in state s and contempora-
neously to take the decision a. Substituting the expression
of r̂(s, a) given by equation (7) into the equation (9) the
following expression for the objective function can be ob-
tained:

z = H
λH

�

∑
[(s,a)∈S]∧(a=a4)

p(s, a)

+ L
λL

�

∑
[(s,a)∈S]∧(a=a2|a=a4)

p(s, a)

+ H
∑

[(s,a)∈S]∧n(s)>C

[
n(s) − C

]µ3

�
p(s, a). (10)

Equation (10) shows how the objective function can be
expressed in the form of a linear combination of some
Quality-of-Service (QoS) parameters, the two blocking
probabilities of the handoff and initial access streams, and
the probability to see a handoff call escaping from the queue-
ing device. The different weights of this linear combination
confirm the different values of priority which has been given
to the two request streams. In section 4 a more detailed pre-
sentation of these QoS parameters can be found. Further-
more, analyzing the topology of our transition diagram, we

can also notice the total absence of transient states that, to-
gether with the unichain assumption, gives a particular shape
to the set of constraints of the linear programming problem
related to our optimization procedure.

Denoting xsa � Dsaλs, sa ∈ S, and recalling that Dsa =
xsa/ps = xsa/

∑
j∈As

xja , a ∈ As, the linear programming
problem becomes:

maximize∑
(s,a)∈S

r(s, a)xs,a

constrained to
xsa � 0, (s, a) ∈ S,∑
(s)a∈S

xsa = 1,∑
a∈Aj

xja =
∑

(s)a∈S

pa
(s)jxsa, j ∈ E.

(11)

Proposition 1. The linear programming problem (11) has
an optimal deterministic solution.

Proof. Thanks to the absence of transient states we con-
clude that the optimal solution x0 has the following prop-
erty:

∑
a∈As

x0
sa > 0 ∀s ∈ E. Thence x0 has at least

|E| strictly positive variables. Summing up all their related
equations deriving from the set of positiveness constraints,
we again find the equation. We conclude the redundancy of
one among the |E|+ 1 remaining constraints. The operation
research applied to linear programming problems proves the
existence of an optimal base solution containing a number of
positive variables at most equal to the number of nonredun-
dant constraints. Without loss of generality we can suppose
that x0 has this property. So we conclude that x0 contains at
most |E| positive variables. Having already stated that the
number of positive variables is at least |E| and at most |E|,
and that

∑
a∈As

x0
sa > 0 ∀s ∈ E, we conclude that for all

s ∈ E there will be exactly a decision a for which x0
sa > 0.

This leads to conclude a very important result which is the
existence of a pure stationary optimal policy. This result
gives us the possibility to further restrict our consideration
to policies for which Dsa ∈ {0, 1}. �

3.3. Optimization through dynamic programming methods

The proof that CPP is optimal among all the policies de-
scribed by the general model, when queueing of requests is
not allowed, can be summed up as follows:

• The existence of an optimal policy for which the optimal
decision does not depend on the state tag, but on its oc-
cupancy level only, is proved by means of the dynamic
programming equation.

• The optimality of CPP is proved through the analysis of
structural properties of the optimal cost function.
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A first step towards the optimization of the average cost
for the infinite horizon problem is the evaluation of the
N-step optimal total discounted cost V α

N(s). The discrete-
time discount factor a < 1, which corresponds to the
continuous-time discount coefficient η > 0, related to the
not uniformized process, is

α = �

η + �
. (12)

The optimal discounted cost function can be calculated
with the following dynamic programming equation [12,14]:

V α
K(s) = min

a∈As

{̂
r(s, a) +

∑
z∈E

αp̂a
szV

α
K−1(z)

}
. (13)

V α
K(s) is the minimum expected discounted cost that can be

paid in K periods if the system starts with n(s) customers,
and a discount factor of α. Substituting the known expres-
sion of the cost function (7), of the discount factor (12) and
of the transition probabilities (6), the following equation is
obtained for the total discounted cost.

If n(s) < C,

V α
K(s) = 1

� + η

× min

{ ∑
l∈Prec(s)

n(s)(µ1 + µ2)π
−
sl V

α
K−1(l)

+
∑

j∈Succ(s)

(λL + λH)π+
sj V

α
K−1(j)

+[(
C + MH − n(s)

)
µ1

+ (
C − n(s)

)
µ2 + MHµ3

]
V α

k−1(s);
λLL +

∑
l∈Prec(s)

n(s)(µ1 + µ2)π
−
sl V

α
K−1(l)

+
∑

j∈Succ(s)

λHπ+
sj V

α
K−1(j)

+ [(
C + MH − n(s)

)
µ1 + (

C − n(s)
)
µ2

+ MHµ3 + λL
]
V α

K−1(s);
λHH +

∑
l∈Prec(s)

n(s)(µ1 + µ2)π
−
sl V

α
K−1(l)

+
∑

j∈Succ(s)

λLπ+
sj V

α
K−1(j)

+ [(
C + MH − n(s)

)
µ1

+ (
C − n(s)

)
µ2 + MHµ3 + λH

]
V α

K1
(s);

λHH + λLL

+
∑

l∈Prec(s)

n(s)(µ1 + µ2)π
−
sl V

α
K−1(l)

+ [(
C + MH − n(s)

)
µ1 + (

C − n(s)
)
µ2

+ MHµ3 + λH + λL
]
V α

K−1(s)
}
. (14)

If C � n(s) � C + MH,

V α
K(s) = 1

� + η

× min

{
λLL + (

n(s) − C
)
µ3H

+
∑

l∈Prec(s)

[
n(s)µ1 + Cµ2

+ (
n(s) − C

)
µ3

]
π−

sl V
α
K−1(l)

+
∑

j∈Succ(s)

λHπ+
sj V

α
K−1(j)

+[(
C + MH − n(s)

)
µ1

+ (
MH − n(s)

)
µ3 + λL

]
V α

K−1(s);
λLL + λHH + (

n(s) − C
)
µ3H

+
∑

l∈Prec(s)

[
n(s)µ1 + Cµ2

+ (
n(s) − C

)
µ3

]
π−

sl V
α
K−1(l)

+ [(
C + MH − n(s)

)
µ1 + (

MH − n(s)
)
µ3

+ λL + λH
]
V α

K−1(s)
}
, (15)

where we have to consider

V α
K(s) =

{
0 if s ∈ ⋃

n(z)=0 Prec(z) ∀K ,

∞ if s ∈ ⋃
n(z)=C+MH

Succ(z) ∀K ,

and V α
0 (s) = 0.

Proposition 2. ∀s and z, such that n(s) = n(z), V α
K(s) =

V α
K(z) ∀K ∈ N .

Proof. By induction on the number of steps K (see appen-
dix for details). �

Proposition 2 proves that each time the system has to
choose one among the feasible decisions, the choice does
not depend on the particular state in which the system is, but
on its occupancy level only.

For this reason the function W(·, ·) can be defined on the
domain {0, 1, . . . , C + MH] × N , with the following prop-
erty: Wα(n(s),K) = V α

K(s) = V α
K(z). Using the now stated

property, the expression of Wα(i,K) can be written as fol-
lows.

If i < C,

Wα(i,K) = 1

� + η

×
{[

(C + MH − i)µ1

+ (C − i)µ2 + MHµ3
]
Wα(i,K − 1)

+ i(µ1 + µ2)W
α(i − 1,K − 1) + λLW

α(i,K − 1)

+ λL min
{
L,Wα(i + 1,K − 1) − Wα(i,K − 1)

}
+ λHWα(i,K − 1)

+ λH min
{
H,Wα(i + 1,K − 1) − Wα(i,K − 1)

}}
,

(16)
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while if C � i � C + MH,

Wα(i,K) = 1

� + η

×
{[

(C + MH − i)µ1 + (MH − i)µ3
]
Wα(i,K − 1)

+ [
iµ1 + Cµ2 + (i − C)µ3

]
Wα(i − 1,K − 1)

+ λL
[
L + Wα(i,K − 1)

]
+ (i − C)µ3H + λHWα(i,K − 1)

+ λH min
{
H,Wα(i + 1,K − 1) − Wα(i,K − 1)

}}
.

(17)

Equations (16) and (17) show that the choice whether to
accept or not a given request depends on the value of the
increment of the cost function:

,Wα
k (i) = Wα(i + 1,K) − Wα(i,K). (18)

Proposition 3. Wα(i,K) is not decreasing in i, thus,
0 � ,Wα

K(i).

Proof. By induction on the number of steps K (see appen-
dix for details). �

Proposition 4. If MH = 0, Wα(i,K) is also concave in the
number of busy servers i.

Proof. By induction on the number of steps K (see appen-
dix for details). �

Since H and L are positive and Wα(i,K) is bounded
above the geometric series

1

�

K∑
i=0

αi max{H,L}, (19)

the sequence {Wα(i,K)}∞K=0 increases monotonically to a
finite limiting value for each i and α. Hence, the limit
limK→∞ Wα(i,K) exists. We let

Wα(i) = lim
K→∞ Wα(i,K).

From [11], it can be verified that Wα(i) is the minimum infi-
nite horizon discounted cost.

The structural properties of monotony and concavity of
Wα(i,K) are inherited by Wα(i) and imply the following
proposition.

Proposition 5. CPP is optimal under the total discounted
cost criterion, for the infinite horizon problem, when MH = 0.

Proof. The optimal policy chooses the best action to take
in each state with the following rule:

• High priority customers are accepted only if ,Wα(i) =
Wα(i + 1) − Wα(i) � H .

• Low priority customers are accepted only if ,Wα(i) =
Wα(i + 1) − Wα(i) � L.

Since Wα(i) is monotone and concave, the term ,Wα(i)

is not decreasing, thence we can find integer values iL and
iH such that

iL = arg min
{
,Wα(i) > L

}
and

iH = arg min
{
,Wα(i) >

}
.

Therefore, the optimal policy regarding the decision to
accept or refuse to serve requests of the initial access stream
is

• initial access admitted for i < iL,

• initial access denied for i � iL (that is the already de-
scribed CPP),

while since iH � iL the decision of refusing the high priority
calls is obviously discarded.

Theorems of equivalence [11] between a continuous-time
Markov decision process and its discretization allows us to
conclude that CPP based on the parameter iL is optimal also
for the initial continuous-time problem with discount fac-
tor η. �

The result for the average cost criterion is obtained by
referring to the following Derman’s theorem [13].

Theorem 6 (Derman). If a policy P∗ is optimal among the
class of policies - for all discounted problems with discount
factor α close to 1, thenP∗ is also optimal among all policies
in the class - under the average reward criterion.

Thus, the following proposition can be formulated:

Proposition 7. CPP is optimal under the average cost crite-
rion, for the infinite horizon problem, when MH = 0.

One can also establish, by induction on the horizon
length, the following result for the optimal cutoff value T

[13].

Proposition 8. T is monotonically increasing in both L and
λL, when MH = 0.

The proof that, if MH = 0, the optimal policy is CPP,
dramatically decreases the feasible region of the optimiza-
tion problem which is reduced to the only search for the op-
timal cutoff value T . This allows a relevant reduction of the
number of iterations for the solution with the most common
algorithms like the simplex or the policy improvement.

4. QoS parameters

From the point of view of the customer, it may be interesting
to calculate some QoS parameters such as the probability
that a new call attempt is blocked or the probability that a
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call, once accepted, is terminated before completion. We
evaluate these probabilities and other QoS parameters for an
arbitrary call in the network, on the basis of the traffic model
described in section 2, under the application of CPP. If v

denotes the average speed of a mobile, and D is the diameter
of the cell, the mean time that the mobile spends in the cell
is 1/µ2 = D/v, while if L denotes the diameter of the HR,
the mean residence time is given by 1/µ3 = L/v.

The steady state probability P(k) of the Markov process
under CPP with cutoff value T , can be derived by the solu-
tion of the linear programming problem formulated in sec-
tion 3.2, or may be simply calculated through the following
balance equations:

k(µ1 + µ2)P (k) = (λL + λH)P (k − 1)
if 1 � k � T ,

k(µ1 + µ2)P (k) = λHP(k − 1)
if T < k � C,[

C(µ1 + µ2) + (k − C)(µ1 + µ3)
]
P(k) = λHP(k − 1)

if C < k � C + MH,

C+MH∑
k=0

P(k) = 1.

The solution is

P(k) =



(
λL + λH

µ1 + µ2

)k 1

k!P(0) if 1 � k � T ,

λk−T
H (λH + λL)

T

(µ1 + µ2)kk! P(0) if T < k � C,

λk−T
H (λH + λL)

T P (0)

(µ1 + µ2)C
∏T

i=1[C(µ1 + µ2) + i(µ1 + µ3)]C!
if C < k � C + MH,

where P(0) is determined from the normalization condition∑C+MH
k=0 P(k) = 1.
Once calculated the steady state probabilities, the most

important QoS parameters can be computed. For example,
the probability BL that an initial access is blocked is

BL =
C+MH∑
i=T

P (i), (20)

while the probability BH that a handoff call is blocked is
equal to the probability that no place is available in the
queueing device, that is, BH −P(C+MH). The mean queue
length is

LH =
C+MH∑
i=C+1

(i − C)P(i). (21)

We next find the conditioned probability BH out that a
queued handoff call escapes from the queue before being
served. It is given by the fraction of the handoff calls that
cannot get channels while waiting in the handoff area:

BH out = µ3
LH

(1 − BH)λH
, (22)

while the term EH = µ3LH is the unconditioned probability
to see a handoff call escaping from the system before ob-
taining a channel. The terms BL, BH and EH appear in lin-
ear combination in the formulation of the objective function
for the average cost optimization problem, given by equa-
tion (10).

5. Numerical results

In the previous paragraphs the optimality of CPP is proved
when the system has no queueing capability. CPP represents
a tradeoff solution between the optimization of the loss prob-
abilities of the two streams of arriving requests. Another
policy may have a better behavior towards the single class
of customers, but at the expense of the quality of service of
the requests of the other class. Numerical results confirm the
optimality of CPP even when handoff queueing is allowed.

In figures 9 and 10, the behavior of CPP with variable
cutoff value T is compared with that of HysP, with M ′ = C

and M = T , for a system with C = 10 available channels,
λL = 50, λH = 75, µ1 = 1, µ2 = 2, µ3 = 10 and MH = 5.

The variation of the loss probability with the number of
reserved channels (C − T ) is shown.

Figure 9. Handoff loss probability.

Figure 10. Initial access loss probability.
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Figure 11. Average cost function.

Figure 12. Variation of the number of reserved channels with total through-
put.

For the above described system, the average cost function
with H = 3000 and L = 1800 is optimal under the applica-
tion of CPP with cutoff value T = 7, that is with 3 reserved
channels. It can be seen that, increasing the number of re-
served channels, the advantage of a lower loss probability of
the high priority stream corresponds to the disadvantage of
a greater loss probability for the low priority stream.

If the cutoff value is T = 7, a tradeoff solution is
achieved.

Figure 11 shows the trend of the average cost function
with the number of reserved channels under HysP and CPP.
It can be seen that under HysP, the average cost is higher
than with the application of CPP, even if the choice of the
cutoff value is not optimal.

Figure 12 shows how the optimal cutoff value decreases
or the number of reserved channels increases with the total
arriving throughput λ = λL + λH for a system with C = 10
available channels, γ = λH/λ = 0.4, µ1 = 4, µ2 = 2,
µ3 = 10 and MH = 5. This means that the system be-
comes more selective in accepting potentially unprofitable
customers, if the arrival rate of requests grows.

The same behavior of the number of reserved channels is
obtained if the number of handoff calls grows with respect to
the number of initial attempts of connection (figure 13). In

Figure 13. Variation of the number of reserved channels with the handoff
fraction γ .

Figure 14. Variation of the cutoff value with the penalty H .

figure 13 the trend of the optimal number of reserved chan-
nels in function of the handoff fraction γ = λH/λ is showed
for a system with C = 10 available channels, total through-
put λ = 125, µ1 = 1, µ2 = 2, µ3 = 10 and MH = 5.

Figure 14 confirms the property stated in proposition 8,
that the optimal cutoff value is increasing with the available
channels, λL = 50, λH = 75, µ1 = 4, µ2 = 2, penalty
value H . It represents a system with C = 10 µ3 = 10 and
MH = 5.

6. Conclusions

In this paper an optimization method of channel assignment
is proposed. The model is based on a cost function which
gives higher priority to handoff requests than to originating
calls. The cost function has been studied through a deci-
sion Markov model characterized by a great generality. This
model is able to represent both not stationary policies and
randomized fractional policies. Moreover, thanks to the par-
ticular shape of its transition diagram, it allows us to study
policies of great interest such as the threshold policy and
algorithms with one or more cycles of hysteresis. The op-
timization analysis is carried out in two steps. Linear pro-
gramming methods permit to discard not stationary and ran-
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domized policies from the search for the optimum. The real
optimization phase is instead realized through dynamic pro-
gramming methods. We analytically prove that if the ob-
jective function is the total discounted cost function, or the
average cost function applied to the infinite horizon problem,
the policy CPP is optimal, when no queueing of requests is
allowed. We also show that numerical results confirm the
optimality of CPP even when handoff queueing is allowed.

Appendix

Proposition 2. ∀(s) and z such that n(s) = n(z), ∀α
k (s) =

V α
k (z) ∀k ∈ N .

Proof. By induction on k. If k = 0, V α
k (s) = 0 ∀s ∈ E,

so the proposition is trivially true, also ∀s ∈ En(s). Suppose
that the proposition is true for k − 1, i.e. V α

k−1(s) = V α
k−1(z)∀s and j with n(s) = n(j).

Refer to V α
k−1(Prec(s)) and to V α

k−1(Succ(s)) using the in-
ductive hypothesis, as to the value of the function V α

k−1(x) in
correspondence to any state x in the sets Prec(s) and Succ(s),
respectively. Substituting the expressions

∑
q∈Succ(s) π

+
sq =

1 and
∑

j∈Prec(s) π
−
sj = 1, V α

k (s) can be written as follows:

V α
k (s) = 1

� + η

{[(
C + MH − n(s)

)
µ1

+ (
C − n(s)

)
µ2 + MHµ3

]
V α

k−1(s)

+ n(s)(µ1 + µ2)V
α
k−1

(
Prec(s)

)
+ (λL + λH)V α

k−1(s)

+ λL min
{
L,V α

k−1

(
Succ(s)

) − V α
k−1(s)

}
+ λH min

{
H,V α

k−1

(
Succ(s)

) − V α
k−1(s)

}};
while if C � i � C + MH,

V α
k (s) = 1

� + η

{[(
C + MH − n(s)

)
µ1

+ (
MH − n(s)

)
µ3 + (λL + λH)

]
V α

k−1(s)

+ λLL + [
n(s)µ1 + Cµ2

+ (
n(s) − C

)
µ3

]
V α

k−1

(
Prec(s)

)
+ (

n(s) − C
)
µ3H

+ λH min
{
H,V α

k−1

(
Succ(s)

) − V α
k−1(s)

}}
.

Using the expressions here obtained for V α
k (s) and for V α

k (z)
for any s and z such that n(s) = n(z) we obtain V α

k (s) =
V α

k (z). Thus, the proposition is still valid for k. �

Proposition 3. Wα(i,K) is not decreasing in i, thus,
0 � ,Wα

K(i).

Proof. Since in this paper we use this proposition only with
MH = 0, in order to reduce the length of this proof we refer
to this case, while the complete proof can easily be obtained

as an extension of this one. If we use the notation µ �
µ1+µ2, when MH = 0, Wα(i,K) can be written as follows:

Wα(i,K) = 1

� + η

{
λH min

{
Wα(i + 1,K − 1);
H + Wα(i,K − 1)

}
+ λL min

{
Wα(i + 1,K − 1);
L + Wα(i,K − 1)

}
+ iµWα(i − 1,K − 1)

+ (C − i)µWα(i,K − 1)
}
.

Omitting the common factor λH/(�+η) the first term in the
expression of ,Wα

k (i) is

min
{
Wα(i + 1, k − 1);H + Wα(i, k − 1)

}
− min

{
Wα(i, k − 1);H + Wα(i − 1, k − 1)

}
= Wα(i, k − 1)

+ min
{
Wα(i + 1, k − 1) − Wα(i, k − 1);H}

− Wα(i − 1, k − 1)

− min
{
Wα(i, k − 1) − Wα(i − 1, k − 1);H}

�

using the inductive hypothesis that Wα(i, k − 1) is monoto-
nously not decreasing

� Wα(i, k − 1) − Wα(i − 1, k − 1)

− min
{
Wα(i, k − 1) − Wα(i − 1, k − 1);H}

� 0,

again because Wα(i, k − 1) is monotonous. The same ar-
gumentation can be made for the second term of ,Wα

K(i).
Consider the last two terms in ,Wα

k (i) (omitting the com-
mon factor µ/(� + η)):

(C − i)Wα(i, k − 1) + iWα(i − 1, k − 1)

−(
C − (i − 1)

)
Wα(i − 1, k − 1)

−(i − 1)Wα(i − 2, k − 1)

= (C − i)Wα(i, k − 1) − (C − i)Wα(i − 1, k − 1)

+(i − 1)Wα(i − 1, k − 1) − (i − 1)Wα(i − 2, k − 1)

� (i − 1)Wα(i − 1, k − 1) − (i − 1)Wα(i − 2, k − 1)

� iWα(i − 1, k − 1) − (i − 1)Wα(i − 2, k − 1)

� 0,

where the inequalities derive from the monotonous behav-
ior of Wα(i, k − 1). Therefore, ,Wα

k (i) = Wα(i, k) −
Wα(i − 1, k) � 0, so it follows that Wα(i, k) is monoto-
nously not decreasing in i for all k. �

Proposition 4. If MH = 0, Wα(i,K) is also concave in the
number of busy servers i.

Proof. The property of concavity of the function Wα(i, k)

can also be written in the following way: ,Wα
k (i) <

,Wα(i + 1) for 0 � i < C − 1. Again we make use
of induction on k. The basis step of the induction is for
k = 0. Wα(i, 0) = 0 for 1 � i � C, while if MH = 0
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then Wα(C + 1, 0) = ∞, therefore, it satisfies the convexity
property to be proved. Assume Wα(i, k − 1) is convex and
notice how this implies the same property for Wα(i, k). The
first two terms in the expression of Wα(i, k) can be trivially
proved concave by induction on k. From now on the nota-
tion δ(i) will be used to represent the sum of the third and
fourth term in the expression of Wα(i, k) − Wα(i − 1, k).
Thence

δ(i) = iWα(i − 1, k − 1) + (C − i)Wα(i, k − 1)

− (i − 1)Wα(i − 2, k − 1)

− (
C − (i − 1)

)
Wα(i − 1, k − 1)

= (C − i)Wα(i, k − 1) − (i − 1)Wα(i − 2, k − 1)

+ (2i − 1 − C)Wα(i − 1, k − 1).

In order to prove the concavity of the last two terms
in Wα(i, k), the inequality δ(i + 1) − δ(i) � 0 will be
proved:

δ(i + 1) − δ(i)

= (C − i − 1)Wα(i + 1, k − 1)

− iWα(i − 1, k − 1) + (2i + 1 − C)Wα(i, k − 1)

− (C − i)Wα(i, k − 1) + (i − 1)Wα(i − 2, k − 1)

− (2i − 1 − C)Wα(i − 1, k − 1)

= (C − i − 1)Wα(i + 1, k − 1)

+ (3i + 1 − 2C)Wα(i, k − 1)

+ (C + 1 − 3i)Wα(i − 1, k − 1)

+ (i − 1)Wα(i − 2, k − 1)

= (C − i − 1)Wα(i + 1, k − 1)

− 2(C − i − 1)Wα(i, k − 1)

+ (C − i − 1)Wα(i − 1, k − 1)

+ (i − 1)Wα(i, k − 1)

− 2(i − 1)Wα(i − 1, k − 1)

+ (i − 1)Wα(i − 2, k − 1)

� 0

for the concavity of Wα(i, k−1). Therefore, also the sum of
the third and fourth term of the expression defining Wα(i, k)

is a concave function. If follows that Wα(i, k) is itself a
convex function, because it can be expressed as a sum of
concave functions. �
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