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Abstract. In this paper, the arrival of calls (i.e., new and handoff calls) in a personal communications services (PCS) network is modeled
by a Markov arrival process (MAP) in which we allow correlation of the interarrival times among new calls, among handoff calls, as well
as between these two kinds of calls. The PCS network consists of homogeneous cells and each cell consists of a finite number of channels.
Under the conditions that both cell’s residence time and the requested call holding time possess the general phase type (PH) distribution, we
obtain the distribution of the channel holding times, the new call blocking probability and the handoff call failure probability. Furthermore,
we prove that the cell residence time is PH distribution if and only if

• the new call channel holding time is PH distribution; or

• the handoff call channel holding time is PH distribution; or

• the call channel holding time is PH distribution;

provided that the requested call holding time is a PH distribution and the total call arrival process is a MAP. Also, we prove that the actual
call holding time of a non-blocked new call is a mixture of PH distributions. We then developed the Markov process for describing the
system and found the complexity of this Markov process. Finally, two interesting measures for the network users, i.e., the duration of
new call blocking period and the duration of handoff call blocking period, are introduced; their distributions and the expectations are then
obtained explicitly.
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1. Introduction

Personal communications services (PCS) network is a set of
capabalities that allows some combination of terminal mobil-
ity, personal mobility and service profile management. The
PCS service area is populated with base stations. The cover-
age area of a base station is called a cell. The development
of analytically tractable models to compute teletraffic per-
formance characteristics of mobile wireless cellular networks
has been the thrust of recent works (see [5,8,31,32] etc.). For
most of the existing cellular systems, the wireless calls are
charged based on the call holding times, and these systems
can be appropriately modeled with the exponential call hold-
ing time distribution [23,24]. However, for future PCS sys-
tems (especially the low-power PCS systems such as CT-2
[39], Dect [4], PACS [30]), flat-rate billing programs have
been proposed. Thus, it is very important that we follow the
wireline telephone network engineering approach, that is, use
a more general distribution to present the call holding time
distribution [6]. Not only does call holding time vary with the
new applications, also the time a mobile user stays or dwells
in a cell, which is called the cell residence time, will depend
on the mobility of the customer, the geographic situation, and
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the hand-off scheme used, and therefore needs to be mod-
eled as a random variable with more general distribution. All
of the interesting performance measures in the PCS networks
depends on the user’s mobility, which in turn can be charac-
terized by the cell residence time. Thus, in order to appro-
priately characterize the performance measures, such as new
call blocking probabilities, handoff call blocking probability
and channel holding times [8] etc., it is necessary to have a
good mobility model for the cell residence time. By assum-
ing that a cell has specific shape and combining specific dis-
tributions of speed and movement direction of a mobile user
it then becomes possible to directly model the cell residence
time as a random variable with more general probability dis-
tribution to capture the overall effects of the cellular shape and
the user’s mobility patterns. This approach has been adopted
in the past by a few researchers. The appropriate probability
distributions include the negative exponential distribution for
cell residence time as reported in [11,12,16,33,34], the sum of
negative exponential random variables [34], the sum of hyper-
exponentials [31,32], or the hyper-Erlang distribution [5]. The
authors in [6–8] considered the general distribution and par-
ticularly found the handoff rate formula [8] based on the input
parameters of the new call arrival process, new call blocking
probability and the handoff failure probability. The gamma
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distribution [40] was also used to model cell residence time.
However, it does not have the required memoryless property
and cannot be used in the Markov framework. Some other
studies model mobility as a random walk [15]. An extension
of this to characterizing user movement as a diffusion process
is given in [35]. An overview of other mobility modeling tech-
niques is given in [19]. One other relevant and recent studies
reported in [17], in which the authors have simulated a cel-
lular communication network using a variety of probability
density functions as cell residence times.

In this paper, we model both the cell residence time and
requested call holding time as general phase type (PH) dis-
tributions [29], respectively. The PH distributions have been
widely used in queueing system to model service times. The
special cases of the PH distribution include negative expo-
nential distribution, the sum of negative exponential distribu-
tion, the sum of hyperexponentials and the hyper-Erlang dis-
tribution. We also consider a more general correlated arrival
process for new calls and handoff calls. The arrival of calls,
i.e., new and handoff calls, in the network are modeled by a
continuous Markov arrival process MAP. This process allows
correlation of the interarrival times among each new calls and
each handoff calls, as well as between these two kinds of calls.
The continuous time MAP was introduced by Neuts [28] as
a versatile point process. The discrete analog of the MAP
can be found in Alfa and Neuts [1]. Both the continuous and
discrete time versions are Markov renewal processes. In [21],
the authors considered a PCS network with Markovian call
arrival process, split channel scheme and the exponential as-
sumptions for other input random parameters. One special
case of the MAP is the Markov Modulated Poisson Process
(MMPP), which is a doubly stochastic Poisson process where
the rate process is determined by the state of a continuous-
time Markov chain and which has been extensively used to
describe superposition of packet streams whose interarrival
times are known to be correlated [14,38]. Our contribution
is organized as follows. A detailed description of the para-
meters of the PCS network is given in the next section. In
section 3, we discuss the channel holding times and prove the
fact that the cell residence time is PH distribution if and only
if the new call channel holding time is PH distribution; or the
handoff call channel holding time is PH distribution; or the
call channel holding time is PH distribution provided that the
total call arrival process is a MAP and the requested call hold-
ing time is PH distribution. By transforming the situation of a
cell into a Markov process and finding the explicit expression
of the corresponding transition rate matrix in section 4 of the
paper, we obtain the expression for the two key performance
measures, i.e., new call blocking probability and the handoff
call failure probability. In section 5 we prove that the actual
call holding time, under the condition that the the new call is
not blocked, is a SPH distribution introduced in [37]. Finally,
two interesting measures for the network users, i.e., the dura-
tion of new call blocking period and the duration of handoff
call blocking period, are introduced; their distributions and
the expectations are then obtained explicitly.

2. Model description

In this paper, we consider a PCS network with priority given
to the handoff calls and with general phase type cell resi-
dence time and general phase type requested call holding time
(a valuable method to obtain the probability distribution for
both of the above measures is given in [36]). Here, the sys-
tem is assumed to be homogeneous [33], i.e., the underly-
ing processes and parameters for all cells within the PCS net-
works are the same, so that all cells are statistically identical.
Each cell has M channels assigned to it and can therefore sup-
port at most M calls simultaneously. A cutoff priority scheme
[31] is used to give handoff calls priority over new calls. For
this purpose, m (0 � m < M) channels in each cell are re-
served for calls that arrive to the cell as handoffs. Individual
channels are not reserved, just the number. The overall effect
is that new calls that arise in a cell will be blocked if more
than M − m channels are in use, while handoff calls will al-
ways be served if there are idle channels which are not in use.
Some other detailed assumptions are as follows:

1. The vehicular mobility is characterized by the cell resi-
dence time of a vehicle in a cell, which is a random vari-
able, R, and is assumed to have a general phase type dis-
tribution with representation (α, T ) and with dimension r ,
i.e., P(R � x) = 1 − α exp(T x)e, where αe + αr+1 = 1,
and T e + T0 = 0 (see [29] for details).

2. The requested call holding time, say H, of a new call
(which is the duration of the requested new call connec-
tion to a PCS network for a new call and is also referred
to as the uncumbered call holding time [6] or the unen-
cumbered session time [31]) are assumed to be indepen-
dent and identically distributed (i.i.d.) and possess general
phase type distribution with representation (β, S) and with
dimension h, i.e., P(H � x) = 1 − β exp(Sx)e, where
βe + βh+1 = 1, and Se + S0 = 0.

3. The call’s total arrival process (including new call ar-
rival process and handoff arrival process) to the PCS net-
work are modeled by a continuous Markov arrival process
(MAP) in which we allow correlation of the interarrival
times among each new calls and each handoff calls, as well
as among these two kinds of calls. More precisely, let C be
the irreducible infinitesimal generator of a K-state Markov
process, the sojourn time in state i is exponentially distrib-
uted with parameter λi , i = 1, 2, . . . ,K . At the end of the
sojourn in the state i, three kinds of transitions can take
place:

(a) with probability p0(i, k), k = 1, 2, . . . ,K, k �= i, a
transition occurs to the state k, without any kinds of
call arrivals;

(b) with probability pN(i, k), k = 1, 2, . . . ,K , a transi-
tion occurs to the state k, with a new call arrival;

(c) with probability pH(i, k), k = 1, 2, . . . ,K , a transi-
tion occurs to the state k, with a handoff call arrival;
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where

K∑
k �=i

p0(i, k) +
K∑

k=1

pN(i, k) +
K∑

k=1

pH(i, k) = 1,

1 � i � K.

Let (C0)i,i = −λi , (C0)i,k = λip0(i, k), (CN)i,j =
λipN(i, j) and (CH)i,j = λipH(i, j) for i �= k and
i, j, k = 1, 2, . . . ,K , then C = C0 + CN + CH. Denote
by π the stationary probability vector of the generator C,
i.e., π satisfies πC = 0 and πe = 1, and e is a column
vector of 1’s, then the new call arrival rate, say λN, of
the MAP is λN = πCNe, and that the handoff call arrival
rate, say λH, of the MAP is λH = πCHe. For the spe-
cial case when K = 1, the MAP is a Poisson process with
rate λ1 and consists of two independent Poisson processes
with new call rate λN = λ1pN(1, 1) and handoff call rate
λH = λ1pH(1, 1). When both matrices CN and CH are di-
agonal matrices, the MAP is an MMPP, which is a par-
ticularly useful class of non-renewal process. There are
many specific examples of MAP in [25,27] and the ref-
erences therein. For some related additional literatures see
[1,13,26].

3. Channel holding times

Channel holding time is defined as the amount of time that
a call occupies a channel in a particular cell (see [8,11,31])
and is an important quantity in teletraffic analysis of PCS net-
works and depends on the mobility of users, which could
be characterized by the cell residence times. This quantity
is needed to derive key network design parameters such as
the new call blocking probability and the handoff call fail-
ure probability [16]. Bolotin [3] studied common-channel sig-
naling systems and found that channel throughput drops sig-
nificantly more under the actual measured call holding time
distribution model than under an exponential requested call
holding time distribution. Orlik et al. [31] studied the channel
holding times with the sum of hyperexponential distribution
for the cell residence time. Fang et al. [8] and Fang et al. [5]
investigated the channel holding times with the hyper-Erlang
distribution for the cell residence time and first gave some
necessary and sufficient conditions for the channel holding
time to be exponentially distributed. It is easy to show that
both the sum of hyperexponential distribution and the hyper-
Erlang distribution are the special cases of the phase type dis-
tribution. Also, from the discussion below, one will find that
the use of phase type (PH) distribution has an advantage be-
cause of its matrix form. Secondly, there have been major
advances in fitting phase type distributions to real data (see
[2,20]).

3.1. Distribution of the channel holding times

Based on the assumption of the system and [29, theo-
rem 2.2.3], we know that the residual cell residence time,

say R, of a vehicle is a phase type with representation (α, T )

and with dimension r , where α = α(T + T0α) and αe = 1;
and similarly, the residual requested call holding time, say H,
is a phase type with representation (β, S) and with dimen-
sion h, where β = β(S + S0β) and βe = 1.

Define the channel holding time of a new call as the time
period that a non-blocked new call spends in a cell and denote
it as SN. It is clear that SN is independent of the arrival process
and it is the minimum of the residual cell residence time and
the requested call holding time, i.e.,

SN = min
{
R, H

}
. (3.1)

From this expression and the result of [29, theorem 2.2.9], we
find that SN is also a phase type distribution with the repre-
sentation (δN, LN) = [α⊗β, T ⊕S] with dimension hr , i.e.,
the distribution function of the SN is given by

P {SN � x} = 1 − δN exp(LNx)e, (3.2)

where A ⊗ B ≡ (Ai,jB) is the Kronecker product and
A⊕B ≡ A⊗ I + I ⊗B is the Kronecker sum of the matrices
A and B. Similarly, if we define the channel holding time of
a handoff call as the time period that a non-blocked handoff
call stays in a cell as SH, then we know that it is independent
of the arrival process and is the minimum of the cell residence
time and the residual requested call holding time, i.e.,

SH = min
{
R, H

}
. (3.3)

Thus, SH is also a phase type distribution with the representa-
tion (δH, LH) = [α ⊗ β, T ⊕ S] with dimension hr , i.e., the
distribution function of the SH is given by

P {SH � x} = 1 − δH exp(LHx)e. (3.4)

Sometimes, we are more interested in the channel hold-
ing time, say S, for any non-blocked call (either non-blocked
new call or non-blocked handoff call), i.e., the channel hold-
ing time for the merged traffic of new calls and handoff calls,
as used in the current literature. In this case, based on the
Markov call arrival process, it is intuitive that

P {an arrived call is a new call} = πCNe
πCNe + πCHe

,

P {an arrived call is a handoff call} = πCHe
πCNe + πCHe

.

Based on this, we will find that the distribution of the channel
holding time is

P {S � x} = πCNe
πCNe + πCHe

P {SN � x}

+ πCHe
πCNe + πCHe

P {SH � x}

= 1−
[
(πCNe)[δN exp(LNx)e]

πCNe + πCHe

+ (πCHe)[δH exp(LHx)e]
πCNe + πCHe

]
, (3.5)
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i.e., S is also a phase type distribution with representation
(δ, L), where

δ =
(

(πCNe)δN

πCNe + πCHe
,

(πCHe)δH

πCNe + πCHe

)
and

L =
[
LN 0
0 LH

]
.

(3.6)

3.2. Necessary and sufficient conditions

For the special case that when both of the new call arrival
process and the handoff call arrival process are independently
Poissonian and the requested call holding time is exponen-
tially distributed, Fang et al. [8] proved that the cell residence
times of the portable are exponentially distributed if and only
if

• the new call channel holding time is exponentially distrib-
uted; or

• the handoff call channel holding time is exponentially dis-
tributed; or

• the call channel holding time is exponentially distributed.

Based on our scheme, we can easily generalize these results
to the more general phase type distribution and the Markov
call arrival process. More precisely, if the call arrival process
is a Markov call arrival process and the requested call hold-
ing time is phase type distribution with representation (β, S),
then the cell residence time of a portable is phase type distri-
bution with representation (α, T ) if and only if

• the new call channel holding time is phase type distribu-
tion with representation (α ⊗ β, T ⊕ S); or

• the handoff call channel holding time is phase type distri-
bution with representation (α ⊗ β, T ⊕ S); or

• the call channel holding time is phase type distribution
with representation (δ, L), where δ and L are given in
equation (3.6).

We only give a proof of the first result and the others are
similar. In fact, we have proved in equation (3.2) that the
new call channel holding time is phase type distribution if
we know that both the cell residence times and requested call
holding times are of phase type distributions. On the other
hand, since exp(T ⊕S) = [exp(T )]⊗ [exp(S)] (see [10]), we
will know that

(α ⊗ β) exp
[
(T ⊕ S)x

]
e = {[

α exp(T x)
]
e
}{[
β exp(Sx)

]
e
}
.

However, by noting that SN = min{R, H} implies

P(SN > x) = P
(

R > x
)
P(H > x),

i.e.,

(α ⊗ β) exp(T ⊕ Sx)e = P
(

R > x
){[
β exp(Sx)

]
e
}
,

we will directly know that P( R > x) = α exp(T x)e, i.e.,
residual cell residence time R is a phase type distribution with
representation (α, T ). By the relationship between cell resi-
dence time and residual cell residence time, we know that the

cell residence time must be a PH distribution with representa-
tion (α, T ).

By the results of the channel holding time for new calls and
handoff calls, we can now consider some other performance
measures. In next section, we will show how to obtain the
blocking probability of new calls and handoff calls.

4. Blocking probabilities

Blocking probabilities, e.g., new call’s blocking probability
and handoff call failure probability are two important mea-
sures in design and optimization of the updated PCS com-
munications. By using the general sum of hyperexponentials
(SOHYP) for the cell residence times to characterize the mo-
bilities of the portables, Orlik and Rappaport in [31,32] pro-
posed useful analytical models for mixed users and mixed
services. They described the driving processes and the transi-
tions in detail. The case of mixed users and/or mixed services
is so complicated that they have to limit the work to scalar
case. Even then, they cannot find the explicit expressions of
the interesting performance measures. Here, we consider the
general phase type cell residence time and use the matrix ana-
lytic method. In terms of the results in the previous section, by
transforming the cell’s state into a multi-dimensional Markov
process, we find the explict iterative expressions of the steady-
state probabilities first and then those of the new call block-
ing probability and handoff call failure probability. In fact,
we could find more interesting performance measures of the
networks after the steady-state probabilities are obtained.

4.1. Multi-dimensional Markov process

Since the PCS network is a homogeneous network, every cell
in the network can be considered to be statistically identi-
cal and independent of each other [18]. Thus, by analyzing
the performance of one single cell, the performance of the
whole network can be characterized. Let {X(t): t � 0} be
a stochastic process in a given cell on the following state
space: � = {(0, u) ∪ (i, iN, u, siN,N, si−iN,H); 0 � iN �
min{i,M − m}; 1 � i � M; 1 � u � K}, where siN,N =
(sN

1 , sN
2 , . . . , sN

iN
) (1 � sN

v � hr; 1 � v � iN) and si−iN,H =
(sH

1 , sH
2 , . . . , sH

i−iN
) (1 � sH

v � hr; 1 � v � i − iN) and

• the state (0, u) represents the state with no call in the sys-
tem and the arrival process is in phase u;

• the state (i, iN, u, siN,N, si−iN,H) represents the state with

∗ i calls (new calls and the handoff calls) in service in the
given cell and within these i calls there are iN new calls,
which were originated in the given cell;

∗ the arrival process is in phase u;

∗ the vth (v = 1, 2, . . . , iN) new call among these iN new
calls is being served in phase sN

v ;

∗ the vth (v = 1, 2, . . . , i − iN) handoff call among those
i − iN handoff calls is being served in phase sH

v .
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By the assumptions of the phase-type distributions and the
MAP call arrival process, it is easy to know that the stochastic
process {X(t): t � 0} is indeed a Markov process with con-
tinuous time and discrete state and the generator matrix, Q,
describing this Markov chain is given as

Q =




B0 U0
D1 B1 U1

D2 B2 U2
D3 B3 U3

. . .
. . .

. . .

DM BM




, (4.1)

where

• Bi (i = 0, 1, . . . ,M) refers to no change in the number
of calls in the cell when there are i calls in the system
receiving service;

• Ui (i = 0, 1, . . . ,M −1) refers to an arrival of a call when
there are i calls in the system receiving service;

• Di (i = 1, . . . ,M) refers to a departure of a call when
there are i calls in the system receiving service.

In order to determine the block matrices Bi,Ui and Di in
detail, we need to introduce the following notations first:

• Iw is an identity matrix of dimension w and I (w, s) =
Iw ⊗ · · · ⊗ Iw︸ ︷︷ ︸

s

(w, s = 1, 2, . . .);

• WN(i) = LN ⊕ · · · ⊕ LN︸ ︷︷ ︸
i

, which refers to service stages

of i new calls that are still on-going;

• WH(i) = LH ⊕ · · · ⊕ LH︸ ︷︷ ︸
i

, which refers to service stages

of i handoff calls that are still on-going;

• VN(i) = ∑i−1
j=0 I (hr, j) ⊗ L0

N ⊗ I (hr, i − j − 1), which
refers to service completion of one of the i new calls,
where we define I (hr, 0) ⊗ L0

N = L0
N ⊗ I (hr, 0) = L0

N;

• VH(i) = ∑i−1
j=0 I (hr, j) ⊗ L0

H ⊗ I (hr, i − j − 1), which
refers to service completion of one of the i handoff calls,
where similarly as above we define I (hr, 0)⊗L0

H = L0
H ⊗

I (hr, 0) = L0
H.

Note that WN(i) and WH(i) are the same and also VN(i) and
VH(i) are the same simply because LN = LH. However, we
prefer to maintain separate notations in this paper for clarity.
By considering the detailed transition issues among the states,
we find

1. B0 = C0 and

Bi =




Bi,0
Bi,1

. . .

Bi,di


 , 1 � i � M,

where di = min{i,M − m}. Bi is a (di + 1) × (di + 1)
block matrix and

Bi,j =




C0 ⊕ WN(j) ⊕ WH(i − j),

if 1 � i � M − m − 1;
(C0 + CN) ⊕ WN(j) ⊕ WH(i − j),

if M − m � i � M − 1;
(C0 + CN + CH) ⊕ WN(j) ⊕ WH(M − j),

if i = M,

which refers to no change in the state of the system when
there are i callers in the system with j of those callers
being new calls.

2. U0 = [CH ⊗ δH, CN ⊗ δN],

Ui =




Ui,0,H Ui,0,N
Ui,1,H Ui,1,N

. . .
. . .

Ui,i,H Ui,i,N


 ,

if 1 � i � M −m− 1, is an (i + 1)× (i + 2) block matrix
and

Ui =




Ui,0,H Ui,0,N
Ui,1,H Ui,1,N

. . .
. . .

Ui,M−m−1,H Ui,M−m−1,N
0 Ui,M−m,H


 ,

if M −m � i � M − 1, is an (M −m+ 1)× (M −m+ 1)
square block matrix, where the element Ui,j,N = CN ⊗
I (hr, j)⊗δN ⊗ I (hr, i − j) refers to an arrival of new call
when there are i calls, with j new calls, receiving service;
and that Ui,j,H ≡ CH ⊗I (hr, j)⊗I (hr, i −j)⊗δH refers
to an arrival of handoff call when there are i calls, with j

new calls, receiving service.
3.

D1 =
[
IK ⊗ L0

H
IK ⊗ L0

N

]
,

Di =




Di,0,H 0
Di,1,N Di,1,H

Di,2,N Di,2,H
. . .

. . .

Di,i−1,N Di,i−1,H
Di,i,N




,

2 � i � M − m − 1, is an (i + 1) × i block matrix and

Di =




Di,0,H 0
Di,1,N Di,1,H

Di,2,N Di,2,H

. . .
. . .

Di,M−m−1,N Di,M−m−1,H 0
Di,M−m,N Di,M−m,H


,

M − m � i � M , is an (M − m + 1) × (M − m + 1)
square block matrix, where the element Di,j,N = IK ⊗
VN(j) ⊗ I (hr, i − j) refers to the departure (completion
of service) of a new call when there are i calls receiving
service with j of those callers being new callers; and that
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Di,j,H ≡ IK ⊗ I (hr, j)⊗VH(i − j) refers to the departure
(completion of service) of a handoff call when there are i

calls receiving service with j of those callers being new
callers.

4.2. Interesting probabilities

In this subsection, we will consider the stationary probability
of the Markov chain and then obtain the blocking probabil-
ity of new calls and handoff calls, respectively. Denote by
π(0, u) and π(i, iN, u, siN,N, si−iN,H) the steady-state proba-
bility of the system in the equilibrium case when the system
is in state (0, u) and (i, iN, u, siN,N, si−iN,H), respectively. Let
π i (i = 0, 1, . . . ,M) be the steady-state probability vector of
the system in the equilibrium case when there are i calls in the
given cell, the sequence of the elements in the vector π0 (π i )
is ordered in the lexicographic order based on the probability
π(0, u) (π(i, iN, u, siN,N, si−iN,H)). By using [9, lemma 3],
if we let

∏n
i=1 Vi = V1V2 · · ·Vn for matrices V1, . . . , Vn, we

will find from equation (4.1) the steady-state probability vec-
tor π i when there are i calls in a given cell is given by

πn = π0

n∏
i=1

[
Ui−1(−Ai)

−1], n = 1, 2, . . . ,M, (4.2)

where π0 satisfies π0A0 = 0 and

π0

[
I +

M∑
n=1

n∏
i=1

[
Ui−1(−Ai)

−1]]e = 1,

here Ai can be recursively determined by AM = BM and
An = Bn + Un(−A−1

n+1)Dn+1 (n = 0, 1, . . . ,M − 1).
From these results, we will directly know that the new calls

blocking probability pN is

pN =
M∑

i=M−m

1

λN
πnDNe

= π0

λN

M∑
i=M−m

i∏
s=1

[
Us−1(−As)

−1]DNe; (4.3)

and the handoff calls failure probability pH is

pH = 1

λH
πMDHe

= π0

λH

M∏
s=1

[
Us−1(−As)

−1]DHe. (4.4)

In terms of the results in equation (4.2), we could find more
interesting measures. For example, the total carried traffic
(TCT), which is defined as the average number of channel
occupied by the calls [32], could be obtained as

TCT =
M∑

n=0

nπne

= π0

[
M∑

n=1

n

n∏
i=1

[
Ui−1(−Ai)

−1]]e.

By using the two key performance measures in equations
(4.3) and (4.4), we are now able to consider the actual call
holding time of a call in the next subsection.

5. Actual call holding time

The actual call holding time of a new call is one of the practi-
cal performance measures in wireless telecommunication sys-
tems. In [22], the authors obtained a general formula for dis-
tribution of the actual call holding time, say Xg, when the re-
quested call holding time and cell residence time are general
random variables, by

P(Xg � x) = 1 − (1 − pN)rp2
H

×
∞∑
k=1

(1 − pH)k−1H(x)

∫ ∞

x

Rk(t) dt (5.1)

where H(t) = 1−H(t), and H(t) is the distribution function
of the the requested call holding time; and Rk(t) = 1−Rk(t),
and Rk(t) is the distribution function of, say Rk , the sum
of k i.i.d. random variables with distribution of the cell resi-
dence time. Based on this result and the results in equations
(4.3) and (4.4), we can prove that, when both requested call
holding time and cell residence time are of phase type dis-
tributions as described in section 1, the actual call holding
time of a new call, under the condition that the new call is
not blocked, is an infinite mixture of PH distributions, which
is referred to as the SPH distribution [37]. The SPH is a
PH distribution with countably infinite number of states. In
fact, from result of [29, theorem 2.2.2], we know that Rk is
a phase type distribution with representation (θk,.k), where
θk = (α, αr+1α, α

2
r+1α, . . . , α

k−1
r+1α) and

.k =




T T0α · · · αk−3
r+1 T0α αk−2

r+1 T0α

T · · · αk−4
r+1 T0α αk−3

r+1 T0α

. . .
...

...

T T0α

T




.

Since (r/k)
∫ x

0 Rk(t) dt is the distribution of residual time,
say Rk , of random variable Rk , we know that Rk is a phase
type distribution with representation (θk,.k) where θk is the
unique solution of the equation θk = θk(.k + �0

kθk) and
θke = 1, in which �0

k = −.ke. By the results of [37,
theorem 2.2] that a countable mixture of PH-distribution is
an SPH-distribution or the results of a finite version in [29,
theorem 2.2.4], we know that the following probability dis-

tribution F(x) ≡ rp2
H

∞∑
k=1

(1 − pH)k−1
∫ x

0 Rk(t) dt is a SPH

distribution with representation (θ,.), where

θ = p2
H

(
θ1, 2(1 − pH)θ2, . . . , k(1 − pH)k−1θk, . . .

)
and

. = diag(.i).
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Therefore, by the result in equation (5.1), we know that the
distribution of the actual call holding time, under the condi-
tion that the new call is not blocked, is a phase type distribu-
tion with representation (β ⊗ θ , S ⊕ .), i.e.,

P {Actual call holding time � x|the new call is not blocked}
= 1 − β ⊗ θ exp

{
(S ⊕ .)x

}
e,

and thus, the noncentral moments, say µk , of the actual call
holding time, under the condition that the new call is not
blocked, is µk = (−1)kk!(β⊗θ)(S⊕.)−ke, k = 0, 1, 2, . . . .

6. Duration of call blocking period

In this section, we introduce two new performance measures,
i.e., the duration of new call blocking period and the duration
of handoff call blocking period in equilibrium. The first mea-
sure is defined as the stationary time period starting from the
epoch that the channels for receiving new calls are full for the
first time to the first epoch that at least one of the channels
within the target cell is available for a new call. While the
second one is defined as the stationary time period starting
from the epoch that all channels have just been occupied to
the epoch that at least one of the channels is available for a
handoff call for the first time. More precisely, the duration of
new call blocking period is the time period starting from the
epoch when the M−m channels have just been occupied after
a call arrived and connected with a channel in the target cell
to the epoch that there are m+ 1 channels which are available
for the first time; the duration of handoff call blocking period
is the time period when the total M channels have been occu-
pied after a handoff call arrived and connected with a channel
in the target cell to the epoch that one of the channels for a
handoff call is available for the first time. Intuitively, these
two performance measures are interesting and are practical
measures for the network users. Upon knowing these types of
information, the new caller and/or handoff caller could make
a decision whether to wait and try again. In the next two sub-
sections, we find the distribution and then the expectation of
these two measures.

6.1. Duration of new call blocking period

Denote by {XN(t): t � 0} a stochastic process in a given
cell during the duration of new call blocking period on the
following state space:

� = {∗ ∪ (i, iN, u, siN,N, si−iN,H); 0 � iN � M − m;
M − m � i � M; 1 � u � K

}
,

where ∗ is an absorbing state, which means that at least one
of the channels begins to be available for the new call and
the meaning of the other states remain the same as in sec-
tion 4.1. By the assumption of the system, it is easy to prove

that {XN(t): t � 0} is indeed a continuous time Markov
process with the following infinitesimal generator matrix:

QN =




0 0 0 · · · 0 0 0
DM−m BM−m UM−m · · · 0 0 0

...
...

...
. . .

...
...

...

0 0 0 · · · DM−1 BM−1 UM−1
0 0 0 · · · 0 DM BM


 ,

where Di,Bi and Ui are the same as defined in section 4.1.
The duration of new call blocking period, say DNCBP, is just
the time to absorption into the absorbing state ∗, of Markov
process {XN(t), t � 0} starting from the initial state vector
ψN = (0, θN), where

θN =
(
π(CN + CH) ⊗ I

λH + λN
, 0, 0, . . . , 0

)
.

Based on these arguments, if we denote by

TN =




BM−m UM−m · · · 0 0 0
...

...
. . .

...
...

...

0 0 · · · DM−1 BM−1 UM−1
0 0 · · · 0 DM BM,


 ,

then from result [29, lemma 2.2.2], we know the distribution
of the duration of new call blocking period is

P(DNCBP � x) = 1 − θN exp(TNx)e for x � 0,

and the noncentral moments, E(DNCBP)k , are given by

E(DNCBP)k = (−1)kk!(θNT −k
N e) for k � 0.

6.2. Duration of handoff call blocking period

Similar to the above subsection, we denote by {XH(t):
t � 0} a stochastic process of a given cell during the duration
of handoff call blocking period on the following state space:

� = {∗ ∪ (M, iN, u, siN,N, si−iN,H);
0 � iN � M − m; 1 � u � K

}
,

where ∗ is an absorbing state, which means that at least one
of the M channels begins to be available for a handoff call
and the meaning of the other states remain the same as in sec-
tion 4.1. It is easy to prove that {XH(t): t � 0} is indeed a
continuous time Markov process with the following infinites-
imal generator matrix

QH =
[

0 0
DM BM

]
,

where DM and BM are same as those in section 4.1. The
duration of handoff call blocking period, say DHCBP, is just
the time to absorption into the absorbing state ∗, of Markov
process {XH(t), t � 0} starting from the initial state vector
ψH = (0,π(CH ⊗ I)/λH). Based on these arguments and
from the result [29, lemma 2.2.2], we know the distribution
of the duration of handoff call blocking period is
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P(DHCBP � x)

= 1 − 1

λH

(
π(CH ⊗ I) exp(BMx)e

)
for x � 0,

and the noncentral moments, E(DHCBP)k , are given by

E(DHCBP)k = (−1)kk!
λH

(
π(CH ⊗ I)B−k

M e
)

for k � 0.

7. Conclusions

In this paper, we considered a homogeneous PCS network
with Markov call arrival process and general phase type cell
residence time and general phase type requested call hold-
ing time. We generalized the necessary and sufficient con-
ditions obtained by Fang et al. [8] to a general framework.
By transforming the situation of a cell into a Markov process
and finding the explicit expression of corresponding tran-
sition rate matrix, we obtained the expression for the two
key performance measures, i.e., new call blocking probabil-
ity and the handoff call failure probability. This is one of
the main contributions of this paper, i.e., the development
of the infinitesimal generator matrix of the Markov model
for the system described. Efficient computational aspects are
still under investigation. The complexity of the algorithm is
O((K(M−m)(hr)M)2). In addition to this, we proved that the
actual call holding time, under the condition that the new call
is not blocked, has an SPH distribution introduced in [37]. Fi-
nally, two practical and interesting measures for the network
users, i.e., the duration of new call blocking period and the
duration of handoff blocking period, were introduced; their
distributions and the expectations were obtained explicitly.
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