
Contention Resolution with Constant Expected Delay

LESLIE ANN GOLDBERG

University of Warwick, Coventry, United Kingdom

PHILIP D. MACKENZIE

Lucent Technologies, Murray Hill, New Jersey

MIKE PATERSON

University of Warwick, Coventry, United Kingdom

AND

ARAVIND SRINIVASAN

Lucent Technologies, Murray Hill, New Jersey

Abstract. We study contention resolution in a multiple-access channel such as the Ethernet channel.
In the model that we consider, n users generate messages for the channel according to a probability

The work of L. A. Goldberg was supported by EPSRC Research Grant GR/L60982—Design and
Analysis of Contention-Resolution Protocols, by ESPRIT Project 21726 —RAND-II and by ESPRIT
LTR Project 20244 —ALCOM-IT.
Part of the work of P. D. MacKenzie was performed at Sandia National Labs and supported by the
U.S. Dept. of Energy under contract DE-AC04-76DP00789.
The work of M. Paterson was supported by ESPRIT LTR Project 20244 —ALCOM-IT.
Part of the work of A. Srinivasan was supported by ESPRIT LTR Project 20244 —ALCOM-IT, and
was done while this author was visiting the University of Warwick; another part was done while
visiting the Max-Planck-Institut für Informatik, Im Stadtwald, 66123 Saarbrücken, Germany; and
another part was supported by National University of Singapore Academic Research Fund Grants
RP960620 and RP970607, and was done at the School of Computing, National University of
Singapore, Singapore 119260.
Preliminary versions of this work appeared in a paper written by the third and fourth authors (Proc. IEEE
Symposium on Foundations of Computer Science, pages 104–113, 1995), and in a paper written by the first
and second authors (Proc. IEEE Symposium on Foundations of Computer Science, pages 213–222, 1997).
Authors’ addresses: Leslie Ann Goldberg, Department of Computer Science, University of Warwick,
Coventry CV4 7AL, United Kingdom, e-mail: leslie@dcs.warwick.ac.uk; Philip D. MacKenzie, Bell
Laboratories, Lucent Technologies 600-700 Mountain Ave., Murray Hill, NJ 07974-0636, e-mail:
philmac@lucent.com; Mike Paterson, Department of Computer Science, University of Warwick,
Coventry CV4 7AL, United Kingdom, e-mail: msp@dcs.warwick.ac.uk; Aravind Srinivasan, Bell
Laboratories, Lucent Technologies, 600-700 Mountain Ave., Murray Hill, NJ 07974-0636, e-mail:
srin@research.bell-labs.com.
Permission to make digital / hard copy of part or all of this work for personal or classroom use is
granted without fee provided that the copies are not made or distributed for profit or commercial
advantage, the copyright notice, the title of the publication, and its date appear, and notice is given
that copying is by permission of the Association for Computing Machinery (ACM), Inc. To copy
otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission
and / or a fee.
© 2000 ACM 0004-5411/00/1100-1048 $05.00

Journal of the ACM, Vol. 47, No. 6, November 2000, pp. 1048 –1096.

distribution. Raghavan and Upfal have given a protocol in which the expected delay (time to get
serviced) of every message is O(log n) when messages are generated according to a Bernoulli
distribution with generation rate up to about 1/10. Our main results are the following protocols: (a)
one in which the expected average message delay is O(1) when messages are generated according to
a Bernoulli distribution with a generation rate smaller than 1/e, and (b) one in which the expected
delay of any message is O(1) for an analogous model in which users are synchronized (i.e., they agree
about the time), there are potentially an infinite number of users, and messages are generated
according to a Poisson distribution with generation rate up to 1/e. (Each message constitutes a new
user.)

To achieve (a), we first show how to simulate (b) using n synchronized users, and then show how to
build the synchronization into the protocol.

Categories and Subject Descriptors: F.2 [Theory of Computation]: Analysis of Algorithms and
Problem Complexity; G.3 [Mathematics of Computing]: Probability and Statistics

General Terms: Probability Theory

Additional Key Words and Phrases: Contention resolution, ethernet, Markov chains, multiple-access
channel

1. Introduction

A multiple-access channel is a broadcast channel that allows multiple users to
communicate with each other by sending messages onto the channel. If two or
more users simultaneously send messages, then the messages interfere with each
other (collide), and the messages are not transmitted successfully. The channel is
not centrally controlled. Instead, the users use a contention-resolution protocol to
resolve collisions. Although the most familiar multiple-access channels are
local-area networks (such as the Ethernet network), which are implemented
using cable, multiple-access channels are now being implemented using a variety
of technologies including optical communications. Thus, good contention-resolu-
tion protocols can be used for communication between computers on local-area
networks, for communication in optical networks, and (therefore) for simulating
shared-memory parallel computers (such as PRAMs) on optical networks.

Raghavan and Upfal [1999] considered the model in which n users generate
messages according to a Bernoulli distribution with total generation rate up to
about 1/10. (More details about the arrival distribution are given in Section 1.1.)
They gave a protocol in which the expected delay (time to get serviced) of every
message is O(log n). Using the same model, we present a protocol in which the
expected average message delay is O(1) provided that the total generation rate is
sufficiently small (less than 1/e).1 We derive our result by considering an
analogous model in which users are synchronized (i.e., they agree about the
time), the number of users is potentially infinite, and messages arrive according
to a Poisson distribution with parameter up to about 1/e. Each message
constitutes a new user. We give a protocol in which the expected delay of any
message is O(1). The synchronizing of our users allows our protocol to use
different time steps for different purposes. Thus, for example, those time steps
that are equal to 1 modulo 2 could be used for messages making their first
attempt, time steps equaling 2 modulo 4 can be used for messages making their

1 Note that the delay of a message depends upon both: (a) randomness in the input (message
arrivals), and (b) randomness in the algorithm.

1049Contention Resolution with Constant Expected Delay

second attempt, and so on. The partitioning of time steps is what makes it
possible to have bounded expected delay.

Once we have proved that the expected delay of each message is O(1), we
show how to simulate the protocol using n synchronized users. Here each user is
responsible for a potentially infinite number of messages (rather than for a single
message) and the difficult part is dealing with all of the messages in constant
time.

The analysis of our n-user protocol requires the n users to have synchronized
clocks. We next show how to simulate the synchronized clocks (for reasonably
long periods of time) by building synchronization into the protocol. Thus, our
final protocol consists of “normal” phases in which the users are synchronized
and operating as described above and “synchronization phases” in which the
users are synchronizing. The synchronization phases are robust in the sense that
they can handle pathological situations (such as users starting in the middle of a
synchronization phase). Thus, we are able to achieve constant expected message
delay even for models in which users are allowed to start and stop (see Section
1.1 for details).

1.1. THE MULTIPLE-ACCESS CHANNEL MODEL. Following previous work on
multiple-access channels, we work in a time-slotted model in which time is
partitioned into intervals of equal length, called steps. During each step, the users
generate messages according to a probability distribution. For our model with
infinitely-many users, we assume the probability distribution is Poisson, while, for
our models with finitely-many users, we assume the probability distribution is
Bernoulli (for each user). Thus, each user generates at most one message per
step. During each step, each user may attempt to send at most one message to
the channel. If more than one attempt is made during a given time step, the
messages collide and must be retransmitted. If just a single user attempts to send
to the channel, it receives an acknowledgment that the transmission was success-
ful. Users must queue all unsuccessful messages for retransmission and they use
a contention-resolution protocol to decide when to retransmit. Note that we do
not place any bound on the amount of computation a user may perform at the
beginning of a step. That is, we are counting communication steps, not computa-
tion steps.

In the Synchronized Infinitely-Many Users Model, there is a single parameter l.
The number of messages generated at each step is determined according to a
Poisson distribution with parameter l. Each message is deemed to be a new user.
After a user has sent its message successfully, it leaves the system.

There are two variants of the Finitely-Many Users Model. In both variants, there
are n users. The first variant (which we consider in Section 3) is the Synchronized
Finitely-Many Users Model. In this model, the n users are synchronized and they
all run for the entire time that the protocol is running. When we consider this
model, we will need to consider two message-arrival distributions. Our main
results will hold for the {l i}1#i#n-Bernoulli arrival distribution, which is defined
as follows. Each user i is associated with a positive probability l i and it generates
a message independently with probability l i during each time step. Our results
hold when (i l i is at most l for some l , 1/e. The {l i}1#i#n-Bernoulli arrival
distribution is a natural message-arrival distribution that has been studied
previously and it will help the reader to keep this distribution in mind. However,

1050 L. A. GOLDBERG ET AL.

in order to make our proofs go through, we must also consider a more technical
generalization of this distribution, namely a {l i}1#i#n-dominated arrival distri-
bution. In such a distribution, we require that for every user i, every time step t,
and every event E concerning

—the arrival of messages at steps other than t, and/or
—the arrival of messages at users other than i,

the probability, conditioned on event E, that user i generates a message at step t
is at most l i. Note that the {l i}1#i#n-Bernoulli arrival distribution is a
{l i}1#i#n-dominated arrival distribution, but there are also other, less natural,
{l i}1#i#n-dominated arrival distributions.

The second variant of the Finitely-Many Users Model is called the Unsynchro-
nized Finitely-Many Users Model. In this model, the n users are not synchronized
and are allowed to start and stop over time, provided that each user runs for at
least a certain polynomial number of steps every time it starts. The starting and
stopping times should not depend upon the progress of the protocol. (The
motivation for allowing users to start and stop is to model machine crashes.) See
Section 4 for details. We generalize the definitions of {l i}1#i#n-Bernoulli and
{l i}1#i#n-dominated distributions so that they apply to this model by stipulating
that no messages are generated at users which are stopped. As stated above, for
our main results, we will be most interested in the {l i}1#i#n-Bernoulli distribu-
tion, with (il i , 1/e. The result of Raghavan and Upfal applies to any
{l i} i#i#n-Bernoulli arrivals distribution in which (i l i # l9 where l9 ' 1/10.

In the Synchronized Infinitely-Many Users Model, we will show that the
expected delay of any message is O(1). In the Unsynchronized Finitely-Many
Users Model, we will show only that the expected average delay of messages is
O(1). To be precise, let Wi be the delay of the ith message, and let

Wavg 5 lim
m3`

1

m
O
i51

m

Wi .

(Intuitively, Wavg is the average waiting time of messages in the system.) We will
show that if the message generation rate is sufficiently small (less than 1/e), then
E[Wavg] 5 O(1).

The multiple-access channel model that we have described is acknowledgment-
based because the only information that a user receives about the state of the
channel is the history of its own transmission attempts. (In the Unsynchronized
Finitely-Many Users Model, we also assume that the users all know some upper
bound on the number of simultaneous live users.) Other models have been
considered. One popular model is the ternary feedback model in which, at the end
of each time step, each user receives information indicating whether zero, one, or
more than one messages were sent to the channel at that time step. Stable
protocols are known [Greenberg et al. 1987; Vvedenskaya and Pinsker 1983] for
the case in which l is sufficiently small (at most 0.4878 . . .). However, Tsybakov
and Likhanov [1987] have shown that, in the infinitely-many users model, no
protocol achieves a throughput better than 0.568. (That is, in the limit, only a
0.568 fraction of the time-steps are used for successful sends.) By contrast,
Pippenger [1981] has shown that if the exact number of messages that tried at

1051Contention Resolution with Constant Expected Delay

each time step is known to all users, there is a stable protocol for every l , 1.
We believe that the weaker acknowledgment-based model is more realistic for
purposes such as PRAM emulation and optical routing and we follow Håstad et
al. [1996], MacKenzie et al. [1998], and Raghavan and Upfal [1999] in focusing
on this model henceforth.

In this paper, we concentrate on the dynamic contention-resolution problem in
which messages arrive according to a probability distribution. Other work
[MacKenzie et al. 1998] has focused on the static scenario in which a given set of
users start with messages to send. Similar static contention-resolution problems
arise in optical routing [Anderson and Miller 1988; Geréb-Graus and Tsantilas
1992; Goldberg et al. 1997] and in simulating shared memory computers on
distributed networks [Dietzfelbinger and Meyer auf der Heide 1993; Goldberg et
al. 1999; MacKenzie et al. 1998].

1.2. PREVIOUS WORK. There has been a tremendous amount of work on
protocols for multiple-access channels. Here, we will only discuss theoretical
results concerning dynamic protocols in the acknowledgment-based model that
we use. We refer the reader to the papers cited here and in Section 1.1 for work
on protocols using different assumptions or models.

The multiple-access channel first arose in the context of the ALOHA system,
which is a multi-user communication system based on radio-wave communication
[Abramson 1973]. As we noted earlier, it also arises in the context of local-area
networks. For example, the Ethernet protocol [Metcalfe and Boggs 1976] is a
protocol for multiple-access channels. Much research on multiple-access chan-
nels was spurred by ALOHA, especially in the information theory community;
see, for example, the special issue of IEEE Trans. Inf. Theory on this topic
[IEEE Trans. Inf. Theory 1985].

We now give an informal description of a common idea that runs through most
known protocols for our problem; this is merely a rough sketch, and there are
many variants. In the Infinitely-Many Users Model, consider a newly born
message P. P could try using the channel a few times with some fairly high
probability. If it is successful, it leaves the system; if not, then P could guess that
its trial probability was “too high,” and try using the channel with lower and
lower probability until it successfully leaves the system.

One way to formalize this is via backoff protocols, which are parameterized by
a nondecreasing function f: Z1 3 Z1, where Z1 denotes the set of nonnegative
integers. In the Infinitely-Many Users Model, a message P that has made i $ 0
unsuccessful attempts at the channel, will pick a number r uniformly at random
from {1, 2, . . . , f(i)}, and will next attempt using the channel r time steps from
then. If successful, P will leave the system; otherwise, it will increment i and
repeat the process. In the Finitely-Many Users Model, each user queues its
messages and conducts such a protocol with the message at the head of its queue;
once this message is successful, the failure count i is reset to 0. If f(i) 5 (i 1
1)Q(1) or 2 i, then such a protocol is naturally termed a polynomial backoff
protocol or a binary exponential backoff protocol, respectively. (The function f,
if it exists, must be chosen judiciously: if it grows too slowly, the messages will
tend to try using the channel too often, thus leading to frequent collisions and
hence long message lifetimes. But if f grows too quickly, the messages will tend

1052 L. A. GOLDBERG ET AL.

to use the channel too infrequently, and again the throughput rate will suffer as
messages are retained in the system.)

For our model of interest, the dynamic setting with acknowledgment-based
protocols, the earliest theoretical results were negative results for the Unsynchro-
nized Infinitely-Many Users Model. Kelly [1985] showed that, for any l . 0, any
backoff protocol with a backoff function f(i) that is smaller than any exponential
function is unstable in the sense that the expected number of successful
transmissions to the channel is finite. Aldous [1987] showed, for every l . 0, that
the binary exponential backoff protocol is unstable in the sense that the expected
number of successful transmissions in time steps [1, t] is o(t) and that the
expected time until the system returns to the empty state is infinite.

In striking contrast to Kelly’s result, the important work of Håstad et al. [1996]
showed, among other things, that in the Unsynchronized Finitely-Many Users
Model, for all {l i}1#i#n-Bernoulli distributions with (i l i , 1, all superlinear
polynomial backoff protocols are stable in the sense that the expected time to
return to the empty state and the expected average message delay are finite.
However, they also proved that the expected average message delay in such a
system is V(n). Raghavan and Upfal showed that, for any {l i}1#i#n-Bernoulli
distribution with (i l i up to about 1/10, there is a protocol in which the expected
delay of any message is O(log(n)) [Raghavan and Upfal 1999]. It is also shown in
Raghavan and Upfal [1999] that, for each member 3 of a large set of protocols
that includes all known backoff protocols, there exists a threshold l3 , 1 such
that if l . l3 then E[Wave] 5 V(n) must hold for 3.

1.3. OUR RESULTS. We first consider the Synchronized Infinitely-Many Users
Model and give a protocol in which the expected delay of any message is O(1) for
message generation rates up to 1/e. (Note that this arrival rate threshold of 1/e is
higher than the threshold of approximately 1/10 allowed in Raghavan and Upfal
[1999]. We argue in Section 5 that handling arrival rates greater than 1/e is a
challenging problem.) As far as we know, our protocol is the first acknowledg-
ment-based protocol which is provably stable in the sense of Håstad et al. [1996].
An interesting point here is that our results are complementary to those of
Håstad et al. [1996]: while the work of Håstad et al. [1996] shows that (negative)
results for the Infinitely-Many Users Model may have no bearing on the
Finitely-Many Users Model, our results suggest that better intuition and positive
results for the Finitely-Many Users Model may be obtained via the Infinitely-
Many Users Model.

Our infinite-users protocol is simple. We construct an explicit, easily comput-
able collection {Si, t: i, t 5 0, 1, 2, . . .} of finite sets of nonnegative integers Si, t

where, for all i and t, every element of Si, t is smaller than every element of
Si11, t. A message born at time t which has made i (unsuccessful) attempts to
send to the channel so far, picks a time r uniformly at random from Si, t, and tries
using the channel at time r. If it succeeds, it leaves the system. Otherwise, it
increments i and repeats this process. We give bounds on the probability that the
delay of the message is high and we use these bounds to show that the expected
number of messages (and hence the expected total storage size) in the system at
any given time is O(1), improving on the O(log n) bound of Raghavan and Upfal
[1999].

1053Contention Resolution with Constant Expected Delay

Once we have proved that the expected delay of each message is O(1), we
show how to simulate the Infinitely-Many Users Protocol using n synchronized
users, achieving low expected delay for a variety of message-arrival distributions.

Finally, we consider the Unsynchronized Finitely-Many Users Model. Our
earlier analysis required synchronized clocks and we show how to simulate this
for reasonably long periods of time by building synchronization into our final
protocol. The synchronization is complicated by the fact that the model allows
users to start and stop over time.

The structure of our final protocol is simple. Most of the time, the users are
simulating our Infinitely-Many Users Protocol from Section 2. The users occa-
sionally enter a synchronizing phase to make sure that the clocks are synchro-
nized (or to resynchronize after a user enters the system). Note that the
synchronizing phase has some probability of (undetectably) failing, and thus it
must be repeated periodically to guarantee constant expected message delay.

We note here that although we achieve constant expected message delay, the
constant is quite large, and the requirements on starting and stopping times are
quite severe (in an n-user system, users must run without stopping for at least
8n71 steps after they start). Thus, our result for the Unsynchronized Finitely-
Many Users Model should be considered a theoretical result, rather than a
practical result.

The idea of the “synchronization phase” was inspired by the “reset state” idea
of Raghavan and Upfal [1999]. The key idea that allowed Raghavan and Upfal
[1999] to achieve low expected delay is to have users detect “bad events” and to
enter a “reset state” when bad events occur. In some sense, the structure of our
protocol (normal phases, occasionally interrupted by synchronization phases) is
similar to the structure of Raghavan and Upfal [1999]. However, there are major
differences between them. One difference is that, because lack of synchroniza-
tion cannot be reliably detected, synchronizing phases must be entered periodi-
cally even when no particular bad event is observed. Another difference is that
users in a reset state are only allowed to send messages with very low probability,
and this helps other users to access the channel. However, our synchronization
phase is designed to accomplish the more difficult task of synchronizing the users
(this is needed to obtain constant expected delay rather than logarithmic
expected delay), and accomplishing this task requires many transmissions to the
channel, which prevent access to the channel by the other users. Thus, synchro-
nization phases are costly in our protocol. A third difference is that in Raghavan
and Upfal [1999] a normal phase always tends towards low expected delay. When
bad situations arise, there is a good probability of them being caught, thus
causing a reset state to occur. In our protocol, a normal phase tends towards
even lower (constant) expected delay if the users are synchronized. However, if
they are not synchronized, the normal phase does not necessarily tend towards
low expected delay, and there is no sure way to detect that the users are
unsynchronized. Thus, the bad situation can only be remedied during the next
time the users start a synchronizing phase, which may be after quite a long time!
Fortunately, the effects of this type of behavior can be bounded, so we do
achieve constant expected message delay.

The synchronizing phase of our protocol is somewhat complicated, because it
must synchronize the users even though communication between users can only
be performed through acknowledgments (or lack thereof) from the multiple-

1054 L. A. GOLDBERG ET AL.

access channel. The analysis of our protocol is also complicated due to the very
dynamic nature of the protocol, with possibilities of users missing synchronizing
phases, trying to start a synchronizing phase while one is already in progress, and
so on. Our synchronizing phases are robust, in the sense that they can handle
these types of events, and eventually the system will return to a normal
synchronized state.

1.4. OUTLINE. In Section 2, we consider the Synchronized Infinitely-Many
Users Model. Section 2.1 gives notation and preliminaries. Section 2.2 gives our
protocol. Sections 2.3 and 2.4 bound the expected delay of messages. In Section
3, we consider the Synchronized Finitely-Many Users Model and show how to
simulate our protocol on this model, achieving bounded expected delay for a
large class of input distributions. In Section 4, we consider the Unsynchronized
Finitely-Many Users Model. Section 4.1 gives notation and preliminaries. Section
4.2 gives our protocol. In Section 4.3, we prove the key features of our protocol,
namely, a message generated at a step in which no users start or stop soon before
or after will have constant expected delay, and a message generated at a step in
which a user starts soon before or after will have an expected delay of O(n37)
steps. In Section 4.4, we show that our protocol achieves constant expected
message delay for a fairly general multiple access channel model, with users
starting and stopping.

2. The Infinitely-Many Users Protocol

2.1. NOTATION AND PRELIMINARIES. For any , [Z1, we denote the set {1,
2, . . . , ,} by [,]; logarithms are to the base two, unless specified otherwise. In
any time interval of a protocol, we shall say that a message P succeeded in that
interval if it reached the channel successfully during that interval.

Theorem 1 presents the Chernoff–Hoeffding bounds [Chernoff 1952; Hoeff-
ding 1963]; see, e.g., Appendix A of Alon et al. [1992] for details.

THEOREM 1. Let R be a random variable with E[R] 5 m $ 0 such that either:
(a) R is a sum of a finite number of independent random variables X1, X2, . . . with
each Xi taking values in [0, 1], or (b) R is Poisson. Then for any n $ 1, Pr[R $ mn]
H(m, n), where H(m, n) 8 (exp(n 2 1)/nn)m.

Fact 1 is easily verified.

Fact 1. If n . 1, then H(m, n) # exp(2nm/Mn), where Mn is positive and
monotone decreasing for n . 1.

We next recall the “independent bounded differences tail inequality” of
McDiarmid [1989]. (The inequality is a development of the “Azuma martingale
inequality”; a similar formulation was also derived by Bollobás [1988].)

LEMMA 1. ([MCDIARMID 1989, LEMMA 1.2]). Let x1, . . . , xn be independent
random variables, with xk taking values in a set Ak for each k. Suppose that the
(measurable) function f: P Ak 3 R (the set of reals) satisfies uf(x#) 2 f(x#9)u # ck

whenever the vectors x# and x#9 differ only in the kth coordinate. Let Y be the random
variable f(x1, . . . , xn). Then for any t . 0,

Pr@ uY 2 E@Y# u $ t# # 2 exp~22t2/Ok51
n ck

2! .

1055Contention Resolution with Constant Expected Delay

Remark 1. The proof of Lemma 1 in McDiarmid [1989] actually shows the
stronger result that max{Pr[Y 2 E[Y] $ t], Pr[Y 2 E[Y] # 2t]} # exp
(22t2/(k51

n ck
2).

Suppose (at most) s messages are present in a static system, and that we have s
time units within which we would like to send out a “large” number of them to
the channel, with high probability. We give an informal sketch of our ideas. A
natural scheme is for each message independently to attempt using the channel at
a randomly chosen time from [s]. Since a message is successful if and only if no
other message chose the same time step as it did, the “collision” of messages is a
dominant concern; the number of such colliding messages is studied in the
following lemma.

LEMMA 2. Suppose at most s balls are thrown uniformly and independently at
random into a set of s bins. Let us say that a ball collides if it is not the only ball in
its bin. Then, (i) for any given ball B, Pr[B collides] # 1 2 (1 2 1/s)s21 , 1 2 1/e,
and (ii) if C denotes the total number of balls that collide then, for any d . 0,

PrFC $ sS 1 2 1

e~1 1 d!
DG # F~s, d!, where F~s, d! 8 exp(2sd2/~2e2~1 1 d!2!).

PROOF. Part (i) is direct. For part (ii), number the balls arbitrarily as 1,
2, Let Xi denote the random choice for ball i, and C 5 f(X1, X2, . . .) be
the number of colliding balls. It is easily seen that, for any placement of the balls
and for any movement of any desired ball (say the ith) from one bin to another,
we have ci # 2, in the notation of Lemma 1. Invoking Lemma 1 and the remark
following it, we conclude the proof. e

Lemma 2 suggests an obvious improvement to our first scheme if we have
many more slots than messages. Suppose we have s messages in a static system
and , available time slots t1 , t2 , . . . , t,, with s # ,/(e(1 1 d)) for some
d . 0. Let

, i~d! 8
,

e~1 1 d!
S 1 2

1

e~1 1 d!
D i21

for i $ 1; (1)

thus, s # ,1(d). The idea is to have each message try using the channel at some
randomly chosen time from {t i: 1 # i # ,1(d)}. The number of remaining
messages is at most s(1 2 (1/e(1 1 d))) # ,2(d) with high probability, by
Lemma 2(ii). Each remaining message attempts to use the channel at a randomly
chosen time from {t i: ,1(d) , i # ,1(d) 1 ,2(d)}; the number of messages
remaining is at most ,3(d) with high probability (for s large). The basic “random
trial” user of Lemma 2 is thus repeated a sufficiently large number of times. The
total number of time slots used is at most (j51

` , j(d) 5 ,, which was guaranteed
to be available. In fact, we will also need a version of such a scenario where some
number z of such protocols are run independently, as considered by Definition 1.
Although we need a few parameters for this definition, the intuition remains
simple.

Definition 1. Suppose ,, m and z are positive integers, d . 0, and we are
given sets of messages P1, P2, . . . , Pz and sets of time slots T1, T2, . . . , Tz such

1056 L. A. GOLDBERG ET AL.

that: (i) Pi ù Pj 5 f and Ti ù Tj 5 f if i Þ j, and (ii) uTiu 5 , for all i. For
each i [[z], let Ti 5 {t i, 1 , t i, 2 , . . . , t i, ,}. Define ,0 5 0, and , i 5 , i(d)
as in (1) for i $ 1.

Then, RT({Pi: i [[z]}, {Ti: i [[z]}, m, z, d) denotes the performance of
z independent protocols E1, E2, . . . , Ez (“RT” stands for “repeated trials”).
Each Ei has m iterations, and its jth iteration is as follows: each message in Pi

that collided in all of the first (j 2 1) iterations picks a random time from {t i, p:
,0 1 ,1 1 . . . 1 , j21 , p # ,0 1 ,1 1 . . . 1 , j}, and attempts using the
channel then.

Remark 2. Note that the fact that distinct protocols Ei are independent
follows directly from the fact that the sets Ti are pairwise disjoint.

The following useful lemma shows that, for any fixed d . 0, two desirable facts
hold for RT provided uPiu # ,1(d) for each i (where , 5 uTiu), if , and the
number of iterations m are chosen large enough: (a) the probability of any given
message not succeeding at all can be made smaller than any given small positive
constant, and (b) the probability of there remaining any given constant factor of
the original number of messages can be made exponentially small in ,.

LEMMA 3. For any given positive e, d and h (h # 1/2), there exist finite positive
m(e, d, h), ,(e, d, h) and p(e, d, h) such that, for any m $ m(e, d, h), any , $,(e,
d, h), any z $ 1, and ,i 5 ,i(d) defined as in (1), the following hold if we perform
RT({Pi: i [[z]}, {Ti: i [[z]}, m, z, d), provided uPiu # ,1 for each i.

(i) For any message P , Pr[P did not succeed] # e.
(ii) Pr[in total at least ,zh messages were unsuccessful] # z exp(2, z p(e, d, h)).

PROOF. Let P [Pi. Let nj(i) denote the number of unsuccessful elements of
Pi before the performance of the jth iteration of protocol Ei, in the notation of
Definition 1. Let ! j be the “bad” event that packet P was unsuccessful in the jth
iteration of protocol Ei, and let @ j be the “bad” event that nj11 $, j11. By
assumption, we have n1(i) # ,1. Thus, for any j [[m],

Pr@?j9 [@ j#: @ j9# # O
j9[[j]

Pr@@ j9u@1# ` @2# ∧· · ·∧ @ j921# # # O
j9[[j]

F~, j9 , d! , (2)

by part (ii) of Lemma 2.
We now upper-bound the probability of P failing throughout as follows:

PrF `
j[[m]

! jG # Pr@?j [@m 2 1#: @ j# 1 PrF S `
j[[m21]

~! j ∧ @ j# !D ∧ !mG
O

j[[m21]

F~, j , d! 1 PrF S `
j[[m21]

~! j ` @ j# !D ∧ !mG ~by ~2!!

O
j[[m21]

F~, j , d! 1 P
j[[m]

PrF ! ju `
j9[[j21]

~! j9 ∧ @ j9# !G

1057Contention Resolution with Constant Expected Delay

O
j[[m21]

F~, j , d! 1 ~1 2 1/e!m, (3)

since for each j, Pr[! ju` j9[[j21] (! j9 ∧ @ j9)] , 1 2 1/e by part (i) of Lemma
2.

Also, (2) yields

Pr@nm11~i! $,m11# # O
j[[m]

F~, j , d! . (4)

The bounds (3) and (4) imply that if we pick

m~e, d, h! .
log~e/ 2!

log~1 2 1/e!

and then choose ,(e, d, h) large enough, we can ensure part (i). Also, if we pick
m(e, d, h) $ log(he(1 1 d))/log(1 2 1/(e(1 1 d))) and then choose ,(e, d, h)
large enough and p(e, d, h) appropriately, we also obtain (ii). e

2.1.1. A Variant. The following small change in RT will arise in Lemmas 7
and 8. Following the notation of Definition 1, for each i [z, there may be one
known time t i, g(i) [Ti which is “marked out”: messages in Pi cannot attempt
using the channel at time t i, g(i). To accommodate this, we modify RT slightly:
define j 5 j(i) to be the unique value such that ,0 1 ,1 1 . . . 1 , j21 , g(i) #
,0 1 ,1 1 . . . 1 , j. Then any message in Pi that collided in all of the first (j 2
1) iterations will, in the jth iteration, attempt using the channel at a time chosen
randomly from {t i, p: (p Þ g(i)) and ,0 1 . . . 1 , j21 , p # ,0 1 . . . 1 , j}.
All other iterations are the same as before for messages in Pi, for each i.

We now sketch why Lemma 3 remains true for this variant, if we take m(e, d,
h) and ,(e, d, h) slightly larger and reduce p(e, d, h) to a slightly smaller (but
still positive) value. We start by stating the analogue of Lemma 2, which applies
to the variant. (The proof that the analogue is correct is the same as the proof of
Lemma 2.) Note that, for s $ 2, 1 2 (1 2 1/s)s # 1 2 1/e 1 K0/s, for some
absolute constant K0 . 0.

LEMMA 29. There are positive constants K0, K1, K2 such that the following holds.
For s $ 2, suppose at most s 1 1 balls are thrown uniformly and independently at
random into s bins. Then (i) for any given ball B, Pr[B collides] 5 1 2 (1 2 1/s)s #
1 2 1/e 1 K0/s, and (ii) if C denotes the total number of balls that collide then, for
any d . 0,

PrFC $ sS 1 2
1

e~1 1 d!
D G # G~s, d! , where G~s, d! 8 K1e2K2sd

2/~1 1 d!2

.

Now note that the proof of Lemma 3 applies to the variant by using Lemma 29
in place of Lemma 2.

2.2. THE PROTOCOL. We present the ideas parameterized by several con-
stants. Later, we will choose values for the parameters to maximize the through-
put. There will be a trade-off between the maximum throughput and the
expected waiting time for a message; a different choice of parameters could take

1058 L. A. GOLDBERG ET AL.

this into consideration. The constants we have chosen guarantee that our
protocol is stable in the sense of Håstad et al. [1996] for l , 1/e.

From now on, we assume that l , 1/e is given. Let D $ 3 be any (say, the
smallest) positive integer such that

l #
1 2 2/D

e
. (5)

We define d0 by

1 1 d0 5
1

el 1 1/D
. (6)

Note that d0 . 0 by our assumptions on l and D.
Three important constants, b, r and k, shape the protocol; each of these is a

positive integer that is at least 2. At any time during its lifetime in the protocol,
a message is regarded as residing at some node of an infinite tree T, which is
structured as follows: There are countably infinitely many leaves ordered left-to-
right, with a leftmost leaf. Each non-leaf node of T has exactly k children, where

k . r. (7)

As usual, we visualize all leaves as being at the same (lowest) level, their parents
being at the next higher level, and so on. (The leaves are at level 0.) As will be
seen in P3 below, the parameters b and r give, respectively, the “capacity” of
each leaf node and the factor by which this size increases from each level to the
next. Note that the notions of left-to-right ordering and leftmost node are well
defined for every level of the tree. T is not actually constructed; it is just for
exposition. We associate a finite nonempty set of nonnegative integers Trial(v)
with each node v. Define L(v) 8 min{Trial(v)}, R(v) 8 max{Trial(v)}, and the
capacity cap(v) of v, to be uTrial(v) u. A required set of properties of the Trial sets
is the following:

P1. If u and v is any pair of distinct nodes of T, then Trial(u) ù Trial(v) 5 f;
P2. If u is either a proper descendant of v, or if u and v are at the same level

with u to the left of v, then R(u) , L(v).
P3. The capacity of all nodes at the same level is the same. Let ui be a generic

node at level i. Then, cap(u0) 5 b and cap(ui) 5 r z cap(ui21) 5 bri, for
i $ 1.

Suppose we have such a construction of the Trial sets. (Note (P1): in
particular, the Trial set of a node is not the union of the sets of its children.)
Each message P injected into the system at some time step t0 will initially enter
the leaf node u0(P) where u0(P) is the leftmost leaf such that L(u0(P)) . t0.
Then P will move up the tree if necessary, in the following way. In general,
suppose P enters a node ui(P) at level i, at time t i; we will be guaranteed the
invariant “Q: ui(P) is an ancestor of u0(P), and t i , L(ui(P)).” P will then run
protocol RT(Pui(P), Trial(ui(P)), m, 1, d0), where Pui(P) is the set of messages
entering ui(P) and m is a suitably large integer to be chosen later. If it is
successful, P will (of course) leave the system, otherwise it will enter the parent

1059Contention Resolution with Constant Expected Delay

ui11(P) of ui(P), at the last time slot (element of Trial(ui(P))) at which it tried
using the channel and failed, while running RT(Pui(P), Trial(ui(P)), m, 1, d0).
(P knows what this time slot is: it is the mth step at which it attempted using the
channel, during this performance of RT.) Invariant Q is established by a
straightforward induction on i, using Property P2. Note that the set of messages
Pv entering any given node v perform protocol RT(Pv, Trial(v), m, 1, d0), and,
if v is any non-leaf node with children u1, u2, . . . , uk, then the trials at its k
children correspond to RT({Pu1

, . . . , Puk
}, {Trial(u1), . . . , Trial(uk)}, m, k,

d0), by Properties P1 and P3. Thus, each node receives all the unsuccessful
messages from each of its k children; an unsuccessful message is imagined to
enter the parent of a node u, immediately after it found itself unsuccessful at u.
Figure 1 illustrates some of these ideas. A fragment of the tree with (unreason-
able) parameters k 5 4, r 5 1, b 5 3, is shown. For each node u, the set
Trial(u) is the set of shaded squares in the corresponding rectangle. In this
example, uTrial(u) u 5 3 for all u. Packet P enters the sequence of nodes u0(P),
u1(P), u2(P),

The intuition behind the advantages offered by the tree is roughly as follows:
Note that in a multiple-access channel problem, a solution is easy if the arrival
rate is always close to the expectation (e.g., if we always get at most one message
per step, then the problem is trivial). The problem is that, with probability 1,
infinitely often there will be “bulk arrivals” (bursts of a large number of input
messages within a short amount of time); this is a key problem that any protocol
must confront. The tree helps in this by ensuring that such bursty arrivals are
spread over a few leaves of the tree and are also handled independently, since the
corresponding Trial sets are pairwise disjoint. One may expect that, even if
several messages enter one child of a node v, most of the other children of v will
be “well behaved” in not getting too many input messages. These “good”
children of v are likely to successfully transmit most of their input messages, thus
ensuring that, with high probability, not too many messages enter v. Thus, bursty
arrivals are likely to be smoothed out, once the corresponding messages enter a
node at a suitable level in the tree. In short, our assumption on time-agreement
plays a symmetry-breaking role.

Informally, if the proportion of the total time dedicated to nodes at level 0 is
1/s, where s . 1, then the proportion for level i will be approximately (r/k) i/s.
(Recall the parameters r and k: the capacity of each tree node at level i is bri,
and k is the number of children of each non-leaf node.) Since the sum of these

FIG. 1. The tree protocol.

1060 L. A. GOLDBERG ET AL.

proportions for all i can be at most 1, we require s $ k/(k 2 r); we will take

s 5
k

k 2 r
. (8)

More precisely, the Trial sets are constructed as follows; it will be immediate that
they satisfy Properties P1, P2, and P3. First define

s 5
D

D 2 1
, k 5 4D2, and r 5 4D . (9)

We remark that, though we have fixed these constants, we will use the symbols s,
k and r (rather than their numerical values) wherever possible. Also, rather than
present the value of b right away, we will choose b at the end of the proof of
Theorem 2; we will require that

b is divisible by D 2 1. (10)

For i $ 0, let

Fi 5 $ j . 0;?h [@D 2 1# such that j ; hD i~mod D i11!% . (11)

Note that Fi is just the set of all j which, when written in base D, have zeroes in
their i least significant digits, and have a nonzero in their (i 1 1)st least
significant digit. Hence, the sets Fi form a partition of Z1. For any nonnegative
integer j, any positive multiple z of D j, and any positive integer x, let F(z, j, x)
denote the xth smallest element of Fj that is at least as large as z. We can check
that

F~ z, j, x! 5 z 1 D jS x 1 x

D 2 1 2 1D if z is a multiple of D j11. (12)

Suppose z is not a multiple of D j11; let z 1 z9D j be the smallest multiple of D j11

that is greater than z. If x $ D, then F(z, j, x) 5 F(z 1 z9D j, j, x 2 z9),
which, by (12), is at most the right-hand side of (12). Thus,

F~ z, j, x! # z 1 D jS x 1 x

D 2 1 2 1D if x $ D . (13)

Let vi be a generic node at level i; if it is not the leftmost node in its level, let
ui denote the node at level i that is immediately to the left of vi. We will ensure
that all elements of Trial(vi) lie in Fi. (For any large enough interval I in Z1, the
fraction of I lying in Fi is roughly (D 2 1)/D i11 5 (r/k) i/s; this was what we
meant informally above, regarding the proportion of time assigned to level i of
the tree being (r/k) i/s.)

We now define Trial(vi) by induction on i and from left-to-right within the
same level, as follows. If i 5 0, then if v0 is the leftmost leaf, we set Trial(v0) to
be the smallest cap(v0) elements of F0; else we set Trial(v0) to be the cap(v0)
smallest elements of F0 larger than R(u0). If i $ 1, let w be the rightmost child
of vi. If vi is the leftmost node at level i, we let Trial(vi) be the cap(vi) smallest

1061Contention Resolution with Constant Expected Delay

elements of Fi that are larger than R(w); else define Trial(vi) to be the cap(vi)
smallest elements of Fi that are larger than max{R(ui), R(w)}. In this case, we
can show that R(w) $ R(ui), as follows: Suppose for a contradiction that
R(w) , R(ui); let vi be the leftmost node at its level with this property. Thus,
letting w9 be the rightmost child of ui, Trial(ui) is the set of bri smallest elements
of Fi larger than R(w9). So, defining z to be the smallest multiple of D i that is
larger than R(w9), we have R(ui) 5 F(z, i, bri); hence,

R~ui! # z 1 D iS bri 1 bri

D 2 1 2 1D . (14)

Next, the number of elements of Fi21 lying in the interval (R(w9), z] is at most
D 2 2; since vi has k children, each of capacity bri21, we see that

R~w! $ F~ z, i 2 1, kbri21 2 ~D 2 2!!

5 z 1 D i21S kbri21 2 ~D 2 2! 1 kbri21 2 ~D 2 2!

D 2 1 2 1D , (15)

by (12). So, to prove that R(w) $ R(ui), it suffices to show that the left-hand
side of (14) is at most the right-hand side of (15), which reduces to showing that
(kbri21 1 1)/(D 2 1) $ D z bri/(D 2 1). This inequality follows from (9)
and (10).

Since z , R(w9) 1 D i and b is divisible by D 2 1, (14) shows that R(ui) ,
R(w9) 1 bD ir i z D/(D 2 1), which equals R(w9) 1 sbki. Thus, for all i $ 1,

R~vi! , R~w! 1 sbki. (16)

Before proceeding to analyze the protocol, we remind the reader that at any
time step at most one node of the tree is active; some of the messages residing at
this node at this time are attempting to transmit at this time.

2.3. WAITING TIMES OF MESSAGES. Our main random variable of interest is
the time that a generic message P will spend in the system, from its arrival. Let

a 5 e~1 1 d0! (17)

and d be a constant greater than 1.
The main parameters presented so far can be found in Table I.

Definition 2. For any node v [T, the random variable load(v), the load of
v, is defined to be the number of messages that enter v . For any positive integer t,

TABLE I. MAIN PARAMETERS

1062 L. A. GOLDBERG ET AL.

node v at level i is defined to be t-bad if and only if load(v) . bridt21/a. Node
v is said to be t-loaded if it is t-bad but not (t 1 1)-bad. It is called bad if it is
1-bad, and good otherwise.

It is not hard to verify that, for any given t $ 1, the probability of being t-bad
is the same for any nodes at the same level in T. This is because the Trial sets of
different nodes are disjoint, the message arrival distributions at different leaves
are i.i.d., and since messages move (if at all) only from tree nodes to their parent
nodes. This brings us to the next definitions.

Definition 3. For any (generic) node ui at level i in T and any positive integer
t, pi(t) denotes the probability that ui is t-bad.

Definition 4. (i) The failure probability q is the maximum probability that a
message entering a good node will not succeed during the functioning of that
node. (ii) For any message P, let u0(P), u1(P), u2(P), . . . be the nodes of T that
ui is allowed to pass through, where the level of ui(P) is i. Let Ei(P) be the
event that P enters ui(P).

If a node u at level i is good, then, in the notation of Lemma 3, its load is at
most ,1(d0), where , 5 cap(u); hence, Lemma 3(i) shows that, for any fixed q0 .
0, q , q0 can be achieved by making b and the number of iterations m large
enough.

Note that the distribution of Ei(P) is independent of its argument. This is
because the arrival distributions at different leaves are i.i.d, and because each
nonleaf node treats the messages arriving from its different children symmetrically.
(Thus, in particular, Ei(P) is independent of the leaf node at which P arrived.)
Hence, for any i $ 0, we may define fi 8 Pr[Ei(P)] for a generic message P. Suppose
P was unsuccessful at nodes u0(P), u1(P), . . . , ui(P). Let A(i) denote the maximum
total amount of time P could have spent in these (i 1 1) nodes. We first bound A(0).
Since b is a multiple of D 2 1, we can check that the xth leaf of the tree from the left
has its L[value equaling (x 2 1) z (b/(D 2 1)) z D 1 1, and its R[value equaling
x z (b/(D 2 1)) z D 2 1. Thus, if the arrival time of P was an integer of the form zD 1
z9, where 0 # z9 # D 2 1, then P will enter a leaf whose R[value is: (i) (z 1 1) z
(b/(D 2 1)) z D 2 1 if z9 5 0, and (ii) (z 1 2) z (b/(D 2 1)) z D 2 1 if z9 Þ 0. Thus,
the maximum time spent by P before leaving the leaf level, is at most 2bD/(D 2 1) 5
2sb. So, A(0) # 2sb. For i $ 1, A(i) # kA(i 2 1) 1 (k/r)isbri, using (16). Hence,

A~i! # ~i 1 2!sbki for all i. (18)

The simple, but crucial, Lemma 4 is about the distribution of an important
random variable W(P), the time that P spends in the system.

LEMMA 4. (i) For any message P, Pr[W(P) . A(i)] # fi11 for all i $ 0, and
E[W(P)] # (j50

` A(j) fj. (ii) For all i $ 1, fi # qfi21 1 pi21 (1).

PROOF. Part (i) is immediate, using the fact that, for a nonnegative integer-
valued random variable Z, E[Z] 5 (i51

` Pr[Z $ i]. For part (ii), note that

f i 5 f i21 Pr@EiuEi21# . (19)

Letting ci 5 Pr[ui21(P) was good uEi21],

1063Contention Resolution with Constant Expected Delay

Pr@EiuEi21# 5 ci Pr@Eiuui21~P! was good ∧ Ei21#

1 ~1 2 ci!Pr@Eiuui21~P! was bad ∧ Ei21#

Pr@Eiuui21~P! was good ∧ Ei21#

1 Pr@ui21~P! was baduEi21#

q 1 Pr@ui21~P! was baduEi21#

q 1 Pr@ui21~P! was bad#/Pr@Ei21# .

Thus, by (19), f i # f i21q 1 Pr[ui21(P) was bad] 5 qfi21 1 pi21(1). e

2.4. THE IMPROBABILITY OF HIGH NODES BEING HEAVILY LOADED. As is
apparent from Lemma 4, our main interest is in getting a good upper bound on
pi(1). However, to do this, we will also need some information about pi(t) for
t $ 2, and hence Definition 3. The basic intuition is that if a node is good then,
with high probability, it will successfully schedule “most” of its messages; this is
formalized by Lemma 3(ii). In fact, Lemma 3(ii) shows that, for any node u in
the tree, the good children of u will, with high probability, pass on a total of “not
many” messages to u, since the functioning of each of these children is
independent of the other children.

To estimate pi(t), we first handle the easy case of i 5 0. Recall that if X1 and
X2 are independent Poisson random variables with means l1 and l2 respectively,
then X1 1 X2 is Poisson with mean l1 1 l2. Thus, u0 being t-bad is a simple
large-deviation event for a Poisson random variable with mean sbl. If, for every
t $ 1, we define n t 8 dt21/(sal) and ensure that n t . 1 by guaranteeing

sal , 1, (20)

then Theorem 1 shows that

p0~t! 5 Pr@u0 is t-bad# # H~sbl, n t! . (21)

Our choices for s and a validate (20): see (6), (17), (9) and (5).
We now consider how a generic node ui at level i $ 1 could have become

t-bad, for any given t. The resulting recurrence yields a proof of an upper bound
for pi(t) by induction on i. The two cases t $ 2 and t 5 1 are covered by
Lemmas 5 and 6 respectively. We require

d2 1 k 2 1 # dr; (22)

this is satisfied by defining

d 5 2D.

LEMMA 5. For i $ 1 and t $ 2, if a node ui at level i in T is t-bad, then at least
one of the following two conditions holds for ui’s set of children: (i) at least one child
is (t 1 1)-bad, or (ii) at least two children are (t 2 1)-bad. Thus,

1064 L. A. GOLDBERG ET AL.

pi~t! # kpi21~t 1 1! 1 S k
2D ~ pi21~t 2 1!!2.

PROOF. Suppose that ui is t-bad but that neither (i) nor (ii) holds. Then ui

has at most one child v that is either t-loaded or (t 2 1)-loaded, and none of the
other children of ui is (t 2 1)-bad. Node v can contribute a load of at most
bri21dt/a messages to ui; the other children contribute a total load of at most
(k 2 1)bri21dt22/a. Thus, the children of ui contribute a total load of at most
bri21dt22(d2 1 k 2 1)/a, which contradicts the fact that ui is t-bad, since (22)
holds. e

In the case t 5 1, a key role is played by the intuition that the good children of
ui can be expected to transmit much of their load successfully. We now fix q and
m, and place a lower bound on our choice of b. Note that (22) implies r . d.
Define h1, h2 . 0 by

h1 5 minH r 2 d

a~k 2 1!
,

1

2J and h2 5 minH r

ak
,

1

2J .

For q, we treat it as a parameter that satisfies

0 , q ,
1

k
. (23)

(Lemmas 7 and 8 will require that q be sufficiently small.) In the notation of
Lemma 3, we define

m 5 max$m~q, d0 , h1! , m~q, d0 , h2!% (24)

and require

b $ max$,~q, d0 , h1! , ,~q, d0 , h2!% . (25)

LEMMA 6. For any i $ 1, pi(1) is at most

kpi21~2! 1 S k
2D ~ pi21~1!!2 1 k~k 2 1! pi21~1!exp~2bri21p~q, d0 , h1!

1 k exp~2bri21p~q, d0 , h2! .

PROOF. Suppose that ui is 1-bad. There are two possibilities: that at least one
child of ui is 2-bad or that at least two children are 1-bad. If neither of these
conditions holds, then either (A) ui has exactly one child which is 1-loaded with
no other child being bad, or (B) all children are good.

In case (A), the k 2 1 good children must contribute a total of at least

cap~ui!

a
2

cap~ui21!d

a
5

bri21~r 2 d!

a
$ bri21~k 2 1!h1

1065Contention Resolution with Constant Expected Delay

messages to ui. In the notation of Lemma 3, z 5 k 2 1, , 5 bri21 and h 5 h1.
Since there are k choices for the 1-loaded child, Lemma 3(ii) shows that the
probability of occurrence of case (A) is at most

k~k 2 1! pi21~1!exp~2bri21p~q, d0 , h1!! .

In case (B), the k good children contribute at least cap(ui)/a 5 bri/a. By a
similar argument, the probability of occurrence of case (B) is at most

k exp~2bri21p~q, d0 , h2!! .

The inequality in the lemma follows. e

Next is a key theorem that proves an upper bound for pi(t), by induction on i.
We assume that our constants satisfy the conditions (7), (8), (17), (20), (22), (23),
(24), and (25).

THEOREM 2. For any fixed l , 1/e and any q [(0, 1/k), there is a sufficiently
large value of b such that the following holds. There are positive constants a, b and
g, with a, b . 1, such that

@i $ 0 @t $ 1, pi~t! # exp~2ga ib t21! .

Before proving Theorem 2, let us see why this shows the required property that
E[W(P)], the expected waiting time of a generic message P, is finite. Theorem 2
shows that, for large i, pi21 (1) is negligible compared to qi and hence, by
Lemma 4(ii), f i 5 O(qi). Hence, Lemma 4(i) combined with the bound (18)
shows that, for any choice q , 1/k, E[W(P)] is finite (and good upper tail
bounds can be proven for the distribution of W(P)). Thus, (23) guarantees the
finiteness of E[W(P)].

PROOF (OF THEOREM 2). This is by induction on i. If i 5 0, we use inequality
(21) and require that

H~sbl, n t! # exp~2gb t21! . (26)

From (20), we see that n t . 1; thus, by Fact 1, there is some M 5 Mn t
such that

H(sbl, n t) # exp(2n t sbl/M). Therefore, to satisfy inequality (26), it suffices
to ensure that dt21b/(aM) $ gb t21. We will do this by choosing our constants
so as to satisfy

d $ b and b $ gaM . (27)

We will choose a and b to be fairly close to (but larger than) 1, and so the first
inequality will be satisfied. Although g will have to be quite large, we are free to
choose b sufficiently large to satisfy the second inequality.

We proceed to the induction for i $ 1. We first handle the case t $ 2, and
then the case t 5 1.

1066 L. A. GOLDBERG ET AL.

Case I. t $ 2. By Lemma 5, it suffices to show that

k exp~2ga i21b t! 1 S k
2D exp~22ga i21b t22! # exp~2ga ib t21! .

It is straightforward to verify that this holds for some sufficiently large g,
provided

b . a and 2 . ab. (28)

We can pick a 5 1 1 e and b 5 1 1 2e for some small positive e, e , 1, to satisfy
(28).

Case II. t 5 1. The first term in the inequality for pi(1) given by Lemma 6 is
the same as for Case I with t 5 1; thus, as above, an appropriate choice of
constants will make it much smaller than exp(2ga i). Similarly, the second term
in the inequality for pi(1) can be handled by assuming that a , 2 and that g is
large enough. The final two terms given by Lemma 6 sum to

k~k 2 1! pi21~1!exp~2bri21p~q, d0 , h1!! 1 k exp~2bri21p~q, d0 , h2!! . (29)

We wish to make each summand in (29) at most, say, exp(2ga i)/4. We just need
to ensure that

bri21p~q, d0 , h1! $ ga i 1 ln~4k2!

and bri21p~q, d0 , h2! $ ga i 1 ln~4k! . (30)

Since r . a, both of these are true for sufficiently large i. To satisfy these
inequalities for small i, we choose b a sufficiently large multiple of D 2 1 to
satisfy (10), (25), (27), and (30), completing the proof of Theorem 2. e

It is now easily verified that conditions (7), (8), (20), (22), (27), and (28) are all
satisfied. Thus, we have presented stable protocols for l , 1/e.

THEOREM 3. Fix any l , 1/e. In the Synchronized Infinitely-Many Users Model,
our protocol guarantees an expected waiting time of O(1) for every message.

We also get a tail bound as a corollary of Theorem 2:

COROLLARY 1. Let ,9 be a sufficiently large constant. Fix any l , 1/e and c1 .
1. We can then design our protocol such that, for any message P, in addition to
having E[W(P)] 5 O(1), we also have for all , $,9 that Pr[W(P) $,] # ,2c1.

PROOF. Using (18), we see that if W(P) $, then P enters j levels where
(i51

j (i 1 2)ki . ,/(2sb), so j(j 1 2)kj $,/(2sb). This implies that

j $ S logkS ,

2sbD 2 2 logklogkS ,

2sbD D .

As we mentioned in the paragraph preceding the proof of Theorem 2, f j 5

1067Contention Resolution with Constant Expected Delay

O(qj). Thus,

Pr@W~P! $,# 5 O~q logk~,/~2sb!! 2 2 logklogk~,/~2sb!!! .

The result follows by designing the protocol with q # k2c2c1 for a sufficiently
large positive constant c2. e

Remark 3. In practice, the goal is often simply to ensure that the probability
that any given packet is delivered to the channel is at least 1 2 e for some
constant e. By the corollary, we can achieve this goal by truncating each packet
after (1/e)1/c1 steps, or equivalently by truncating the infinite tree after O(logk(1/
e)) levels.

3. The Synchronized Finitely-Many Users Protocol

We transfer to the Synchronized Finitely-Many Users Model (see Section 1.1).
Here, we shall let l 5 (il i be any constant smaller than 1/e, and show how to
simulate the Infinitely-Many Users Protocol on n synchronized users. Suppose
for the moment that each message can do its own processing independently (this
assumption will be removed shortly). With this assumption, the difference
between the synchronized infinitely-many users model which we have been
considering and the synchronized finitely-many users model is that, instead of
being a Poisson distribution with parameter l, the input arrival distribution can
be any {l i}1#i#n-dominated distribution (see Section 1.1). Although the arrivals
may not be independent, the strong condition in the definition of “{l i}1#i#n-
dominated distribution” allows us to apply Theorem 1(a) to the message arrivals
(using stochastic domination). Therefore, (21) still holds in the synchronized
finitely-many users model.

We need to avoid the assumption that each message is processed separately.
The difficulty is that each user must be responsible for a potentially unbounded
number of messages and must manage them in constant time at each step. We
first sketch how to manage the messages and then give further details. Each user
f maintains, for each i $ 0, a linked list L(f, i) of the messages belonging to it
that are at level i of the tree. If it is the turn of messages at level i of the tree to
try in the current time step t, then each user f will compute the probability pf, t of
exactly one message in L(f, i) attempting to use the channel in our Synchronized
Infinitely-Many Users Protocol. Then, each f will independently send the mes-
sage at the head of L(f, i) to the channel with probability pf, t. (The reader may
have noticed that, in order to simulate faithfully our infinitely-many users
protocol, f should also calculate the probability rf, t that more than one message
in L(f, i) attempts to use the channel. It should send a dummy message to the
channel with probability rf, t. This solution works, but we will show at the end of
this section that dummy messages are not necessary.)

We now present the details of this message-management scheme. Let all the
parameters such as k, D, etc., be as defined in Section 2. For each t [Z1, define
active(t) to be the index of the least significant digit of t that is nonzero, if t is
written in base D. Recall from (11) that if the current time is t then the messages
in L(f j, active(t)), taken over all users f j, are precisely those that may attempt
using the channel at the current step. Thus, if active(t) 5 i, each user f first
needs access to the head-pointer of L(f, i) in O(1) time. For this, it suffices if f

1068 L. A. GOLDBERG ET AL.

counts time in base D and has an infinite array whose ith element is the
head-pointer of L(f, i). However, such static infinite storage is not required: f
can count time in base D using a linked list, where the ith element of the list
additionally contains the head-pointer of L(f, i). This list can be augmented
with pointers to jump over substrings (of the base-D representation of t) that are
composed of only D 2 1, so that f can maintain t and active(t) in O(1) time. We
leave the tedious but straightforward details of this to the reader. (Alternatively,
as mentioned in the remark following Corollary 1, we may simply truncate the
tree to a certain finite height, if we only desire that each message reaches the
channel with sufficiently high probability. Then, of course, f may simply have a
finite array that contains head-pointers to the L(f, i).) Thus, we assume that f
can access the head-pointer to L(f, active(t)) in O(1) time.

Each user f also maintains two other types of lists. List L9(f, t) contains
messages that arrive at f at time t, and which are waiting to enter the next leaf of
the tree. Each user f will also maintain lists L̂(f, i, j), for each positive integer i
and for j 5 1, 2, . . . , k; the use of these lists is as follows: Suppose v is the
node of level i that has an L[value greater than the current time by the
smallest positive amount. (That is, v is the node of level i that will become active
soonest in the future.) Then, L̂(f, i, j) contains messages of f that were
unsuccessful at the jth child of v. In slight variance with the Infinitely-Many
Users Protocol, when a message is unsuccessful at a node u at some level i, it
does not immediately move to its parent; instead, when we reach time R(u), the
list L(f, i) is renamed L̂(f, i 1 1, j), where j is such that u is the jth child of its
parent.

Each list L, L9, L̂ will also have its cardinality at its head. In addition, it will
have a pointer to its last element, so that concatenating two such lists can be
done in O(1) time. The lists L9 and L will also have the important property that
the rank of any message P in the list order is uniformly distributed. For each f,
we maintain these properties as follows. To establish this property for L9(f, t),
we shall require the following assumption on the message arrivals: in each step t,
the messages arriving at user f arrive in random order (among each other) and,
when arriving, they increment uL9(f, t) u and get appended to the head of
L9(f, t). Next, we show the “random ordering” property for the lists L(f, i) by
induction on i. For the base case i 5 0, the discussion preceding (18) shows that
any message waits at most the constant amount b9 5 bD/(D 2 1) of time before
entering a leaf. Thus, when the current time equals L(u) for some leaf u, f must
define L(f, 0) to be the union of at most b9 lists L9(f, t). The user f can just
generate a random permutation of [b9] and concatenate the lists L9(f, t) in the
permuted order; since each L9(f, t) is randomly ordered, so is the computed
L(f, 0). Similarly, suppose by induction that the lists L(f, i) are randomly
ordered for some i; this implies that so are the lists L̂(f, i 1 1, j), for all f and
j. When the current time equals L(u) for some node u at level i 1 1, f can just
generate a random permutation of [k] and concatenate the lists L̂(f, i 1 1, j)
(j 5 1, 2, . . . , k) in the permuted order to produce L(f, i 1 1).

We need to show the probability computations to be done by f. Recall that the
set of messages Pv entering a node v perform protocol RT(Pv, Trial(v), m, 1,
d0). Suppose f is managing its messages at node v in level i of the tree at time
step t. Let Trial(v) 5 {t1 , t2 , . . . , t,}. Recall from Definition 1 that the

1069Contention Resolution with Constant Expected Delay

messages in Pv proceed in m iterations. Suppose f is conducting the jth iteration
at time t; thus,

t [S 8 $tp;,0 1 ,1 1 · · · 1 , j21 , p # ,0 1 ,1 1 · · · 1 , j% .

User f needs to compute the probability pf, t of exactly one message in L(f, i)
attempting to use the channel. We show how to do this, for each tp such that
((h50

j21 ,h) , p # ((h50
j ,h). Recall that f knows the value of N 8 uL(f, i) u 5

uPvu: this is present at the head of L(f, i). At time step tq where q 5 1 1
((h50

j21 ,h), f generates a random integer r1 [{0} ø [N], where

Pr@r1 5 j# 5 SN
j D S 1

uS uD
jS 1 2

1

uS uD
N2j

.

Note that r1 has the same distribution as the number of messages in L(f, i) that
would have attempted using the channel at step tq in our Synchronized Infinitely-
Many Users Protocol. At time step tq, if r1 5 1, f will send the message at the
head of L(f, i) to the channel. Similarly, if t 5 tq11, f will generate a random
integer r2 [{0} ø [N 2 r1] such that

Pr@r2 5 j# 5 SN 2 r1

j D S 1

uS u 2 1D
jS 1 2

1

uS u 2 1D
N2r12j

.

Once again, r2 has the same distribution as the number of messages in L(f, i)
that would have attempted using the channel at step tq11; as before, f will send
the message at the head of L(f, i) to the channel at time step tq11 if and only if
r2 5 1. It is immediate that, at each step, f correctly computes the probability of
a “unique send.”

At this point, it is clear that the infinitely-many users protocol can be
simulated by finitely-many users provided that the users send “dummy messages”
as explained previously. We now argue that sending dummy messages is unnec-
essary because the protocol is “deletion resilient” in the sense that if an
adversary deletes a message (e.g., one that would have collided with a dummy),
the expected lifetime of other messages can only shorten. Formally, we must
show that the simulated system without dummy messages evolves with no worse
probabilities than in the infinite case. We observe from our proof (for the
Synchronized Infinitely-Many Users Model) that it suffices to show the following
analogue of Lemma 2. We need to show that if the number of available time slots
(elements of the set S) is at least as high as (juL(f j, i) u (the sum taken over all
users f j), then: (a) for any f and any message P [L(f, i), the probability that P
succeeds in the uS u time slots above is greater than 1/e, and (b) the total number
of colliding messages C satisfies the tail bound in part (ii) of Lemma 2.

It is not hard to see that the probability of a collision in any one of the time
steps above is at most 1/e. Thus, (b) follows by the same proof as for part (ii) of
Lemma 2. So, let us show (a) now. Let uL(f, i) u 5 N, and let M [[N, uS u]
denote (juL(f j, i) u. In any given step among the uS u steps, the probability that f

1070 L. A. GOLDBERG ET AL.

successfully transmitted a message, is at least

N

uS uS 1 2
1

uS uD
M21

$
N

uS uS 1 2
1

uS uD
uS u21

.
N

e uS u
.

Thus, by linearity of expectation, the expected number of successful transmis-
sions by f is more than N/e. Once again by linearity of expectation, this equals
the sum of the success probabilities of the messages in L(f, i), each of which is
the same by symmetry. Thus, for any given message P [L(f, i), P succeeds
with probability more than 1/e.

This completes the proof for the Synchronized Finitely-Many Users Model.

3.1. A VARIANT. We will take n to be sufficiently large (if n is smaller than a
certain constant, we can use the protocol of Håstad et al. [1996], which can
handle any arrival rate l , 1). We will assume without loss of generality that n is
even; if n is odd, just add a dummy user that gets no messages and does nothing.

Let 3 be a protocol (with constants to be determined in order to meet our
requirements below) running on n completely synchronized users which simu-
lates the Synchronized Infinitely-Many Users Protocol from Section 2 for n2 2 1
steps then skips a step and continues; this “skip” happens at every step of the
form jn2 2 1, where j [Z1. Inputs might, however, arrive during the skipped
step. To simplify 3, note from (5) that we can take D to be even. Now (11) shows
that, for all i $ 1, all elements of Fi will be even; thus, since all skipped steps
(which are of the form jn2 2 1) are odd since n is even, we see that no skipped
step occurs in the Trial set of nodes at level i $ 1. Thus, the skipped steps occur
only during the time slots assigned to the nodes at the leaf level. Since the Trial
sets of the leaves have cardinality b and as we may take n . =b, we have that
such “marked out” (skipped) steps occur at most once in the Trial set of any leaf.
Thus, as long as b is sufficiently large (and n is chosen larger), the “variant”
discussed after Lemma 3 shows that 3 is essentially the same as the Synchronized
Infinitely-Many Users Protocol as far as our analysis is concerned.

We prove the following two useful lemmas about 3. In both lemmas, 3 is run
for at most n40 steps.

LEMMA 7. Suppose l , 1/e and that 3 is run with a {li}1#i#n-dominated
arrival distribution for t # n40 steps. Then the expected delay of any message that
arrives is O(1). Furthermore, the probability that any of the messages that arrive
during the t steps has delay more than n7/2 is at most n260.

PROOF. As discussed above, we can handle 3 just as if it were the Synchro-
nized Infinitely-Many Users Protocol. Then, by Corollary 1, we can choose the
constants for the protocol so that the probability that any given message has a
delay exceeding n7/ 2 is at most (2/n7)c1 (when n is large) for any desired c1.
There are at most nt messages generated, so the probability that there exists
such a message is at most nt(2/n7)c1, which is sufficiently small if c1 is
sufficiently large (say, at least 18). e

LEMMA 8. Suppose l , 1/e and that 3 is run with a {li}1#i#n-dominated
arrival distribution for t # n40 steps. Suppose further that a message arrives at user p
at step t9 # t. Then the expected delay of any message that arrives is O(1).

1071Contention Resolution with Constant Expected Delay

Furthermore, the probability that any message has delay more than n7/2 is at most
n260.

PROOF. The only place where the proof in Section 2 uses the arrival
distribution is in bound (21). We argued at the beginning of this section that (21)
still holds for any {l i}1#i#n-dominated arrival distribution. We now show that a
similar bound holds even if the arrival distribution is conditioned on a message
arriving at user p at step t9 # t. Recall that a leaf u0 is t-bad if and only if its
load (the number of arrivals in the relevant period of sb steps) exceeds bdt21/a.
The number of arrivals in sb steps is at most 1 plus the sum of nsb random
variables Xi, j where, for 1 # i # n and 1 # j # sb, Xi, j is a random variable
that has value 1 with probability at most l i (even conditioned on other arrivals)
and value 0 otherwise. Using stochastic domination, we can apply Theorem 1. We
let n9t 5 (bdt21 2 a)/(asbl). Since sal , 1 (20), b can be chosen sufficiently
large to make n9t . 1. By Theorem 1, the probability that the sum of the random
variables exceeds ((dbt21)/a) 2 1 5 (sbl)n9t is at most H(sbl, n9t). Thus, in
place of (21), we now have “Pr[u0 is t-bad] # H(sbl, n9t)”. A small further
change to be made to our proof for the Synchronized Infinitely-Many Users
Protocol is, in the sentence following (26), to define M 5 Mn9t

. The whole proof
goes through now. e

4. The Unsynchronized Finitely-Many Users Protocol

4.1. NOTATION AND PRELIMINARIES. In our basic model, we have n users
which can start and stop at arbitrary steps, with the constraint that each time a
user starts, it runs for at least a certain polynomial number of steps. (For the
constant expected message delay results in Section 4.4, we require this polyno-
mial to be 8n71; however, n33 is sufficient for all proofs in Section 4.3. No
attempt has been made to optimize these polynomials.) The starting and
stopping times are not allowed to depend upon the progress of the protocol.
Thus, these starting and stopping times can be viewed as being determined in
advance of the running of the protocol.2 Recall that n is taken to be sufficiently
large and that l 5 (i l i , 1/e.

4.2. THE PROTOCOL. The users typically simulate protocol 3 from Section 3.
However, the starting and stopping of users causes the system to become
unsynchronized, so the protocol synchronizes itself from time to time.

Here is an informal description of our protocol. In the normal state a user
maintains a buffer B of size n7 and an unbounded queue Q, each containing
messages to be sent. When a message is generated it is put into B. For each
message m [B the user maintains a variable trial(m) which contains the next
step on which the user will attempt to send m. The step trial(m) will be chosen
using protocol 3. When 3 is “skipping a step” our protocol will take the
opportunity to try to send some messages from Q: at such steps, with probability
1/(3n), the user attempts to send the first message in Q. Each user also

2 Specifically, this models “normal” faults, and disallows “adversarial” faults, in which starting and
stopping times are adaptively chosen (depending on the history of the system) in order to cause
delays.

1072 L. A. GOLDBERG ET AL.

maintains a list L which keeps track of the results (either “failure” or “success”)
of the (up to n2) most recent message sending attempts from Q.

A user goes into a synchronizing state if any message has remained in the
buffer for n7 steps or if L is full (contains n2 results) and only contains failures.
It also goes into a synchronizing state from time to time even when these events
do not occur. (It synchronizes if it has been simulating 3 for at least n40 steps,
and it synchronizes with probability n230 on any given step.) If the user does go
into a synchronizing state, it transfers all messages from B to the end of Q.

In the synchronizing state, a user could be in one of many possible stages, and
its actions depend on the stage that it is in. It will always put any generated
messages into the queue. Also, it sends only dummy messages in the synchroniz-
ing state. (The dummy messages are used for synchronizing. Real messages that
arrive during the synchronization phase must wait until the next normal phase to
be sent.3) The sequence of synchronization stages which a user goes through is as
follows:

Definition. Let W 5 12n4.

JAMMING. The user starting the synchronization jams the channel by sending
messages at every step. In this way, it signals other users to start synchronizing
also.

FINDING_LEADER. Each user sends to the channel with probability 1/n on
each step. The first user to succeed is the leader.

ESTABLISHING_LEADER. In this stage, a user has decided it is the leader, and
it jams the channel so no other user will decide to be the leader.

SETTING_CLOCK. In this stage, a user has established itself as the leader, and
it jams the channel once every 4W steps, giving other users a chance to
synchronize with it.

COPYING_CLOCK. In this stage, a user has decided it is not the leader, and it
attempts to copy the leader’s clock by polling the channel repeatedly to find
the synchronization signal (namely, the jamming of the channel every 4W steps
by the leader). Specifically, it sends to the channel with probability 1/(3n) on
each step and, if it succeeds, it knows that the current step (mod 4W) does not
correspond to the leader’s clock. After many attempts, it should be left with
only one step (mod 4W) that could correspond to the leader’s clock. At the
end of this stage, it synchronizes its clock to the leader’s clock.

WAITING. This stage is used by a user after COPYING_CLOCK in order to
synchronize with the leader’s clock. The user idles during this stage.

POLLING. A user in this stage is simply “biding its time” until it switches to a
normal stage. While doing so, it attempts to send to the channel occasionally
(with probability 1/(3n) on each step) in order to detect new users which
might be joining the system and restarting a synchronization phase. If new
users are detected, the user restarts the synchronization phase. Otherwise, it
begins the normal phase of the protocol.

3 Of course, there is no harm in using real messages for synchronizing, but this does not improve the
provable results, so we prefer to use dummy messages for synchronizing in order to keep the
exposition clear.

1073Contention Resolution with Constant Expected Delay

The length of each of these stages is very important in terms of achieving both
a high probability of synchronization and a high level of robustness. The high
probability of synchronization is achieved by making the “preliminary” stages
(i.e., JAMMING, FINDING_LEADER, and ESTABLISHING_LEADER) of
length Q(W) (this is long enough to guarantee all users in a normal state will
detect a synchronization), and the “synchronizing” stages (i.e., SETTING_
CLOCK, COPYING_CLOCK, and WAITING) of length Q(Wn2) (this gives
users enough time to determine the leader’s clock modulo 4W with high
probability). The high level of robustness is achieved by the following properties:

(1) the lengths of the “preliminary” and “synchronizing” stages are as above,
(2) only the preliminary stages can cause the channel to be jammed,
(3) the “synchronizing” stages cannot detect a new synchronization occurring,
(4) the POLLING stage is of length Q(Wn3) (longer than all of the other stages

combined), and
(5) the POLLING stage is able to detect new synchronizations.

The differing lengths of time for the “preliminary,” “synchronizing” and POLL-
ING stages, and the fact that only the POLLING stage could cause another
synchronization to occur, guarantee that bad events as described at the end of
Section 1.3 cannot occur, even when up to n users are starting at different times
(and stopping periodically).

Whenever a user joins the multiple-access channel, it starts the protocol with
state 5 SYNCHRONIZING, sync_stage 5 JAMMING, clock 5 0, and L empty.
We now give the details of the protocol.

4.3. THE MAIN PROOF. Step 0 will be the step in which the first user starts
the protocol. Users will start and stop (perhaps repeatedly) at certain predeter-
mined times throughout the protocol. We say that the sequence of times at which
users start and stop is allowed if every user runs for at least n33 steps each time it
starts. Just before any step, t, we will refer to the users that are running the
protocol as live users. We will say that the state of the system is normal if all of
these users are in state NORMAL. We will say that it is good if

(1) it is normal, and
(2) for some C , n40 2 n7, every user has clock 5 C, and
(3) every user with uL u $ n2/ 2 has a success in the last n2/ 2 elements of L, and
(4) no message in any user’s buffer has been in that buffer for more than n7/ 2

steps.

We say that the state is a starting state if the state is good and every clock 5 0.
We say that it is synchronizing if

—every user has state 5 NORMAL, or has state 5 SYNCHRONIZING with
either sync_stage 5 JAMMING or sync_stage 5 POLLING, and

—some user has state 5 SYNCHRONIZING with sync_stage 5 JAMMING and
clock 5 0.

We say that the system synchronizes at step t if it is in a normal state just
before step t and in a synchronizing state just after step t. We say that the
synchronization is arbitrary if every user with state 5 SYNCHRONIZING,

1074 L. A. GOLDBERG ET AL.

sync_stage 5 JAMMING and clock 5 0 just after step t had its clock , n40, had
no message waiting more than n7 steps in its buffer, and either had uL u , n2 or
had a success in L, just before step t.

Definition. The interval starting at any step t is defined to be the period [t,
. . . , t 1 n33 2 1].

1075Contention Resolution with Constant Expected Delay

Definition. An interval is said to be productive for a given user if at least
n29/ 2 messages are sent from the user’s queue during the interval, or the queue
is empty at some time during the interval.

1076 L. A. GOLDBERG ET AL.

Definition. An interval is said to be light for a given user if at most n17

messages are placed in the user’s queue during the interval.

Definition. Step t is said to be an out-of-sync step if either the state is normal
just before step t, but two users have different clocks, or the state was not normal
just before any step in [t 2 13n7 1 1, . . . , t]. (Intuitively, an out-of-sync step is
the result of an “unsuccessful” synchronizing phase.) Procedure Normal_Step
simulates protocol 3 from Section 3. Thus, from any starting state until a
synchronization, our system simulates 3. This implies that our system stops
simulating 3 when a user starts up, since that user will immediately start a
synchronization. Then 3 is simulated again once a starting state is reached. We
will use the following lemma.

LEMMA 9. Given a random variable X taking on nonnegative values, and any
two events A and B, E[XuA ∧ B] # E[XuB]/Pr[AuB].

PROOF. E[X uB] 5 E[X uA ∧ B]Pr[A uB] 1 E[X uA# ∧ B]Pr[A# uB]. e

Lemmas 10 to 14 outline the analysis of the normal operation of the
synchronization phase of our protocol.

LEMMA 10. Suppose that the protocol is run with a sequence of user start/stop
times in which no user starts or stops between steps t and t 1 W. If the system is in
a synchronizing state just before step t, then every live user sets sync_stage to
FLEADER just before some step in [t, . . . , t 1 W].

PROOF. A user can have state 5 SYNCHRONIZING and sync_stage 5
JAMMING for only W/ 2 steps. Also, every user with state 5 SYNCHRONIZ-
ING, sync_stage 5 POLLING, and clock , Wn3 2 n2 will set sync_stage to
JAMMING after at most n2 steps; every user with state 5 SYNCHRONIZING,
sync_stage 5 POLLING, and clock $ Wn3 2 n2 will either set sync_stage to
JAMMING within n2 steps, or switch to state 5 NORMAL within n2 steps, and
set sync_stage to JAMMING after at most an additional n4 steps (since when
state 5 NORMAL, a queue step is taken only once every n2 steps); and every
user with state 5 NORMAL will set sync_stage to JAMMING after at most n4

steps. The lemma follows by noting that n2 1 n4 , W/ 2, and that a user remains
in sync_stage 5 JAMMING for W/ 2 steps. e

LEMMA 11. Suppose that the protocol is run with a sequence of user start/stop
times in which no users start or stop between steps t and t 1 4W. If every user sets
sync_stage 5 FLEADER before some step in [t, . . . , t 1 W] then, with probability at
least 1 2 exp(2n3), exactly one user sets sync_stage 5 SETTING_CLOCK just
before some step in [t 1 2W 1 1, . . . , t 1 4W] and every other user sets
sync_stage 5 COPYING_CLOCK just before some step in [t 1 W, . . . , t 1 2W].

PROOF. At most one leader is elected since, after being elected it does not
allow any users to access the channel for 2W steps. Also no user will have
sync_stage 5 FLEADER just before step t 1 2W, since sync_stage 5 FLEA-
DER for at most W steps.

Suppose P is the last user to set sync_stage 5 FLEADER. Then as long as no
leader has been elected, the probability that P is elected at a given step is at least
(1/n)(1 2 (1/n))n21 $ 1/(en). Thus the probability that no leader is elected is
at most (1 2 1/(en))W, which is at most exp(2n3). Then the leader will spend

1077Contention Resolution with Constant Expected Delay

2W steps with sync_stage 5 ESTABLISHING_LEADER before setting sync_
stage to SETTING_CLOCK, while each of the other users will directly set
sync_stage to COPYING_CLOCK. e

LEMMA 12. Suppose that the protocol is run with a sequence of user start/stop
times in which no user starts or stops between steps t 2 3W and t 1 20Wn2. If
exactly one user sets sync_stage 5 SETTING_CLOCK just before step t in [t 1 2W,
. . . , t 1 4W] and every other user sets sync_stage 5 COPYING_CLOCK just before
some step in [t 2 3W, . . . , t], then, with probability at least 1 2 4Wn exp(2n), all
users set sync_stage 5 POLLING with clock 5 0 just before step t 1 20Wn2.

PROOF. The statement in the lemma is clearly true for the user that sets
sync_stage 5 SETTING_CLOCK. Suppose that P is some other user. For each i
in the range 0 # i , 4W, if P’s clock 5 i mod 4W when the leader’s clock 5 0
mod 4W, possibletime[i] will be Yes. If not, P has at least (20Wn2 2
3W)/(4W) chances to set possibletime[i] to No, that is, it has that many chances
to poll when its clock 5 i mod 4W and the leader has already set sync_stage 5
SETTING_CLOCK. Now, 5n2 2 1 5 (20Wn2 2 3W)/(4W). The probability
that P is successful on a given step is at least 2/3(1/3n), and so the probability
that it is unsuccessful in 5n2 2 1 steps is at most (1 2 (2/9n))5n221 # exp(2n).
The lemma follows by summing failure probabilities over all users and moduli of
4W. e

LEMMA 13. Suppose that the protocol is run with a sequence of user start/stop
times in which no users start or stop between steps t and t 1 Wn3. If all users set
sync_stage 5 POLLING with clock 5 0 just before step t then, with probability at
least 1 2 Wn4 exp(2n/10), all users set state 5 NORMAL and clock 5 0 just before
step t 1 Wn3.

PROOF. Say a sequence of n2/ 2 steps is bad for user P if P does not have a
successful transmission on any step in the sequence. Then the probability that a
given user P is the first to set sync_stage 5 JAMMING is at most the probability
that it has a bad sequence of n2/ 2 steps, assuming all other users still have
sync_stage 5 POLLING. This is at most the probability that it either does not
send, or is blocked on each step of the sequence, which is at most

F 1 2
1

3n
1

1

3nS 1

3D G
n2/ 2

5 S 1 2
2

9nD
n2/ 2

exp~2n/10! .

The lemma follows from summing over all steps (actually this overcounts the
number of sequences of n2/ 2 steps) and all users. e

LEMMA 14. Suppose that the protocol is run with a sequence of user start/stop
times in which no user starts or stops between steps t and t 1 13n7. If the system is
in a synchronizing state just before step t then, with probability at least 1 2 2Wn4

exp(2n/10), there is a t9 in [t 1 12n7, . . . , t 1 13n7] such that it is in the starting
state just before step t9.

PROOF. The lemma follows from Lemmas 10, 11, 12 and 13. e

Lemmas 15 to 19 outline the analysis of the robustness of the synchronization
phase. Lemma 15 shows that no matter what state the system is in (i.e., possibly

1078 L. A. GOLDBERG ET AL.

normal, possibly in the middle of a synchronization), if some user starts a
synchronization (possibly because it just started) then, within W/ 2 steps, every
user will be in an early part of the synchronization phase. Then, Lemma 16 shows
that with high probability, within a reasonable amount of time, all users will be
beyond the stages where they would jam the channel, and furthermore there is a
low probability of any going back to those stages (i.e., a low probability of any
synchronization starting). Finally, Lemma 17 shows that soon all users will be in
the polling stage. At this point, as shown in Lemma 18, they will either all
proceed into the normal state, or if a synchronization is started, they will all
detect it and with high probability proceed into a good state as in Lemma 14.

Note that these lemmas require the assumption that no users start or stop.
This is because they are used for showing that the system returns to a normal
state from any situation, even from a bad situation such as a user just having
started in the middle of a synchronization phase. If another user starts before the
system returns to normal, then we would again use these lemmas to show that the
system will return to normal within a reasonable amount of time after that user
started.

LEMMA 15. If the protocol is run and some user sets sync_stage 5 JAMMING
just before step t, and that user does not stop for W/2 steps, then there is a t9 in
[t, . . . , t 1 (W/2)] such that just before step t9 no user has state 5 NORMAL, and
every user that has sync_stage 5 POLLING has clock # W/2.

PROOF. Every user P that has state 5 NORMAL or sync_stage 5 POLLING
just before step t will detect the channel being jammed and set state 5
SYNCHRONIZING and sync_stage 5 JAMMING just before some step in [t 1
1, . . . , t 1 (W/ 2)]. The lemma follows. e

LEMMA 16. Suppose that the protocol is run with a sequence of user start/stop
times in which no user starts or stops between steps t and t 1 5nW. If, just before
step t, no user has state 5 NORMAL and every user with sync_stage 5 POLLING
has clock # W/2, then, with probability at least 1 2 5Wn2 exp(2n/10), there is a t9
in [t, . . . , t 1 5nW] such that, just before step t9, each user has state 5
SYNCHRONIZING with sync_stage set to SETTING_CLOCK, COPYING_
CLOCK, WAITING, or POLLING. Furthermore, if a user has sync_stage 5
POLLING, it has clock # 5nW 1 W/2 and either it has clock # n2/2 or it has had
a success in the last n2/2 steps.

PROOF. Say a user is calm at a given step if it has state 5 SYNCHRONIZ-
ING, and sync_stage set to SETTING_CLOCK, COPYING_CLOCK, WAIT-
ING, or POLLING, and if sync_stage 5 POLLING, then its clock is at most
W/ 2 1 5nW. Note that each user is uncalm for at most 4W steps in t, . . . , t 1
5nW, so there is a sequence of W steps in t, . . . , t 1 5nW in which every user
is calm. Let t9 be the random variable denoting the (n2/ 2 1 1)st step in this
sequence.

Say a sequence of n2/ 2 steps is bad for a user P if P has sync_stage 5
POLLING just before every step in the sequence, and all of its transmissions
during the sequence are blocked by other calm users. The probability that a user
with sync_stage 5 POLLING adds a failure to L on a given step, either due to
not transmitting or due to being blocked by a calm user, is at most 1 2 1/(3n) 1
(1/(3n))(1/3) 5 1 2 2/(9n). Thus, the probability that a given sequence of

1079Contention Resolution with Constant Expected Delay

n2/ 2 steps is bad for a given user is at most (1 2 2/(9n))n2/ 2 # exp(2n/10).
Thus, with probability at least 1 2 5Wn2 exp(2n/10), no sequence of n2/ 2 steps
in t, . . . , t 1 5nW is bad for any user. In particular, the sequence of n2/ 2 steps
preceding t9 is not bad for any user, so any user that has sync_stage 5 POLLING
just before step t9 with clock . n2/ 2 has a success in the sequence of n2/ 2 steps
preceding t9. e

LEMMA 17. Suppose that the protocol is run with a sequence of user start/stop
times in which no user starts or stops between steps t and t 1 5nW 1 (W/2) 1
20Wn2. If some user sets sync_stage 5 JAMMING just before step t, then, with
probability at least 1 2 21Wn3 exp(2n/10), there is a t9 in [t, . . . , t 1 5nW 1
(W/2) 1 20Wn2] such that, just before step t9, each user has sync_stage 5
POLLING.

PROOF. We know by Lemmas 15 and 16 that, with probability at least 1 2
5Wn2 exp(2n/10), there is a t in [t, . . . , t 1 5nW 1 (W/ 2)] such that, just
before step t, each user has state 5 SYNCHRONIZING and sync_stage set to
SETTING_CLOCK, COPYING_CLOCK, WAITING, or POLLING. Further-
more, if a user has sync_stage 5 POLLING, it has clock # 5nW 1 W/ 2, and
either it has clock # n2/ 2 or it has had a successful poll in the last n2/ 2 polls.

Unless a user sets sync_stage 5 JAMMING in the next 20Wn2 steps, there will
be a step t9 such that each user has sync_stage 5 POLLING. But to set
sync_stage 5 JAMMING, a user with sync_stage 5 POLLING must be unsuc-
cessful in all transmission attempts during some n2/ 2 consecutive steps. For a
single user and a single set of n2/ 2 consecutive steps, the probability of this is at
most exp(2n/10) (as in the proof of Lemma 13). For all users and all possible
sets of n2/ 2 consecutive steps in t, . . . , t 1 20Wn2, this probability is bounded
by 20Wn3 exp(2n/10). The lemma follows. e

LEMMA 18. Suppose that the protocol is run with a sequence of user start/stop
times in which no user starts or stops between steps t and t 1 Wn3 1 13n7. If the
system is in a state in which every user has state 5 NORMAL or sync_stage 5
POLLING just before step t, then, with probability at least 1 2 2Wn4 exp(2n/10),
there is a t9 in [t, . . . , t 1 Wn3 1 13n7] such that the system is in a normal state just
before step t9.

PROOF. If no user sets sync_stage 5 JAMMING during steps [t, . . . , t 1
Wn3 2 1] then the system reaches a normal state before step t 1 Wn3.
Otherwise, suppose that some user sets sync_stage 5 JAMMING just before step
t0 # t 1 Wn3 2 1. By Lemma 14, with probability at least 1 2 2Wn4

exp(2n/10), the system will enter a starting state by step t0 1 13n7. e

Observation 1. Suppose that the protocol is run with a sequence of user
start/stop times in which no user starts between steps t and t 1 21Wn2 2 1.
Suppose that no user sets sync_stage 5 JAMMING during steps t, . . . , t 1
21Wn2 2 1. Then every user has state 5 NORMAL or sync_stage 5 POLLING
just before step t 1 21Wn2.

To see why this observation is true, consider the interval of steps t, . . . , t 1
21Wn2 2 1. Note that, once a user has state 5 NORMAL or sync_stage 5
POLLING (during this interval), it won’t change state or sync_stage (since that
would cause sync_stage 5 JAMMING). The observation then follows from the

1080 L. A. GOLDBERG ET AL.

fact that the cumulative amount of time that any user can spend in any
sync_stage besides POLLING is less than 21Wn2. (JAMMING takes at most
W/ 2 steps, FLEADER takes at most W steps, ESTABLISHING_LEADER takes
at most 2W steps, SETTING_CLOCK or COPYING_CLOCK takes at most
20Wn2 steps, and WAITING takes at most 4W steps.)

LEMMA 19. Suppose that the protocol is run with a sequence of user start/stop
times in which no user starts or stops between steps t and t 1 n8. Given any system
state just before step t, with probability at least 1 2 3Wn4 exp(2n/10), there is a t9 in
[t, . . . , t 1 n8] such that the system is in a normal state just before step t9.

PROOF. The lemma follows from Lemmas 17 and 18, and Observation 1. e

Lemmas 20 –23 and Theorem 4 show that if the protocol is run with a
{l i}1#i#n-dominated message arrivals distribution then the system is usually in a
good state (i.e., synchronized and running the 3 protocol), and thus the expected
time that messages wait in the buffer is constant.

LEMMA 20. Suppose that the protocol is run with a sequence of user start/stop
times in which no user starts or stops during steps t, . . . , t 1 n31/4 2 1. Given any
system state just before step t, with probability at least 1 2 6Wn4 exp(2n/10), there is
a t9 in [t, . . . , t 1 n31/4] such that the system is in a starting state just before step t9.

PROOF. By Lemma 19, no matter what state the system is in at step t, with
probability at least 1 2 3Wn4 exp(2n/10) it will be in a normal state within n8

steps. Then the probability that it does not enter a synchronizing state within
n31/8 steps is at most (1 2 n230)(n31/8)2(n29/8) # exp(2n/10). Then, by Lemma
14, once it enters a synchronizing state, with probability at least 1 2 2Wn4

exp(2n/10) it will be in a starting state within 13n7 steps. The lemma follows
directly from summing failure probabilities. e

LEMMA 21. Suppose that the protocol is run with a sequence of user start/stop
times in which no user starts or stops between steps t and t 1 n31 2 2n8. Given any
system state just before step t, with probability at least 1 2 4Wn4 exp(2n/10) there is
a t9 in [t, . . . , t 1 n31 2 2n8] such that the system is in a synchronizing state just
before step t9.

PROOF. From Lemma 19, with probability at least 1 2 3Wn4 exp(2n/10),
the system will be in a normal state at some time steps in [t, . . . , t 1 n8]. Once
the system is in a normal state, on every step except one out of every n2 steps,
with probability at least n230 a user will switch to a synchronizing state. The
probability of this not happening in the next n31 2 3n8 steps is at most (1 2
n230)(n3123n82n29) # exp(2n/ 2). The lemma follows from summing the failure
probabilities. e

4.1.1. Arrival Distribution. For the remainder of this subsection, we will
assume (without further mention) that the arrival distribution is {l i}1#i#n-
dominated distribution.

LEMMA 22. Let t be a nonnegative integer less than n40 2 n7. Suppose that no
user starts or stops between steps t and t 1 t. If the system is in a starting state just
before step t, then, with probability at least 1 2 (13.5)n222, the system is in a good
state just before step t 1 t.

1081Contention Resolution with Constant Expected Delay

PROOF. Consider the following experiment, in which the protocol is started in
a starting state just before step t and run according to the experiment.

From the definition of a good state (see the beginning of Section 4.3), if none
of {FAIL1, . . . , FAIL4} occurs then the system is in a good state just before step
t 1 t. As in the proof of Lemma 12, the probability that a given element of L is
“success” is at least 2/(9n), so the probability that FAIL1 occurs is at most tn
exp(2n/9). By Lemma 7, and the fact that at most n40/W starting states occur in
the experiment (so 3 is started at most n40/W times), the probability that FAIL2
occurs is at most (n40/W)n260 , n224. In the experiment, the clocks of the
users never reach n40. If the state is normal, all users have the same value of c,
every user with uL u $ n2/ 2 has a success in the last n2/ 2 elements of L, and
every user has no message that has waited more than n7/ 2 steps, then the
probability that a given user sets state 5 SYNCHRONIZING on a given step is
at most n230. Thus, the probability that FAIL3 occurs is at most 13n222. By
Lemma 14, the probability of failing to successfully restart after a given
synchronization state is at most 2Wn4 exp(2n/10). Hence, the probability of
FAIL4 occurring is at most 2tWn4 exp(2n/10). e

Definition. Let T 5 n31.

LEMMA 23. Suppose that no user starts or stops between steps t and t 1 T.
Given any system state just before step t, with probability at least 1 2 14n222, the
system is in a good state just before step t 1 T.

PROOF. The lemma follows from Lemma 21, Lemma 14, and Lemma 22. e

THEOREM 4. Suppose that no user starts or stops during steps [t 2 T, . . . , t 1
n7]. Given any system state just before step t 2 T, suppose that a message is
generated at step t. The expected time that the message spends in the buffer is O(1).

PROOF. Let X be the time that the message spends in the buffer and let G be
the event that the state just before step t is good and has clock less than T. Since

1082 L. A. GOLDBERG ET AL.

X is always at most n7, E[X] # n7 Pr[G#] 1 E[X uG]. Now, Pr[G#] is at most the
probability that the state just before step t is not good plus the probability that
the state just before step t has clock at least T. By Lemma 20, the latter
probability is at most 6Wn4 exp(2n/10), and, by Lemma 23, the former
probability is at most 14n222. Thus, E[X] # O(1) 1 E[X uG]. Then E[X uG] 5
(t9 E[X uGt9]Pr[Gt9uG], where Gt9 is the event that the good state just before
step t has clock t9 , T. Let At9 be the event that a message p9 is born in step t9
of the 3 protocol. Let B be the event that, prior to that step t9 (in the 3
protocol), no message has waited more than n7 steps, and at step t9 no message
in the buffer has waited more than n7/ 2 steps. Let Y be the random variable
denoting the number of steps required to transmit p9 (in 3). Then E[X uGt9] #
E[Y uAt9 ` B]. (It would be equal except that in our protocol, it is possible for a
message to be transferred to the queue before it is successfully sent from the
buffer.) So by Lemma 9, E[X uGt9] # E[Y uAt9 ` B] # E[Y uAt9]/Pr[B uAt9]. Then
by Lemma 8, E[X uGt9] # 2E[Y uAt9] # O(1), @t9 , T. Thus E[X uG] 5 O(1). e

The remaining results in Section 4.3 show that the probability of a message
entering a queue is low, the probability of a queue being very full is low, and the
rate at which the messages are sent from the queue is high enough that the
expected time any given message spends in the queue is low. (Note that most
messages will spend no time in the queue.)

LEMMA 24. Suppose that the protocol is run with an allowed sequence of user
start/stop times. The probability that there is a t9 in [t, . . . , t 1 n32] such that the
system is in a starting state just before step t9 is at least 1 2 6Wn4 exp(2n/10), given
any system state just before step t.

PROOF. Divide the interval of n32 steps into subintervals of n31/4 steps each.
Since at most n users can start or stop during the interval, and those that start
continue for the remainder of the interval, there must be a subinterval in which
no users start or stop. The result follows from Lemma 20. e

LEMMA 25. Suppose that the protocol is run with a given allowed sequence of
user start/stop times in which no user starts or stops between steps t 2 T and t 1
n7/2. Given any system state just before step t 2 T, suppose that a message R arrives
at user P at step t. The probability that R enters the queue is at most 16n222.

PROOF. Let X be the event that R enters the queue. Let G be the event that
just before step t the state is good and has clock less than T. Then, by Lemma 23
and Lemma 20, Pr[X] # 1 Pr[G#] 1 Pr[X uG] # 14n222 1 6Wn4 exp(2n/10) 1
Pr[X uG]. Note that Pr[X uG] 5 (t9 Pr[X uGt9]Pr[Gt9uG], where Gt9 is the event
that the good state just before step t has clock t9. Consider the following
experiment (the corresponding intuition and analysis are presented after its
description; so the reader is asked to first skip to the end of the description and
then study the description as needed):

This experiment models the system beginning at a start state, and going for t9
1 n7/ 2 # T 1 n7/ 2 steps, but assumes that there are no arbitrary synchroniza-
tions, and that there is a message R generated at P at clock t9. The experiment
fails at step i 5 t9 if the system enters a state which is not good at that point. It
fails at a step i , t9 or t9 , i , t9 1 n7/ 2 if the system does a nonarbitrary
synchronization at that point. It fails at step i 5 t9 1 n7/ 2 if the message R has

1083Contention Resolution with Constant Expected Delay

not been sent successfully. Let A be the event that FAIL1 occurs, B be the event
that FAIL2 occurs, C be the event that FAIL3 occurs, and S be the event that
the experiment does not fail during steps 1, . . . , t9. The probability that R is still
in the buffer after step t 1 n7/ 2 1 1, or the real system synchronizes before step
t 1 n7/ 2 1 1, conditioned on the fact that the state just before step t is good
and has clock t9 and on the fact that message R is generated at P at step t9, is at
most the sum of (1) Pr[C uS], (2) Pr[A uS], (3) Pr[B uS], and (4) the probability
that there is an arbitrary synchronization during steps t, . . . , t 1 n7/ 2 2 1.
Probability (4) is at most n(n7/ 2)(n230) 5 n222/ 2. Now note that Pr[A uS] #
Pr[A]/Pr[S]. By the proof of Lemma 22 (using Lemma 8),

Pr@S# $ 1 2 @n40~n exp~2n/9!! 1 n260# $
1

2

and

Pr@A# # n40~n exp~2n/9!! 1 n260.

Thus, Pr[A uS] # 3n260.
Note also that Pr[B uS] # Pr[B]/Pr[S]. By Lemma 8, Pr[B] # n260. (This can

only be decreased by a queue step causing a synchronization.) Then, Pr[B uS] #
2n260.

Finally, Pr[C uS] 5 0, since all messages at step t9 have waited for at most n7/ 2
steps, and the experiment stops at step t9 1 n7/ 2.

Thus, Pr[X uG] # n222, which completes the proof. e

LEMMA 26. Let j be an integer in [0, . . . , 14]. Suppose that no user starts or
stops during steps t, . . . , t 1 n141j 2 1. If the system is in a starting state just before
step t, then the probability that the system enters a synchronizing state during steps
t, . . . , t 1 n141j 2 1 is at most 2n2151j.

1084 L. A. GOLDBERG ET AL.

PROOF. The probability that an arbitrary synchronization occurs during steps
t, . . . , t 1 n141j 2 1 is at most n z n230 z n141j 5 n2151j. Following the proof
of Lemma 22, we see that the probability that a nonarbitrary synchronization
occurs during these steps is at most n260 1 n151j exp(2n/9). (The probability
that a message waits in a buffer more than n7 steps is at most n260 by Lemma 7
and the probability that some user gets n2 failures on L is at most n141j z n z
exp(2n/9).) e

LEMMA 27. Suppose that no user starts or stops during the interval [t, . . . , t 1
n33 2 1]. If the system is in a starting state just before step t, then the probability that
either some step in the interval is an out-of-sync step or that the system is in a
starting state just before more than n7 steps in the interval is at most 3Wn11

exp(2n/10).

PROOF. If the system is in a starting state x times, where x . n7, then at least
x 2 n7/ 2 of these must be followed by fewer than 2n26 steps before the next
synchronization phase. By Lemma 26, the probability of fewer than 2n26 steps
occurring between a starting state and the next synchronization phases is at most
2n22. Thus, the probability of this happening after at least x 2 n7/ 2 of the x
starting states is at most 2x(2n22)x2n7/ 2 which is at most 22n7/ 2.

If the system is in a starting state just before at most n7 steps in the interval,
then the only time that the system could have an out-of-sync step during the
interval is during at most n7 2 1 subintervals which start with a synchronizing
state and end in a starting state. By the proof of Lemma 14, the probability that
a given subinterval contains an out-of-sync step is at most 2Wn4 exp(2n/10).
Thus, the probability that an out-of-sync step occurs in the interval is at most
n7(2Wn4 exp(2n/10)). e

LEMMA 28. Suppose that the protocol is run with a given allowed sequence of
user start/stop times after step t, and a given system state just before step t. Divide the
interval starting at step t into blocks of n4 steps. The probability that the interval has
more than 27n11 blocks containing nonnormal steps is at most 7Wn12 exp(2n/10).

PROOF. Recall that the interval starting at step t is defined to be the period
[t, . . . , t 1 n33 2 1], and that we are assuming that each user runs at least n33

steps each time it starts. Let S contain the first step of the interval and each step
during the interval in which a user starts or stops. Then uS u # 2n 1 1. Let S9
contain S plus for each step s [S, all steps after s until the system returns to a
normal state. By Lemma 19, with probability at least 1 2 (2n 1 1)(3Wn4

exp(2n/10)), S9 can be covered by 2n 1 1 sequences of at most n8 steps each.
Then the set S9 partitions the other steps in the interval into at most 2n 1 1
subintervals, such that the state is normal just before each subinterval, and no
users start or stop during any subinterval. We perform the following analysis for
each of these subintervals.

By Lemma 14, once the system enters a synchronizing state, with probability at
least 1 2 2Wn4 exp(2n/10) it will be in a starting state within 13n7 steps. Once
the system is in a starting state, by Lemma 27 with probability at least 1 2
3Wn11 exp(2n/10), it will enter a synchronizing state at most n7 1 1 times, and
each synchronizing phase will last at most 13n7 steps.

In total, the probability of not performing as stated above is at most

1085Contention Resolution with Constant Expected Delay

~2n 1 1!~3Wn4exp~2n/10! 1 2Wn4exp~2n/10! 1 3Wn11

exp~2n/10!! # 7Wn12exp~2n/10! .

Finally, the set S9 can intersect at most (2n 1 1)((n8/n4) 1 1) blocks of size n4.
Then, in each of the 2n 1 1 subintervals of steps between those of S9, there are
at most n7 1 2 synchronizing phases, each of which can intersect at most
((13n7/n4) 1 1) blocks of size n4. Altogether, at most 27n11 blocks of size n4

will contain nonnormal steps. e

COROLLARY 2. Let x be an integer in the range 0 # x # n29 2 54n11. Suppose
that the protocol is run with a given allowed sequence of user start/stop times after
step t, and a given system state just before step t. Focus on a particular nonempty
queue at step t. The probability that the queue remains nonempty for the next xn4 1
54n15 steps, but fewer than x messages are delivered from it during this period, is at
most 7Wn12 exp(2n/10).

PROOF. Divide the next xn4 1 54n15 # n33 steps into blocks of size n4. By
Lemma 28, with probability at least 1 2 7Wn12 exp(2n/10), at most 54n11 of
these blocks will either contain a nonnormal step, or precede a block which
contains a nonnormal step. The corollary follows by noting that if block i
contains all normal steps and no synchronization is started in block i 1 1, then a
message must have been sent from the queue during block i. e

LEMMA 29. Suppose that the protocol is run with a given allowed sequence of
user start/stop times after step t, and a given system state just before step t. Then the
probability that the interval starting at t is light for a given user is at least 1 2 8Wn12

exp(2n/10).

PROOF. As in the proof of Lemma 28, with probability at least 1 2 7Wn12

exp(2n/10), the nonnormal steps could be covered by at most (2n 1 1) 1
(2n 1 1)(n7 1 2) subintervals of at most n8 steps each, and each of the
subintervals would contribute at most n8 1 n7 messages to the queue (including
the at most n7 that could be transferred from the user’s buffer). If this were
the case, at most 3n16 messages would be placed in the queue during the
interval. e

LEMMA 30. Suppose that the protocol is run with a given allowed sequence of
user start/stop times after step t, and a given system state just before step t. The
probability that the interval starting at t is productive for a given user is at least 1 2
7Wn12 exp(2n/10).

PROOF. Follows from Corollary 2. e

LEMMA 31. Suppose that the protocol is run with a given allowed sequence of
user start/stop times before step t. The probability that more than n17 1 j(n33 1 n7)
messages are in a queue just before step t is at most exp(2jn/30) for j $ 1 and at
most exp(2n/30) for j 5 0.

PROOF. For every nonnegative integer j, we will refer to the interval [t 2
(j 1 1)n33 1 1, . . . , t 2 jn33] as “interval j.” Choose k such that the queue
was empty just before some step in interval k, but was not empty just before any
steps in intervals 0 to (k 2 1). We say that interval j is “bad” if it is not both

1086 L. A. GOLDBERG ET AL.

productive and light for the user. The size of the queue increases by at most
n33 1 n7 during any interval, since the user generates at most one message
during each step. If interval k is not bad, then the queue size increases by at most
n17 during interval k. If interval j is not bad for j , k, then the queue size
decreases by at least n29/ 2 2 n17 during interval k. Thus, if b of intervals 0 to k
are bad, then the size of the queue just before step t is at most

~k 1 1!~n33 1 n7! 2 ~k 1 1 2 b!~n33 1 n7 1 n29/ 2 2 n17! 1 n17.

This quantity is at most n17 1 i(n33 1 n7) unless b . i/ 2 1 k/(8n4). Thus, the
probability that the queue has more than n17 1 i(n33 1 n7) messages just
before step t is at most the probability that, for some non-negative integer k,
more than (i/ 2) 1 (k/(8n4)) of intervals 0 to k are bad. By Lemmas 29 and 30,
the probability that a given interval is bad is at most 16Wn12 exp(2n/10). Let
X 5 16Wn12 exp(2n/10). Then, for i $ 1, the failure probability is at most

O
k$0

S k
~i/ 2! 1 ~k/~8n4!! 1 1 DX (i/ 2)1(k/(8n4))11

O
k$0

~16en4X! (i/ 2)1(k/(8n4))11

O
k$0

~16en4X! (i/ 2)1(k/(8n4))

~16en4X! i/ 2 O
k$0

~16en4X!k/(8n4)

~16en4X! i/ 28n4 O
k$0

~16en4X!k

2~8n4!~16en4X! i/ 2 # exp~2in/30! .

For i 5 0, this probability is at most

O
k$0

S k
k/~8n4! 1 1 DX k/(8n4)11 # O

k$0

~16en4X! k/(8n4)11

~16en4X! O
k$0

~16en4X! k/(8n4)

2~8n4!~16en4X! # exp~2n/30! . e

LEMMA 32. Suppose that the protocol is run with a given allowed sequence of
user start/stop times after step t 1 n32. Suppose that no users start or stop during
steps [t 2 T, . . . , t 1 n32] and that the system state just before step t 2 T is given.
The probability that an out-of-sync step occurs before a starting step after t is at most
4Wn11 exp(2n/10).

PROOF. By Lemma 20, the probability of not having a start state just before
any step in the subinterval [t 2 T, . . . , t 2 T/ 2] is at most 6Wn4 exp(2n/10).

1087Contention Resolution with Constant Expected Delay

Then, by (the proof of) Lemma 27, the probability of having an out-of-sync step
before step t 1 n32 is at most 3Wn11 exp(2n/10). Finally, by Lemma 20, the
probability of not having a start state in the subinterval [t, . . . , t 1 T/ 2] is at
most 6Wn4 exp(2n/10). The lemma follows by summing the failure
probabilities. e

LEMMA 33. Suppose that the protocol is run with a given allowed sequence of
user start/stop times after step t, and a given system state just before step t in which
queue Q contains at least x messages. Then the expected time until at least x
messages have been sent from Q is O(xn4 1 n15).

PROOF. Our first case is when x # n29/ 2. Let A be the event that at least x
messages are sent in steps t, . . . , t 1 xn4 1 54n15 2 1. We refer to the interval
[t 1 xn4 1 54n15 1 (k 2 1)n33, . . . , t 1 xn4 1 54n15 1 kn33 2 1] as
“interval k.” Let Ck be the event that interval k is productive. Let Ex be the
expected time to send the x messages. Using Corollary 2 and Lemma 30,

Ex # ~ xn4 1 54n15! 1 n33Pr@A# # 1 O
k.1

n33PrF `
1#i#k21

Ci# G
xn4 1 54n15 1 O

k$1

n33~7Wn12exp~2n/10!!k

5 O~ xn4 1 n15! .

Our second and last case is when x . n29/ 2. Let r 5 2x/n29. Note that after r
productive intervals, at least x messages will be sent. Let Dk be the event that
intervals 1 to k do not contain at least r productive intervals, but that intervals 1
to (k 1 1) do contain r productive intervals.

Ex # O
k$r

~k 1 1!n33Pr@Dk# # n33~2r 1 O
k$2r

~k 1 1!Pr@Dk#!

n33S 2r 1 O
k$2r

~k 1 1!S k
k 2 rD ~7Wn12exp~2n/10!!k2rD

n33~2r 1 O
k$2r

~k 1 1!2k~7Wn12exp~2n/10!!k2r!

5 O~n33r! 5 O~ xn4! . e

THEOREM 5. Suppose that the protocol is run with a {li}1#i#n-dominated
arrival distribution, a given allowed sequence of user start/stop times in which no
users start or stop during steps [t 2 n33, . . . , t 1 n33]. Suppose that a message is
generated at step t. The expected time that the message spends in the queue is O(1).

PROOF. Let I, be the interval [t 2 ,n33 1 1, . . . , t 2 (, 2 1)n33]. Let A0
be the event that the size of the queue is at most n17 2 1 just before step t 2
n33 1 1, and, for i $ 1, let Ai be the event that the size of the queue just before
step t 2 n33 1 1 is in the range [n17 1 (i 2 1)(n33 1 n7), n17 1 i(n33 1
n7) 2 1]. Let B the event that interval I1 is light. Let C be the event that the

1088 L. A. GOLDBERG ET AL.

message enters the queue. Let t9 be the random variable denoting the smallest
integer such that t9 $ t and the state of the system just before step t9 is a starting
state. Let t0 be the random variable denoting the smallest integer such that t0 $
t and step t0 is out-of-sync. Let F be the event that t9 , t0. Let X be the random
variable denoting the amount of time that the message spends in the queue. All
probabilities in this proof will be conditioned on the fact that no users start or
stop during steps [t 2 n33, . . . , t 1 n33].

We start by bounding (i$1 E[X uAi ∧ C]Pr[Ai ∧ C]. By Lemma 31, Pr[Ai] #
exp(2(max{i 2 1, 1})n/30) so Pr[Ai ∧ C] # exp(2(max{i 2 1, 1})n/30). By
Lemma 33,

E@X uAi ∧ C# # E@t9 2 t uAi ∧ C# 1 O~n4~n17 1 ~i 1 1!~n33 1 n7!!! .

(This inequality holds because, given that Ai holds, there are at most n17 1
i(n33 1 n7) messages in the queue before interval I1 and at most n33 1 n7 get
added during interval I1.) By Lemma 24, E[t9 2 t uAi ∧ C] is at most (j$1
n32(6Wn4 exp(2n/10)) j21 5 O(n32). Thus, E[X uAi ∧ C] 5 (i 1 1)O(n37).
Thus,

O
i$1

E@X uAi ∧ C#Pr@Ai ∧ C# # O
i$1

exp~2~max$i 2 1, 1%!n/30!~i 1 1!O~n37!

5 O~1! .

We now bound E[X uA0 ∧ B# ∧ C]Pr[A0 ∧ B# ∧ C]. By Lemma 29, Pr[B#] #
8Wn12 exp(2n/10), so Pr[A0 ∧ B# ∧ C] # 8Wn12 exp(2n/10). As above,
E[X uA0 ∧ B# ∧ C] 5 O(n37), so

E@X uA0 ∧ B# ∧ C#Pr@A0 ∧ B# ∧ C# # ~8Wn12exp~2n/10!!O~n37! 5 O~1! .

Next, we bound E[X uA0 ∧ F# ∧ C]Pr[A0 ∧ F# ∧ C]. By Lemma 32, the
probability of F# is at most 4Wn11 exp(2n/10), so Pr[A0 ∧ F# ∧ C] # 4Wn11

exp(2n/10). As above, E[X uA0 ∧ F# ∧ C] is at most E[t9 2 t uA0 ∧ F# ∧ C] 1
O(n37). Since C occurs, the system is in a synchronization state just before some
state in [t, . . . , t 1 n7]. Since F# occurs, there is an out-of-sync step in [t, . . . ,
t 1 14n7]. By Lemma 24, the expected time from this out-of-sync step until a
starting state occurs is at most (j$1 n32(6Wn4 exp(2n/10)) j21 5 O(n32). Thus,
E[t9 2 t uA0 ∧ F# ∧ C] 5 O(n32) and E[X uA0 ∧ F# ∧ C] 5 O(n37). Thus,

E@X uA0 ∧ F# ∧ C#Pr@A0 ∧ F# ∧ C# # ~4Wn11exp~2n/10!!O~n37! 5 O~1! .

Finally, we bound E[X uA0 ∧ B ∧ F ∧ C]Pr[A0 ∧ B ∧ F ∧ C]. By Lemma 25,
the probability of C is at most 16n222, so Pr[A0 ∧ B ∧ F ∧ C] # 16n222. We
now wish to bound E[X uA0 ∧ B ∧ F ∧ C]. Since A0 and B hold, the size of the
queue just before step t is at most 2n17. Suppose that t9 . t 1 2n21 1 13n7.
Then, since F holds, no step in t, . . . , t 1 2n21 1 13n7 is out-of-sync. Suppose
first that no step in t, . . . , t 1 2n21 1 13n7 is out-of-sync and that the state is
normal before each step in t, . . . , t 1 2n21. Then all of the clocks will be the
same, so at least 2n17 messages will be sent from the queue during this period.
Suppose second that no step in t, . . . , t 1 2n21 1 13n7 is out-of-sync, but that
the state is not normal just before some step in [t, . . . , t 1 2n21]. Then since no

1089Contention Resolution with Constant Expected Delay

state in t, . . . , t 1 2n21 1 13n7 is out-of-sync, t9 # t 1 2n21 1 13n7. Finally,
suppose that t9 # t 1 2n21 1 13n7. By Lemma 33, E[X uA0 ∧ B ∧ C ∧ F] is at
most t9 2 t 1 O(n4 z 2n17) 5 O(n21). Thus,

E@X uA0 ∧ B ∧ F ∧ C#Pr@A0 ∧ B ∧ F ∧ C# # 16n222O~n21! 5 O~1! . e

Observation 2. When the protocol is run, every message spends at most n7

steps in the buffer.

THEOREM 6. Suppose that the protocol is run with a {li}1#i#n-dominated
arrival distribution and a given allowed sequence of user start/stop times. Suppose
that a message is generated at step t. Then the expected time that the message spends
in the queue is O(n37).

PROOF. Let X be the random variable denoting the size of the queue just
before step t. By Lemma 31, for i $ 1, the probability that X . n17 1 i(n33 1
n7) is at most exp(2in/30). Given a particular value of X, Lemma 33 shows that
the expected time to send the message is O(Xn4 1 n15). Thus, the overall
expected time to send the message is

O~n4~n17 1 n33 1 n7! 1 n15! 1 O
i$2

O~n4~n17 1 i~n33 1 n7!! 1 n15!

z exp~2~i 2 1!n/30! 5 O~n37! . e

4.4. FINAL RESULTS. For v [[n], let Tv be the set of steps in which user v is
running.

THEOREM 7. Suppose that the protocol is run with a {li}1#i#n-Bernoulli arrival
distribution and a given sequence of user start/stop times in which each user runs for
at least 8n71 steps every time it starts. Then E[Wavg] 5 O(1).

PROOF. First, note that the sequence of user start/stop times is allowed. Let R
be the set of steps within n33 steps of the time that a user starts or stops. Lemma
34 proves that if the {l i}1#i#n-Bernoulli arrival distribution is conditioned on
having at most m messages arrive by time t, the resulting arrival distribution is a
{l i}1#i#n-dominated distribution. Therefore, the system described in the state-
ment of the theorem satisfies the conditions of Lemma 35 with (from Theorem 4
and Theorem 5) C9 5 O(1) and (from Theorem 6 and Observation 2) C 5
O(n37). From the condition given in the statement of this theorem, we can see
that

S 5 max

v[V

lim sup

t3`

uR ù Tv ù @t# u

uTv ù @t# u
n237.

(The worst case for S is when a user runs for 8n71 1 6(n 2 1)n33 1 2n33 steps,
and the other n 2 1 users have [ending, starting, ending, starting] times

@2in33, 2~n 2 1!n33 1 2in33, 2~n 2 1!n33 1 2in33 1 8n71,

4~n 2 1!n33 1 2in33 1 8n71# ,

1090 L. A. GOLDBERG ET AL.

for 1 # i # n 2 1. Then uR u 5 8(n 2 1)n33 1 2n33, including the n33 steps
just after the user starts and the n33 steps just before the user stops.) The
theorem then follows from Lemma 35. (Note that C and C9 are actually
functions of l, but l is a constant.) e

LEMMA 34. Consider the distribution obtained from the {li}1#i#n-Bernoulli
arrivals distribution by adding the condition that at most m messages arrive by step t.
The resulting arrival distribution is a {li}1#i#n-dominated distribution.

PROOF. Let Av, t9 denote the probability that a message arrives at user v at
time t9 (under the {l i}1#i#n-Bernoulli arrivals distribution). Let E be any event
concerning the arrival of messages at steps other than t9 or at users other than v.
Let C be the event that at most m messages arrive during steps 1, . . . , t. We
wish to show that Pr[Av, t9uC ∧ E] # lv. If t9 . t, then Pr[Av, t9uC ∧ E] 5 lv by
the independence of the {l i}1#i#n-Bernoulli arrivals distribution, so suppose
that t9 # t. Let E9 denote the part of event E concerning arrivals at steps 1, . . . ,
t. By the independence of the {l i}1#i#n-Bernoulli arrivals distribution,
Pr[Av, t9uC ∧ E] 5 Pr[Av, t9uC ∧ E9]. Let W be the set containing every possible
sequence of message arrivals during steps 1, . . . , t with the arrival at user v and
step t9 omitted. Let W9 be the set of elements of W which satisfy E9 and have
fewer than m arrivals and let W0 be the set of elements of W which satisfy E9 and
have exactly m arrivals.

Pr@Av , t9uC ` E9# 5 O
w[W

Pr@Av , t9uw ∧ C ∧ E9#Pr@w uC ∧ E9#

5 O
w[W9

Pr@Av , t9uw ∧ C#Pr@w uC ∧ E9#

1 O
w[W0

Pr@Av , t9uw ∧ C#Pr@w uC ∧ E9#

5 O
w[W9

Pr@Av , t9uw#Pr@w uC ∧ E9#

5 lv O
w[W9

Pr@w uC ∧ E9# # lv . e

LEMMA 35. Suppose that, for every m and t, a protocol running on n users has
the property: for all users v, if a message P is generated at user v at step t [R and is
one of the first m messages generated, then the expected time before message P is sent
is at most C, and if a message P is generated at user v at step t [R# and is one of the
first m messages generated, then the expected time before message P is sent is at most
C9. Then E[Wavg] # 2(SC 1 C9), where S 5 maxv[V lim supt3` uR ù Tv ù [t]u/
u Tv ù [t]u.

PROOF. Recall that l 5 (v[V lv, that lv . 0 for all v [V and that Wavg 5
limm3` 1/m (i51

m Wi, where Wi is the delay of the ith message generated in the
system.

1091Contention Resolution with Constant Expected Delay

E@Wavg# 5 E3 lim
m3`

1

m
O
i51

m

Wi4 # E3 lim sup
m3`

1

m
O
i51

m

Wi4 5 lim sup
m3`

1

m
O
i51

m

E@Wi# .

Now let Ai, v, t be the event that the ith message is generated at user v at step t.
Then

O
i51

m

E@Wi# 5 O
i51

m

O
t$0

O
v[V

E@WiuAi, v , t#Pr@Ai, v , t#

5 O
v[V

O
t[Tv

O
i51

m

E@WiuAi , v , t#Pr@Ai, v , t# .

Let Bm, v, t be the event that one of the first m messages is generated at user v at
step t. Now, the properties of the protocol given in the lemma are equivalent to
the following: for any v [V, m and t [Tv,

O
i51

m

E@WiuAi, v , t#Pr@Ai , v , tuBm , v , t# # C, if t [R , and

O
i51

m

E@WiuAi , v , t#Pr@Ai, v , tuBm , v , t# # C9, if t [R# .

Since, for i # m, Pr[Ai, v, t] 5 Pr[Ai, v, t ∧ Bm, v, t] 5 Pr[Ai, v, tuBm, v, t]Pr[Bm, v, t],

O
i51

m

E@Wi# 5 O
v[V

O
t[Tv

O
i51

m

E@WiuAi, v , t#Pr@Ai , v , t#

5 O
v[V

O
t[Tv

O
i51

m

E@WiuAi , v , t#Pr@Ai , v , tuBm , v , t#Pr@Bm , v , t#

5 O
v[V

O
t[Tv

Pr@Bm , v , t#O
i51

m

E@WiuAi , v , t#Pr@Ai, v , tuBm , v , t#

O
v[V

S O
t[RùTv

Pr@Bm , v , t#C 1 O
t[R# ùTv

Pr@Bm , v , t#C9D .

Let m t 5 (v9[V lv9uTv9 ù [t] u, that is, the expected number of messages
generated in the system through time t. Note that Pr[Bm, v, t] # lv, and, for m ,
m t, Pr[Bm, v, t] # lv exp{2(m t 2 m)2/(2m t)}, by a Chernoff bound. Then for

1092 L. A. GOLDBERG ET AL.

any T* # Tv,

O
t[T*

Pr@Bm , v , t# # O
t[T*, m t,2m

lv 1 O
t[T*, m t$2m

lv expH2~m t 2 m!2

~2m t!
J

lvuT* ù $t;m t , 2m% u 1 lv O
t[T*, m t$2m

expH2~m t 2 m!

4 J
lvuT* ù $t;m t , 2m% u 1 lv O

i$0

expH2~m 1 ilv!

4 J
lvuT* ù $t;m t , 2m% u 1 lvexp~2m/4!O

i$0

~exp~2lv/4!! i

lvuT* ù $t;m t , 2m% u 1 O~1! .

Consequently,

E@Wavg# # lim sup
m3`

1

m
O
i51

m

E@Wi#

lim sup
m3`

1

m
O

v[V

@C~lvuR ù Tv ù $t;m t , 2m% u 1 O~1!!

1 C9~lvuR# ù Tv ù $t;m t , 2m% u 1 O~1!!#

CS lim sup
m3`

1

m
O

v[V

lvUR ù Tv ù $t;m t , 2m%U D
1 C9S lim sup

m3`

1

m
O

v[V

lvUR# ù Tv ù $t;m t , 2m%U D .

We bound the factor multiplied by C as follows:

lim sup
m3`

1

m
O

v[V

~lvuR ù Tv ù $t;m t , 2m% u!

5 lim sup
m3`

O
v[V

lvuTv ù $t;m t , 2m% u

m S uR ù Tv ù $t;m t , 2m% u

uTv ù $t;m t , 2m% u D
lim sup

m3` Smax

v[V

uR ù Tv ù $t;m t , 2m% u

uTv ù $t;m t , 2m% u D O
v[V

lvuTv ù $t;m t , 2m% u

m

1093Contention Resolution with Constant Expected Delay

S lim sup
m3`

max
v[V

uR ù Tv ù $t;m t , 2m% u

uTv ù $t;m t , 2m% u D
z S lim sup

m3`
O

v[V

lvuTv ù $t;m t , 2m% u

m D
Smax

v[V

lim sup
m3`

uR ù Tv ù $t;m t , 2m% u

uTv ù $t;m t , 2m% u D S lim sup
m3`

2m

m D
max

v[V

lim sup
t3`

uR ù Tv ù @t# u

uTv ù @t# u
z 2 5 2S.

We bound the factor multiplied by C9 as follows:

lim sup
m3`

1

m
O

v[V

~lvuR# ù Tv ù $t;m t , 2m% u!

lim sup
m3`

O
v[V

lvuTv ù $t;m t , 2m% u

m

lim sup
m3`

2m

m
5 2. e

5. Conclusions and Open Problems

We have given a protocol that achieves constant expected delay for each message
in the Synchronized Infinitely-Many Users Model with l , 1/e. We have also
given a protocol that achieves constant expected average delay in the Unsynchro-
nized Finitely-Many Users Model for any {l i}1#i#n-Bernoulli message-arrivals
distribution in which (i l i , 1/e. Several open questions remain:

—Can we get good delay versus arrival rate trade-offs in our models? Are there
fine-tunings of the protocols or constants that ensure short delays for “small”
values of l?

—In the infinitely-many senders models considered, is there a protocol that is
stable in the sense of Håstad et al. [1996] for all l , 1? If not, then what is the
supremum of the allowable values for l, and how can we design a stable
protocol for all allowed values of l? We have shown protocols that guarantee
stability for all l , 1/e. Here is a heuristic argument as to why this may
indeed be a limit. Assume that we have a static system with some h users
(messages), where even the value of h is known to all users. If all users follow
the same protocol, the optimal probability of “success” (exactly one message
attempting the channel) in one time step is achieved if each message attempts
using the channel with probability 1/h: in this case, the success probability is
h z (1/h) z (1 2 1/h)h21 ; 1/e for large h. Thus, even if the users are given
the additional information on the exact number of messages, it may be that 1/e

1094 L. A. GOLDBERG ET AL.

is the best probability of success possible. This seems to suggest that if the
arrival rate l is more than 1/e, then the system cannot be stable (since the
average arrival rate will be more than the average rate of departure). Is this
intuition correct? What is a “minimal” assumption that will ensure a stable
protocol for all l , 1? (As described in the introduction, some sufficient
conditions are described in Pippenger [1981] and Håstad et al. [1996] for
certain models including finitely-many users models.)

—For which arrivals distributions are our protocols stable? We have shown that
our Unsynchronized Finitely-Many Users Model protocol is stable for any
{l i}1#i#n-Bernoulli message-arrivals distribution in which (i l i , 1/e, that
our Synchronized Finitely-Many Users Model protocol is stable for any
{l i}1#i#n-dominated arrivals distribution with (i l i , 1/e, and that our
Synchronized Infinitely-Many Users Model protocol is stable for Poisson
arrivals with l , 1/e. We believe that our Synchronized Infinitely-Many Users
Model protocol is also stable for other input distributions.

For example, suppose that the distribution of incoming messages to the
system has substantially weaker random properties than the independent
Poisson distribution. Our protocol can still achieve E[Wave] 5 O(1). From the
paragraph immediately following the statement of Theorem 2, we see that
pi(1) 5 O(qi) will suffice to maintain the property that E[Wave] 5 O(1); the
strong (doubly exponential) decay of pi(1) as i increases is unnecessary. In
turn, by analyzing the recurrences presented by Lemmas 5 and 6, we can show
that rather than the strong bound of (26), it suffices if

Pr@u0 is t-bad# # k23~2k2!2t. (31)

We can then proceed to show that pi(1) 5 O(qi) by showing, via induction on
i as above, that pi(t) # k2(i13) (2k2)2t; the proof can then be concluded as
before. The bound in (31) just decays singly exponentially in t, as opposed to
the doubly-exponential decay we had for Poisson arrivals. Thus, our approach
will work with message-arrival distributions that have substantially weaker tail
properties than independent Poisson.

ACKNOWLEDGMENTS. We thank Michael Kalantar for explaining the practical
side of this problem, Prabhakar Raghavan and Eli Upfal for sending us an early
version of their paper [Raghavan and Upfal 1999], and the participants of a
seminar at Carnegie-Mellon University, whose questions and comments helped
us clarify some points. Our thanks also to the referees for their helpful
suggestions.

REFERENCES

ABRAMSON, N. 1973. The ALOHA system. In Computer-Communication Networks. N. Abramson
and F. Kuo, Eds., Prentice-Hall, Englewood Cliffs, N.J., pp. 501–517.

ALDOUS, D. 1987. Ultimate instability of exponential back-off protocol for acknowledgement-
based transmission control of random access communication channels. IEEE Trans. Inf. Theory
IT-33, 2, 219 –223.

ALON, N., SPENCER, J. H., AND ERDÖS, P. 1992. The Probabilistic Method. Wiley-Interscience
Series, Wiley, New York.

ANDERSON, R. J., AND MILLER, G. L. 1988. Optical communication for pointer-based algorithms.
Tech. Rep. CRI 88-14, Computer Science Dept. Univ. Southern California, Los Angeles, Calif.

1095Contention Resolution with Constant Expected Delay

BOLLOBÁS, B. 1988. Martingales, isoperimetric inequalities and random graphs. In Combinatorics,
Colloq. Math. Soc. János Bolyai, A. Hajnal, L. Lovász, and V. T. Sós Eds., Vol. 52, North-Holland,
Amsterdam, The Netherlands, pp. 113–139.

CHERNOFF, H. 1952. A measure of asymptotic efficiency for tests of a hypothesis based on the sum
of observations. Ann. Math. Stat. 23, 493–509.

DIETZFELBINGER, M., AND MEYER AUF DER HEIDE, F. 1993. Simple, efficient shared memory
simulations. In Proceedings of the 5th ACM Symposium on Parallel Algorithms and Architectures
(SPAA ’93) (Velen, Germany, June 30 –July 2). ACM, New York, pp. 110 –119.

GERÉB-GRAUS, M., AND TSANTILAS, T. 1992. Efficient optical communication in parallel comput-
ers. In Proceedings of the 4th ACM Symposium on Parallel Algorithms and Architectures (SPAA ’92)
(San Diego, Calif., June 29 –July 1). ACM, New York, pp. 41– 48.

GOLDBERG, L., JERRUM, M., LEIGHTON, T., AND RAO, S. 1997. A doubly logarithmic communica-
tion algorithm for the completely connected optical communication parallel computer. SIAM
J. Comput. 26, 4, 1100 –1119.

GOLDBERG, L., MATIAS, Y., AND RAO, S. 1999. An optical simulation of shared memory. SIAM
J. Comput. 28, 5, 1829 –1847.

GREENBERG, A. G., FLAJOLET, P., AND LADNER, R. E. 1987. Estimating the multiplicities of
conflicts to speed their resolution in multiple access channels. J. ACM 34, 2, 289 –325.

HÅSTAD, J., LEIGHTON, T., AND ROGOFF, B. 1996. Estimating the multiplicities of conflicts to speed
their resolution in multiple access channels. SIAM J. Comput. 25, 4, 740 –774.

HOEFFDING, W. 1963. Probability inequalities for sums of bounded random variables. Amer. Stat.
Assoc. J. 58, 13–30.

IEEE TRANS. INF. THEORY. 1985. IT-31, special issue.
KELLY, F. P. 1985. Stochastic models of computer communication systems. J. Roy. Stat. Soc. B 47,

3, 379 –395.
MACKENZIE, P. D., PLAXTON, C. G., AND RAJARAMAN, R. 1998. On contention resolution proto-

cols and associated probabilistic phenomena. J. ACM 45, 2, 325–378.
MCDIARMID, C. 1989. On the method of bounded differences. In Surveys in Combinatorics,

London Math. Soc. Lecture Notes Series, Vol. 141. Cambridge University Press, Cambridge,
England, pp. 148 –188.

METCALFE, R., AND BOGGS, D. 1976. Distributed packet switching for local computer networks.
Commun. ACM 19, 395– 404.

PIPPENGER, N. 1981. Bounds on the performance of protocols for a multiple access broadcast
channel. IEEE Trans. Inf. Theory IT-27, 145–151.

RAGHAVAN, P., AND UPFAL, E. 1999. Stochastic contention resolution with short delays. SIAM
J. Comput. 28, 2, 709 –719.

TSYBAKOV, B., AND LIKHANOV, N. 1987. Upper bound on the capacity of a random multiple-access
system. Problemy Peredachi Informatsii 23, 3, 64 –78.

VVEDENSKAYA, N. D., AND PINSKER, M. S. 1983. Non-optimality of the part-and-try algorithm. In
Abstracts of the International Workshop on Convolutional Codes, Multiuser Communication, Sochi,
USSR (1983), pp. 141–148.

RECEIVED JULY 1998; REVISED MARCH 2000; ACCEPTED MARCH 2000

Journal of the ACM, Vol. 47, No. 6, November 2000.

1096 L. A. GOLDBERG ET AL.

