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Abstract. In this paper, we develop a framework for computing upper and lower bounds of an
exponential form for a large class of single resource systems with Markov additive inputs. Specifically,
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1. Introduction

We are witnessing a phenomenal growth in the deployment and usage of
networked multimedia applications. Numerous networked teleconferencing ap-
plications have recently been introduced [Balot and Vega Garcia 1996; Jacobson
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and McCanne 1994, 1995; Schulzrinne 1992; Frederick 1993]. In addition, there
are plans to deploy large-scale multimedia servers in the not too distant future
[Press 1993]. All of these applications share the need for a minimal quality of
service (QoS) guarantee in the form of either an end-to-end delay constraint or a
maximum tolerable fraction of loss. Providing QoS guarantees to these applica-
tions poses one of the most challenging problems facing designers of multimedia
systems and applications.

In this paper, we focus on a single resource and develop a framework within
which to obtain computable upper and lower bounds on the tail of the distribu-
tions of quantities such as backlog, delay and queue length at that resource.
These bounds are exponential in nature when the combined arrival and service
processes (to be made precise) can be described by a Markov chain and the
system is stable. In addition to obtaining distributional bounds, we also apply
these results to the problem of call admission in a network and in a multimedia
server setting.

More precisely, we consider the behavior of a single server as described by the
recursion

Xn11 5 max~0, Xn 1 Un! , n $ 0 (1.1)

with X0 $ 0 a.s, where the real-valued increments (Un)n are modulated by a
Markov chain (Yn)n such that (Yn, m50

n Um)n is a Markov Additive (MA)
process [Iscoe et al. 1985]. In our context, one application is when Xn represents
the waiting time of the n-th customer in a First-In-First-Out (FIFO) G/G/1 single
server queue, Un 5 sn 2 tn, where (sn)n and (tn)n are the service requirement
and interarrival time sequences, respectively.

Our primary objective is to compute exponential upper and lower bounds for
the tail distribution of Xn, both for every n $ 0 and for the stationary regime X
of Xn (when it exists), namely, to find strictly positive constants a, an, b, bn and
u such that

an exp~2ux! # P~Xn . x! # bn exp~2ux!

a exp~2ux! # P~X . x! # b exp~2ux!

for all x $ 0, n $ 0.
In the particular case in which (sn)n and (tn)n are two mutually independent

renewal sequences (GI/GI/1 queue), Kingman [1964; 1970] showed that
a exp(2hx) # P(X . x) # exp(2hx) for all n $ 0 and x $ 0, where h is the
unique solution in (0, `) of the equation E[exp(u (sn 2 tn)] 5 1 under the
stability condition E[sn 2 tn] , 0 (a refinement of Kingman’s upper bound was
proposed by Ross [1974]; see also Borovkov [1976, p. 139]). Our results can be
considered as an extension of Kingman’s result to stochastic recursions of the
form (1.1) where (Xn)n is no longer a Markov chain.

As mentioned before, our work is motivated by the need to characterize the
response time distribution and/or backlog distributions in multimedia systems.
Many multimedia applications have real time constraints (e.g., voice, video) for
which it is important to characterize the response time distribution at a single
resource, whether it is a hop in a network or the I/O system at a server. Although
such applications have real time constraints, they are able to tolerate a small
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fraction of packets missing their deadlines (approx. 1% for voice). Bounds on the
tail distribution of quantities such as buffer occupancy and response times can be
used by designers to size systems. Furthermore, bounds can be used to develop
policies for controlling the admission of new applications (sessions) to the
network.

Previous work in this area falls into three categories: First, a considerable
amount of work has focussed on the development of algorithms for computing
the response time distribution of a statistical multiplexer being fed by a Mark-
ovian Modulated Process (MMP) pioneered by Neuts [1981] (see, in particular,
the works by Regterschot and de Smit [1986] on the M/G/1 queue with Markov
modulated arrivals and services and by Lucantoni et al. [1994] on the transient
analysis of the BMAP/G/1 queue, as well as Fischer and Meier-Hellstern [1992]
for a recent survey of this area). These computations are often very expensive
and do not easily yield the tail probability distribution. Consequently, there has
been considerable interest in the development of approximations or asymptotics.
These include methods that approximate the arrival processes by simple Mark-
ovian models (e.g., Heffes and Lucantoni [1986]) or fluids (e.g., Anick et al.
[1982]) are based on asymptotic properties of statistical multiplexers (e.g., Abate
et al. [1994]) or on diffusion processes (e.g., Gelenbe et al. [1996]). The problem
with these methods is that there is no way of knowing how accurate they are in
any one application. This has motivated interest in the development of perfor-
mance bounds for general arrival processes. This is exemplified by the works of
Asmussen and Rolski [1994], Chang [1994], Cruz [1991a; 1991b], Duffield [1994],
Kurose [1992], and Yaron and Sidi [1993]. With the exception of the work of
Asmussen and Duffield these papers make very few assumptions regarding the
arrival processes and the resulting bounds are very loose.

Previous work most closely related to ours include those of Asmussen and
Rolski [1994] and Duffield [1994]. Asmussen and Rolski derived bounds in the
context of risk theory and Asmussen [1995] showed how they can be mapped into
bounds on the tail of the queue length distribution of an MMPP/G/1 queue. Our
techniques apply to a larger class of systems. Moreover, as will be described later,
our bounds are, in general, better than those in Asmussen and Rolski [1994]. The
mapping described in Asmussen [1995] can be used to apply our bounds to risk
theory. Duffield uses a martingale approach (similar to Kingman [1964] for the
G/G/1 queue) to obtain upper bounds similar to ours for a Markovian environ-
ment. This approach does not appear easily to yield lower bounds. Neither of the
two approaches reported in Asmussen and Rolski [1994] and Duffield [1994]
appear easily to yield bounds on the transient behavior.

We apply our bounds to several systems that have received considerable prior
attention. These include the MMPP/EN/1 queue, the MMPP/D/1 queue and the
fixed rate discrete time queue fed by a homogeneous population of on/off
sources. For the first two models we present easily computable bounds on the tail
of the response time distribution and compare them with the bounds in
Asmussen and Rolski [1994] and Duffield [1994] and the exact distribution. We
observe from a large number of examples (see Sections 3.4 and 3.5) that our
bounds are usually better than those in Asmussen and Rolski [1994]. We also
observe that the difference between the upper and lower bounds is always
smaller than that of Asmussen and Rolski [1994]. For our examples with 25
homogeneous two-state MMPPs, the times to compute these bounds differ from
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the times to compute the distribution exactly by two or more orders of
magnitude. For the discrete time model, we present easily computable bounds
which are then used to address the call admission problem. Comparisons are
made with the effective bandwidth approach [Guérin et al. 1991], which illustrate
the conservative nature of the latter.

The organization of the paper is as follows. Upper and lower bounds are
derived in Section 2. This section includes a derivation of the largest exponential
decay rate and a treatment of both transient and stationary regimes. It concludes
with a demonstration of the tightness of the bounds. Applications of the bounds
to queues operating in a Markovian environment are found in Section 3 along
with comparisons to the bounds developed in Asmussen and Rolski [1994] and
Duffield [1994]. Applications to discrete time queues and to call admission in
multimedia systems are found in Section 4.

2. Exponential Bounds

In this section, we derive exponential upper bounds (Section 2.2) and lower
bounds (Section 2.3) for the tail distribution of Xn as well as for the tail
distribution of its stationary regime X (Section 2.4). We establish these results by
extending the approach of Kingman [1970] to the multidimensional case using
matrix analysis techniques. Prior to deriving the bounds, we introduce some
notation.

2.1. NOTATION AND ASSUMPTIONS. Throughout this paper, we assume that
the real-valued increments (Un)n are modulated by a Markov chain (Yn)n such
that

Un and Yn11 conditioned on ~X0, Y0, . . . , Yn, U0, . . . , Un21!

depend only on Yn. (A)

We shall assume for the sake of simplicity that the Markov chain (Yn)n has a
finite state-space 6 5 {1, 2, . . . , K}. The extension of our results to general
state-spaces can be found in Liu et al. [1997].

For any Borel set G of (2`, `), i, j [ 6, define

Fij~G! 5 P~Yn11 5 j , Un [ G uYn 5 i! (2.1)

the kernel of the MA process S Yn11, O
n50

n
UmD , and its transform

F*ij~u ! 5 E
2`

`

exp~uu! Fij~du! , u [ ~2`, `! . (2.2)

With a slight abuse of notation, Fij( x) will correspond to Fij((2`, x]).
We assume the Markov chain (Yn)n is homogeneous, aperiodic and irreduc-

ible, with transition matrix P 5 [ pij] (note that pij 5 Fij(`)). The irreducibility
of P implies that Perron–Frobenious theory applies to F*(u) for all u [ $ [Iscoe
et al. 1985, Section 7(ii)]. Here $ is defined as
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$ 5 $u : F*ij~u ! , ` , i, j [ 6% .

As a result, we know that the matrix F*(u) has a unique left eigenvector z(u )
5 ( z1(u ), . . . , zK(u )), with strictly positive components, corresponding to its
largest eigenvalue r(u) and such that k[6 zk(u ) 5 1 [Horn and Johnson 1985,
Theorem 8.4.4] (throughout this paper uppercase boldface will denote matrices
and lowercase underlined will denote vectors). In the sequel we will assume that
u [ $.

To avoid triviality we further assume that the set } , 62 defined by

} 5 $~i, j! [ 62 : Fij~0! , pij% (2.3)

is nonempty, as otherwise Xn 3 0 a.s. as n goes to `.
Last, we denote by pn 5 (pn(0), . . . , pn(K)) and p 5 (p(0), . . . , p(K))

the probability distribution vector at time n and the stationary probability
distribution vector, respectively, of the Markov chain (Yn)n. Unless otherwise
mentioned, the initial probability distribution vector p0 is arbitrary in the sense
that we do not assume stationarity of the Markov chain (Yn)n.

2.2. EXPONENTIAL UPPER BOUNDS. In this section, we derive upper bounds
for the tail distribution of Xn. Let (g j

n, j [ 6), n 5 0, 1, . . . , g j
n: [0, `) 3 [0,

`), be a set of functions such that

O
k[6

F E
2`

x

gk
n~ x 2 u! Fkj~du! 1 ~ pkj 2 Fkj~ x!!pn~k!G # g j

n11~ x! . (2.4)

The following result holds:

PROPOSITION 2.2.1. Let Pm denote the property that

P~Xm . x , Ym 5 j! # g j
m~ x! (2.5)

for all x $ 0, j [ 6.
If P0 is true, then Pm is true for all m $ 1.

PROOF. We use an induction argument on m. Assume that Pm is true for
m 5 0, 1, . . . , n and let us show that Pn11 is true.

We have for all x $ 0, j [ 6,

P~Xn11 . x, Yn11 5 j!

5 O
k[6

pn~k! P~Xn 1 Un . x , Yn11 5 j uYn 5 k!

5 O
k[6

pn~k!F E
2`

x

P~Xn . x 2 u uUn 5 u , Yn 5 k , Yn11 5 j!

3 Fkj~du! 1 pkj 2 Fkj~ x! G
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5 O
k[6

F E
2`

x

P~Xn . x 2 u , Yn 5 k! Fkj~du! 1 ~ pkj 2 Fkj~ x!!pn~k!G (2.6)

# O
k[6

F E
2`

x

gk
n~ x 2 u! Fkj~du! 1 ~ pkj 2 Fkj~ x!!pn~k!G (2.7)

# g j
n11~ x! .

where (2.7) follows from the induction hypothesis, and where (2.6) is a conse-
quence of assumption (A). e

The following result provides an upper bound for P(Xn . x, Yn 5 j).

PROPOSITION 2.2.2 (EXPONENTIAL UPPER BOUND). If r(u ) # 1 and if

P~X0 . x, Y0 5 j! # C0~u ! zj~u !exp~2ux! , x $ 0, j [ 6 (2.8)

then, for all n $ 0, x $ 0, j [ 6,

P~Xn . x, Yn 5 j! # Cn~u ! zj~u !exp~2ux! (2.9)

with

Cn~u ! 5 sup
~ x, j![%

0#m#n

Ok[6 pm~k!~ pkj 2 Fkj~ x!!

Ok[6 zk~u ! E
x

`

exp~u ~u 2 x!! Fkj~du!

, ` (2.10)

where % 5 {(x, j) [ [0, `) 3 6 : Fkj(x) , pkj for some k [ 6}.
In particular,

P~Xn . x! # Cn~u !exp~2ux! , x $ 0, n $ 0. (2.11)

PROOF. Define

g j
n~ x! 5 Cn~u ! zj~u !exp~2ux! . (2.12)

Thanks to Proposition 2.2.1 it suffices to prove that the functions in (2.12)
satisfy (2.4) to establish (2.9).

We have

O
k[6

F E
2`

x

gk
n~ x 2 u! Fkj~du! 1 ~ pkj 2 Fkj~ x!!pn~k!G

5 O
k[6

F E
2`

`

Cn~u ! zk~u !exp~u ~u 2 x!! Fkj~du!

2 E
x

`

Cn~u ! zk~u !exp~u ~u 2 x!! Fkj~du! 1 ~ pkj 2 Fkj~ x!!pn~k!]
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5 exp~2ux!Cn~u ! O
k[6

F*kj~u ! zk~u !

2 O
k[6

F E
x

`

~Cn~u ! zk~u !exp~u ~u 2 x!! 2 pn~k!! Fkj~du!G
# exp~2ux!Cn~u ! O

k[6

F*kj~u ! zk~u ! (2.13)

5 exp~2ux!Cn~u !r~u ! zj~u ! (2.14)

# exp~2ux!Cn11~u ! zj~u ! 5 g j
n11~ x! (2.15)

where (2.13), (2.14) and (2.15) follow from the definition of Cn(u ), the identity
z(u )F(u ) 5 r(u )z(u ), and the inequalities r(u) # 1 and Cn # Cn11,
respectively. This proves (2.9).

Summing up over all j in 6 both sides of (2.9) and using the normalizing
condition j51

K zj(u ) 5 1 yields (2.11).
We conclude this proof by showing that the constant Cn(u ) is always finite.

This property follows from the obvious inequalities

Cn~u ! # sup
~ x, j![%

0#m#n

Ok[6 pm~k!~ pkj 2 Fkj~ x!!

Ok[6 zk~u !~ pkj 2 Fkj~ x!!
# sup

0#m#n
j[6

pm~ j!

zj~u !
, ` (2.16)

where the last inequality follows from the positiveness of the eigenvector vector
z(u ). e

Define u* 5 sup{u [ $ : r(u) # 1}. An interesting issue is to determine when
u* . 0 or, equivalently, when does an exponential upper bound exist for the tail
distribution of Xn. In the case when the set $ is open, the answer is provided by
Duffield [1994, Lemma 2] who showed that u* . 0 if and only if the stability
condition Ep[U0] , 0 holds, where Ep denotes the expectation operator
associated with a stationary Markov chain (Yn)n (i.e., p0 5 p). This result in turn
implies that an exponential upper bound exists for P(Xn . x) if and only if the
system is stable (see Remark 2.2.3). In that case, u* is the largest exponential
decay rate among all positive decay rates such that r(u) # 1. However, this leaves
open the question whether u* is the best possible decay rate over all u $ 0. An
affirmative answer to this question again follows from Duffield [1994] (see also
Glynn and Whitt [1994, Theorem 1]) who established that

lim
x3`

log P~X . x!

x
5 2u* (2.17)

when the set $ is open. The results in Duffield [1994] require that the recurrent
condition (3.2) in Iscoe et al. [1985] be satisfied. However, this condition is
automatically fulfilled when the Markov chain (Yn)n has a finite state-space, as
observed by Iscoe et al. [1985, Section 7(ii)], which therefore validates the use of
Duffield’s results here. In the case when the state-space is general, then
condition (3.2) in Iscoe et al. [1985] must be assumed.
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As mentioned above, the results in Duffield [1994] also require that the set $
be open. While it is not difficult to construct examples where this assumption is
violated, it turns out that a large class of distributions yields an open set $. This
class includes the distributions with rational Laplace transforms (e.g., phase-type
distributions).

Large deviation results for queues like (2.17) have also been obtained lately by
Abate et al. [1994], Chang [1994], Courcoubetis and Weber [1996], de Veciana et
al. [1993], Duffield and O’Connell [1995], Elwalid et al. [1995], Kesidis et al.
[1993], Parulekar and Makowski [1996], Simonian and Guibert [1995], among
others.

Remark 2.2.3. When the Markov chain (Yn) is stationary, the stability condi-
tion Ep[U0] , 0 follows from Loynes [1962]. In the nonstationary case, one may
use a coupling argument due to Borovkov and Foss [1992] to prove that Ep[U0]
, 0 is also the stability condition or, in other words, that there exists an almost
finite r.v. X such that Xn converges in law to X as n 3 ` independently of the
joint distribution of X0 and Y0.

2.3. EXPONENTIAL LOWER BOUND. In this section, we address the problem of
computing an exponential lower bound for the tail distribution of Xn.

PROPOSITION 2.3.1 (EXPONENTIAL LOWER BOUND). Assume that r(u*) 5 1. If

P~X0 . x, Y0 5 j! $ B0zj~u*!exp~2u*x! , x $ 0, j [ 6 (2.18)

then, for all n $ 0, x $ 0, j [ 6,

P~Xn . x , Yn 5 j! $ Bnzj~u*!exp~2u*x! (2.19)

where

Bn 5 inf
~ x, j![%

0#m#n

Ok[6 pm~k!~ pkj 2 Fk~ x!!

Ok[6 zk~u*! E
x

`

exp~u*~u 2 x!! Fk~du!

. (2.20)

In particular,

P~Xn . x! $ Bn exp~2u*x! , x $ 0, n $ 0. (2.21)

PROOF. Let (d j
n, j [ 6), d j

n : [0, `) 3 [0, `) be a set of functions such that

O
k[6

F E
2`

x

dk
n~ x 2 u! Fkj~du! 1 ~ pkj 2 Fk~ x!!pn~k!G $ d j

n11~ x! (2.22)

for j [ 6, n $ 0. Let Qn be the property that

P~Xn . x , Yn 5 j! $ d j
n~ x!

for all x $ 0, n $ 0, j [ 6. Mimicking the proof of Proposition 2.2.1 we can
prove that Qn is true for all n $ 0 if Q0 is true.

373Exponential Bounds with Applications to Call Admission



Define now the functions d j
n( x) 5 Bnzj(u*)exp(2u*x). By using the same

arguments as in the proof of Proposition 2.2 and the identity r(u*) 5 1, it is
easily checked that the functions d j

n( x) satisfy (2.22), from which (2.19) and
(2.21) follow. e

The equation r(u) 5 1 always has one and only one solution u 5 u* in $ ù (0,
`) when the set $ is open. This follows from the strict convexity of r(u) on $
(which itself is a consequence of the strict convexity of log r(u) [Iscoe et al. 1985,
Lemma 3.4(i)]), of limu3d$ r(u) 5 ` [Iscoe et al. 1985, Corollary 3.1], of r(0) 5
1, and of r9(0) 5 Ep[U0] , 0.

2.4. BOUNDS FOR THE STATIONARY REGIME. In this section we determine
upper and lower bounds for P(X . x), the stationary tail distribution of Xn, and
we discuss cases when the lower bound is not trivial.

PROPOSITION 2.4.1 (STATIONARY LOWER AND UPPER BOUNDS). Assume that
the stability condition Ep[U0] , 0 holds (see Remark 2.2.1). If r(u ) # 1, then

P~X . x! # C~u !exp~2ux! , x $ 0 (2.23)

for all 0 # u # u*, where

C~u ! 5 sup
~ x, j![%

Ok[6 p~k!~ pkj 2 Fkj~ x!!

Ok[6 zk~u ! E
x

`

exp~u ~u 2 x!! Fkj~du!

. (2.24)

Furthermore, if r(u*) 5 1, then

B exp~2u*x! # P~X . x! , x $ 0, (2.25)

where

B 5 inf
~ x, j![%

Ok[6 p~k!~ pkj 2 Fkj~ x!!

Ok[6 zk~u*! E
x

`

exp~u*~u 2 x!! Fkj~du!

. (2.26)

The proof of Proposition 2.4.1 follows from Propositions 2.2.2 and 2.3.1 and
from the result that P(Xn . x) 3n P(X . x) independently of the joint
distribution of X0 and Y0 whenever the stability condition Ep[U0] , 0 is
satisfied, as already discussed in Remark 2.2.3.

It is simple to construct examples where the constant B in (2.25) is equal to 0.
However, we expect B . 0 in practice. In the rest of this section, we discuss two
cases where B . 0: the case when the increments (Un)n are bounded from
above, and the case when they have phase-type distributions.

Our discussion will be based on the following technical lemma whose proof is
given in Appendix A.

LEMMA 2.4.2. For ( j, k) [ }, let Dkj 5 inf{ x $ 0, Fkj(x) 5 pkj} (see (2.3) for
the definition of }). If for every pair of states ( j, k) [ } such that Dkj 5 ` the
constant jkj defined by
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jkj 5 lim inf
x3`

pkj 2 Fkj~ x!

E
x

`

exp~u*~u 2 x!! Fkj~du!

(2.27)

is strictly positive, then B . 0.

An immediate corollary of this lemma is that B . 0 when the increments
(Un)n are bounded from above, that is, when Dkj , ` for all j, k [ }.

We now address the case where Fkj( x) has a polynomial-exponential density
function. A probability density function f( x) of a (0, `)-valued r.v. is polynomial-
exponential if it has the form

f~ x! 5 O
i51

n

aixmi exp~2b ix! , x . 0

where ai’s are nonzero real numbers, mi’s nonnegative integers and b i’s are
strictly positive real numbers. The set of r.v.’s with polynomial-exponential
density functions is quite large and includes, in particular, the set of r.v.’s with
phase-type distributions (e.g., Coxian distributions—see [Asmussen 1987, pp.
74 –75]). Recall that the latter set is dense in the set of probability distributions
on (0, `) [Asmussen 1987, Theorem 6.2, p. 76]. The following result, proven in
Appendix A, holds:

COROLLARY 2.4.3. If for every (k, j) [ } either Dkj , ` or Fjk(x) has a
polynomial-exponential density function, then B . 0.

Instances where Fkj has a polynomial-exponential density function and Dkj ,
` may be found in Section 3.2 and 3.3, respectively.

3. Application to Queues and Comparison with Other Bounds

In this section, we specialize the recursion (1.1) to the case when the increments
(Un)n are in the form Un 5 sn 2 tn with sn $ 0 and tn $ 0. In this setting
(Xn)n typically represents the waiting time process in a FIFO G/G/1 queue with
interarrival times (tn)n and service requirements (sn)n, and equation (1.1) is
called the Lindley’s equation. Our aim is to give explicit formulae for the
coefficients C(u ) and B that appear in the upper bound (2.24) and in the lower
bound (2.26), respectively, and to numerically compare these bounds with bounds
that have been recently proposed in the literature. This section is organized as
follows: in Section 3.1 we derive lower and upper bounds for the tail distribution
of the stationary waiting time for queues in Markovian environment; in Sections
3.2 and 3.3 these bounds are specialized to the case of MMPP/EN/1 and
MMPP/D/1 queues, respectively; in Section 3.4 we review bounds proposed by
Asmussen and Rolski [1994] and Duffield [1994], and place them into the context
of the queuing models introduced in Section 3.1; Section 3.5 concludes with
numerical results and a discussion on the tightness of the various bounds
presented in Sections 3.2–3.4.

3.1. BOUNDS FOR QUEUES IN MARKOVIAN ENVIRONMENT. We assume that
customers arrive at a FIFO single server queue according to a Markov modulated
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Poisson process (tn)n [Fischer and Meier-Hellstern 1992]. More precisely, we
assume that the arrival process is a doubly stochastic Poisson process with arrival
rate lZ(t) at time t, where (Z(t), t $ 0) is an irreducible Markov process on the
set 6 5 {1, 2, . . . , K}, with infinitesimal generator Q 5 [qij], rate matrix L 5
diag(l1, . . . , lK), and invariant measure q 5 (q(1), . . . , q(K)).

Service requirements (sn)n are also modulated according to the Markov
process (Z(t), t $ 0) in the sense that the probability distribution of the service
requirement of the n-th customer, sn, may depend on Z(tn2). We denote by
Hi( x) 5 P(sn # x uZ(tn2) 5 i) and H*i(u ) 5 E[exp(usn) uZ(tn2) 5 i] the
probability distribution and the Laplace transform of sn, respectively, given that
Z(tn2) 5 i. We also assume that the service requirements are mutually
independent r.v.’s, and that the service requirement sn is independent of the
state Z(tn11

2 ) and interarrival time tn given Z(tn
2). Last, we will assume that the

queue is stable [Fischer and Meier-Hellstern 1992].
In order to apply the results in Section 2, we need to identify the Markov chain

(Yn)n, the kernel (2.1) and its transform (2.2). In this setting, it is easy to see that
the Markov chain (Yn)n must be chosen as the Markov chain embedded in (Z(t),
t $ 0) at arrival instants, that is Yn 5 Z(tn2). Its transition matrix P is given by
(see Fischer and Meier-Hellstern [1992])

P 5 ~L 2 Q!21L. (3.1)

Let us determine the kernel Fij( x). We first observe that Fij( x) needs only to be
determined for x $ 0 as the supremum and the infimum in (2.24) and (2.26),
respectively, are only taken over nonnegative values of x. We have, for x $ 0,

Fij~ x! 5 pij 2 P~Yn11 5 j , tn , sn 2 x uYn 5 i!

5 pij 2 E
x

`

P~Yn11 5 j , tn , y 2 x uYn 5 i!dHi~ y! (3.2)

or, in matrix notation,

F~ x! 5 P 2 E
x

`

dH~ y!G~ y 2 x! , x $ 0 (3.3)

with F( x) 5 [Fij( x)], H( x) 5 diag(Hi( x), i [ 6) and G( x) 5 [P(Yn11 5 j, tn

, x uYn 5 i)]. It is known (see Fischer and Meier-Hellstern [1992, formula (5)]
for instance) that

G~ x! 5 P 2 exp~~Q 2 L! x!P , x $ 0 (3.4)

so that, from (3.3),

F~ x! 5 P 2 E
x

`

dH~ y!~I 2 exp~~Q 2 L!~ y 2 x!!!P , x $ 0 (3.5)

where I stands for the identity matrix. This, in turn, implies that
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dF~ x! 5 E
x

`

dH~ y!exp~~Q 2 L!~ y 2 x!!Ldx , x $ 0 (3.6)

by using the identity (L 2 Q)P 5 L.
We are now in position to write down the coefficients C(u ) and B (see

Proposition 2.4.1). In matrix form, these coefficients become by using (3.5) and
(3.6)

C~u ! 5 sup
~ x, j![%

g j~ x , u ! , B 5 inf
~ x, j![%

g j~ x , u*! (3.7)

with

g j~ x, u ! 5

pS E
x

`

dH~u!~I 2 exp~~Q 2 L!~u 2 x!!! D Pe j

z~u !S E
x

`

exp~u ~u 2 x!! E
u

`

dH~ y!exp~~Q 2 L!~ y 2 u!!duD Le j

(3.8)

for 0 # u # u*, where ej is the vector whose components are 0 except the jth one
which is equal to 1.

Let us now determine the matrix F*(u) for u [ $ ù [0, `). Since, for all n $
0, sn is independent of tn, given Yn, we clearly have

F*~u ! 5 H*~u ! E
0

`

exp~2ux!dG~ x!

5 H*~u !~uI 1 L 2 Q!21L, u [ $ ù @0, `! (3.9)

with H*(u) 5 diag(H*i(u ), i [ 6), where (3.9) follows from (3.4).
From (3.9), we may compute the left-eigenvector z(u ) of F*(u) corresponding

to the largest eigenvalue r(u), and derive the optimal exponential decay rate u*
as the unique solution in (0, `) of the equation r(u) 5 1.

We conclude this subsection by briefly discussing the case when the interarrival
and customer requirement sequences are mutually independent renewal se-
quences (GI/GI/1 queue). In this case, our lower bound (2.25) reduces to the
lower bound found by Kingman [1970] and the upper bounds (2.23) reduce to the
upper bounds derived by Ross [1974] (see also Stoyan [1983]). In particular, the
lower bound and the upper bound in (2.25) are equal when the service times are
exponentially distributed (GI/M/1 queue).

3.2. BOUNDS FOR THE MMPP/EN/1 QUEUE. We consider the queuing model
defined in Section 3.1 but we now assume that the service requirements (sn)n

form a renewal sequence, independent of the arrival process, with common
distribution function H( x) given by an N-stage Erlang probability distribution
(MMPP/EN/1 queue), namely, H( x) 5 1 2 exp(2m x) l50

N21 (m x) l/l!.
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This assumption implies, in particular, that (cf. (3.9)) F*(u ) 5 (m/(m 2
u ))N(uI 1 L 2 Q)21L for all u [ $ ù [0, `) 5 [0, m).

Recall the definition of g j( x, u ) (see (3.8)). Straightforward algebra yields

g j~ x, u ! 5 Sm 2 u

m
D N

pC~ x , m, N!Dej

z~u !C~ x , m 2 u, N!Dej

(3.10)

where

C~ x, m, N! 5 O
l50

N21 O
r50

l ~ xm! r

r!
~mD!N212l, x $ 0, n 5 1, . . .

and D 5 (mI 1 L 2 Q)21 (hint: use the identity (I 2 mD)P 5 DL).
The complexity of computing C(u ) (respectively, B(u*)) is dominated by the

search for the value of x that yields the supremum (respectively, infimum) in the
expression (3.7). In the case of the Erlang distribution, it is easily shown that no
more than N 2 1 values of x (possibly including x 5 0 and x 5 `) need to be
checked and that, except for x 5 0, `, they are the positive real roots of the
polynomial

f j~ x! :5 pS dC~ x, m, N!

dx
DejzC~ x , m 2 u, N!

2 C~ x , m, N!Dejz
dC~ x , m 2 u, N!

dx DDe j

which can be shown to be of degree 2(N 2 2).
For the case N 5 1 (MMPP/M/1 queue), g j( x, u ) does not depend on x and

we have

C~u! 5 Sm 2 u

m
Dmax

j[6

pDej

z~u!Dej

, B 5 Sm 2 u*

m
Dmin

j[6

pDej

z~u*!Dej

. (3.11)

For the case N 5 2, f j( x) is a constant and we have been able to establish that
the supremum (respectively, infimum) of g j( x, u*) over x in [0, `) is always
achieved at x 5 ` (respectively, x 5 0). For the case N . 2 (MMPP/EN/1
queue) we conjecture that f j( x) has no positive real roots. We further conjecture
that the supremum (respectively, infimum) of g j( x, u*) over x in [0, `) is always
reached at x 5 ` (respectively, x 5 0). These conjectures have always checked
true in all the numerical experiments we have performed using the Maple V1

software for symbolic computation. When the last conjecture holds, then

C~u*! 5 Sm 2 u*

m
Dmax

j[6

pDej

z~u*!Dej

(3.12)

1 Maple V is a registered trademark of Waterloo Maple Software.
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B 5 Sm 2 u*

m
D N

min
j[6

p~I 2 ~mD!N!~I 2 mD!21Dej

z~u*!~I 2 ~~m 2 u*!D!N!~I 2 ~m 2 u*!D!21De j

.

(3.13)

3.3. BOUNDS FOR THE MMPP/D/1 QUEUE. We now specialize the queuing
model in Section 3.1 to the case when the service requirements (sn)n are all
equal to the same constant s (MMPP/D/1 queue). Then, cf. (3.9), F*(u) 5
exp(us)(uI 1 L 2 Q)21L for all u [ $ ù [0, `) 5 [0, `).

In this case, C(u ) 5 sup0#x,s, j[6 g j( x, u ) and B 5 inf0#x,s, j[6 g j( x, u*),
and it is not difficult to show that

g j~ x, u ! 5
p ~I 2 exp~~Q 2 L!~s 2 x!!~L 2 Q!21ej

z~u !~I exp~2u ~s 2 x! 2 exp~~Q 2 L!~s 2 x!!!~uI 1 L 2 Q!21e j

(3.14)

for 0 # x , s.
Again, we conjecture that the supremum (respectively, infimum) in g j( x, u*)

is always reached for x 5 s (respectively, x 5 0) as this has always been observed
through our experiments. In particular, it is true for the M/D/1 queue. When this
is true, then C(u*) takes the simple form

C~u*! 5 max
j[6

p~ j!

zj~u*!
.

3.4. OTHER BOUNDS FOR QUEUES IN A MARKOVIAN ENVIRONMENT. In this
section, we review bounds recently proposed by Asmussen and Rolski [1994] and
Duffield [1994].

The bounds proposed by Asmussen and Rolski [1994] have been derived in the
context of risk theory. In the queuing setting of Section 3.1 Asmussen and
Rolski’s bounds read [1994, Corollary 4.1; 1995, Theorem 3.8]:

O
k[6

q~k!hk~g*!C2~k!exp~2g*x! # P~X $ x!

# O
k[6

q~k!hk~g*!C1~k!exp~2g*x! , x $ 0 (3.15)

with

C1~k! 5 max
j[6

1

hj~g*!
sup
x$0

1 2 Hk~ x!

E
x

`

exp~g*~u 2 x!!dHk~u!

(3.16)

C2~k! 5 min
j[6

1

hj~g*!
inf
x$0

1 2 Hk~ x!

E
x

`

exp~g*~u 2 x!!dHk~u!

. (3.17)
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Note that bounds in Asmussen [1987] are only available for the stationary
regime and for Markov chains (Yn)n with a finite state-space. To define the
unknown quantities g* and hk(g*) in (3.15)–(3.17), introduce the matrix M(g) 5
S(g) 1 Q* 2 gI, where S(g) 5 diag(l i(H*i(g) 2 1), i [ 6) and where Q* 5
[q*ij] with q*ij 5 q( j)qji/q(i) for i Þ j, is the infinitesimal generator of the
reversed Markov process (Z(t), t $ 0). Let h(g) 5 (h1(g), . . . , hK(g))T be
the right-eigenvector of the matrix M(g) corresponding to the eigenvalue k(g)
with the largest real part. Then, when the queue is stable, g* is the unique
solution in (0, `) of the equation k(g) 5 0. It can be shown that u* 5 g*. Note
that this result directly follows from inequalities (2.25) and (3.15) whenever B .
0 and k[6 q(k)hk(g*)C2(k) . 0. Last, when the service times are either
deterministic or taken from an Erlang distribution, it can be shown that the sup
and inf in (3.16) and (3.17) are achieved at x 5 ` and x 5 0 respectively.

Duffield [1994] derived a set of upper bounds for the tail distribution of the
stationary regime X of a stochastic process (Xn) defined by the recursion (1.1)
under the assumptions that (Yn11, m50

n Um) is a MA process (same assumption
as ours) and that the Markov chain (Yn)n is stationary (we do not impose this
condition). Specializing Duffield’s bounds to the queuing model of Section 3.1
yields, for l i . 0 for all i [ 6,

P~X $ x! # D~u !exp~2ux! , x $ 0 (3.18)

for all u [ [0, u*], with

D~u ! 5 sup
j[6

1

r j~u !
, (3.19)

where rj(u ) is the jth component of the unique vector r(u ) satisfying the
relations F*(u )r(u ) 5 r(u )r(u ) and i[6 p(i)ri(u ) 5 1.

Observe that D(u ) $ 1 (since i[6 p(i)ri(u ) 5 1) as opposed to the
coefficients in Asmussen and Rolski’s upper bound and in ours which may be
smaller than one (see numerical results in Section 3.5 for x 5 0).

However, it is difficult in general to analytically compare the bounds in
Asmussen and Rolski [1994] and in Duffield [1994] to ours since they appear in
very different forms (see (2.25) where B and C(u ) are given in (3.7)–(3.8),
(3.15), and (3.18)), which is a consequence of the fact that they have been
derived using very different techniques: risk theory and Lundberg’s inequalities
for Asmussen and Rolski, martingales and large deviations for Duffield, and the
extension of Kingman’s method for our bounds. A comparison based on numer-
ical results is presented in the next section.

Other (upper) bounds have also been recently obtained by Chang [1994], and
Yaron and Sidi [1993], for queues with very general arrival patterns. These
bounds, based on Chernoff’s inequality, are in general not as tight as our bounds.

3.5. NUMERICAL RESULTS AND DISCUSSION. In this section, we report numer-
ical experiments performed for various queuing models with MMPP arrival
processes. More precisely, we assume that the arrival process is the superposition
of M (M 5 25 in the tables) independent, homogeneous, two-state MMPP’s.
Observe that the superposition of independent MMPP’s is again an MMPP (see
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Fischer and Meier-Hellstern [1992], for instance) so that the results obtained so
far in this section apply.

Tables I–IV display our lower and upper bounds (LNT l.b/u.b.; see Sections
3.2, 3.3) and Asmussen and Rolski’s lower and upper bounds (AR l.b./u.b.; see
(3.15)) for the tail distribution, P(X . x), of the stationary waiting time for
MMPP/M/1, MMPP/E2/1, MMPP/E5/1, and MMPP/D/1 queues respectively.
These bounds have been computed for different values of the traffic intensity r
(r [ {0.4, 0.75, 0.95}) and for various values of x. In each case, the mean service
time is 1.

Before commenting on the numerical results we first describe an efficient way
to compute u* and z(u*) as a brute force approach may not be applicable for
large values of M. The optimal decay rate u* was computed by using the
“effective bandwidth decomposition” for MMPP/GI/1 queues fed by M indepen-
dent MMPP’s, that is, when (Q, L) 5 (Qm51

M Qm, Qm51
M Lm). In this case the

optimal decay rate u* satisfies the equation

u* 5 O
m51

M

pf~~H*~2u*! 2 1!Lm 1 Qm! (3.20)

where H*(u ) is the Laplace–Stieltjes transform of the service times (as usual
pf(A) denotes the Perron–Frobenius eigenvalue of the matrix A). Equation (3.20)
follows (for instance) from Whitt [1993, Eq. (6.22) and Proposition 14] (see also
Elwalid and Mitra [1993] and Kesidis et al. [1993] among others).

In the case that the arrival process is the superposition of M independent
homogeneous two-state MMPP’s each with infinitesimal generator and rate matrix
given by

Qm 5 S2q1

q2

q1

2q2
D , Lm 5 Sl1

0

0

l2
D

respectively, then (3.20) reduces to

u* 5 M ~2~q 1 lH̄*~u*!! 1 ~~q 1 lH̄*~u*!!2

2 4S P
i51

2

~qi 1 l iH̄*~u*!! 2 q1q2)D 1/ 2Y 2 (3.21)

with H̄*(u ) 5 1 2 H*(2u ), q 5 q1 1 q2 and l 5 l1 1 l2. Various efficient
numerical procedures can be used for computing u* from (3.21).

Let us now turn to the computation of z(u*). Depending on the dimension of
the matrix F*(u) (see (3.9); here F*(u ) 5 H*(2u )(uI 1 L 2 Q)21L with our
notation) various approaches (including a brute force approach and an iterative
approach) may be used for computing z(u*), the (normalized) left-eigenvector
of F*(u*) associated with the eigenvalue 1. In the case that the input process is
the superposition of M independent homogeneous two-state MMPP’s then the
input process can be modeled as a (M 1 1)-state MMPP with infinitesimal
generator Q 5 [Qi, j] and rate matrix L 5 diag(l1, . . . , lM11), where Q is a
tridiagonal matrix with Qi,i21 5 (i 2 1)q2 for 2 # i # M, Qi,i11 5 (M 1 1 2
i)q1 for 1 # i # M, and where l i 5 (M 2 i)l1 1 il2 for 1 # i # M 1 1. This
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corresponds to aggregating all MMPP’s into a single MMPP with arrival rates
depending on the number of MMPP’s in state 2 at any time in the initial system.
In this case, z(u*) can be computed explicitly as briefly discussed below.

We first observe from the definition of z(u*) that z(u*) 5 fTL where f
satisfies the equation H*(2u*)Lf 5 Mf, with M 5 u*I 1 L 2 QT. By noting
that M is the same structure as the matrix M in Anick et al. [1982, p. 1875], a
similar analysis to that in Anick et al. [1982, Section 2.1] allows us to obtain the
jth component (1 # j # M 1 1) of the vector f as the coefficient of xj21 in the
polynomial ( x 2 x1)k( x 2 x2)M2k (assuming that fM11 5 1), where r2 , 0 ,
r1 are the roots of the polynomial q1x2 1 bx 2 q2 with b 5 q2 1 l2 2 (q1 1
l1) 1 (l1 2 l2)u*H*(2u*). The integer k (see Anick et al. [1982]) is given by
k 5 (q1M( x1 2 1) 2 l1MH̄*(u*) 2 u*)/(q1( x1 2 x2)). The vector z(u*) is
now obtained by normalizing the vector fTL so that its components sum up to
one.

In general, we observe that the tightness of the bounds increases as the traffic
intensity and the variability of the service times increase and, in particular, our
bounds appear to be very tight for the MMPP/M/1 queue. Although our lower
bound is always better than Asmussen and Rolski’s, our upper bound is
sometimes looser (in the case of deterministic service times). We observe that
the gap between our lower and upper bounds is always (occasionally consider-
ably) smaller than the corresponding gap for Asmussen and Rolski’s bounds.
Last, we omitted Duffield’s upper bound because we have always observed it to
be worse than ours and that of Asmussen and Rolski.

We also include exact results obtained by inverting the Laplace transform of
the tail of the wait time distribution [Fischer and Meier-Hellstern 1992;
Choudhury et al. 1996]. The inversion is performed using the EULER algorithm
described in Abate and Whitt [1992] using parameter values A 5 19.1 and m 5
11. The third parameter of the algorithm, n was set to 100 in the case of
exponential and Erlang distributions. Because we had difficulty determining a set
of parameter values with which to generate the exact solution for a deterministic
service time, we approximate it by an Erlang random variable with 8192 stages.
For this case, we set the parameter n to be 200. We found our bounds valuable in
helping us to set these values (see Abate and Whitt [1992] for a further
discussion on the use of bounds for computing exact distributions). Our experi-
ence has been that the time required to calculate P(X . x) exactly for 8 –12
values of x is 100 to 600 times more expensive than calculating the bounds for the
systems presented in Tables I–IV. The exact calculation of a larger number of
values is even more expensive as the cost is linear in the number of values
whereas it is essentially constant (the cost of calculating B and C(u*)) for the
bounding methods.

Similar observations regarding the quality of the bounds hold for other values
of the number of sources. We have not compared the costs of computing our
bounds with those of computing the distribution exactly in the case of a
heterogeneous population of sources. However, if it consists of independent
two-state sources, the computation requirements will not increase significantly as
it differs from that described above in the determination of the eigenvector
z(u*); We will show in a forthcoming paper that this computation can be done
very efficiently. Although the computation costs for an exact solution will not
change, they will still remain significantly greater than for the bounds.
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We conclude this section by noting that even more striking differences in
computation costs have been observed when our bounding approach was adapted
to a heterogeneous population of Markov on/off fluid sources [Artiges and Nain
1996].

4. Applications to Call Admission in Multimedia Systems

The aim of this section is to present various applications of our results to the
problem of call admission in a multimedia system such as a network or a server.
A call admission algorithm aims at admitting a new multimedia application
(session) into a network or a server only if it can be guaranteed a minimal quality
of service (QoS) without violating the QoS of other applications already in the
system. In the case of a network, there is the additional constraint that the
algorithm must be simple enough so that the decision to accept or to reject a new
session can be carried out on-line.

Consider the network setting. A call admission algorithm must typically be
concerned with guaranteeing an end-to-end QoS over a path that may contain
two or more hops. This is a difficult problem and one approach taken is to divide
the end-to-end QoS requirement among all of the hops and perform call
admission at each hop (e.g., Guérin et al. [1991], Ferrari and Verma [1990], and
Nagarajan et al. [1993]). Thus, if any one hop decides not to admit the call, the

TABLE I. BOUNDS AND EXACT VALUES FOR P(X . X) FOR MMPP/M/1 QUEUE WITH 25
HOMOGENEOUS TWO STATE SOURCES; (A) r 5 0.95, (B) r 5 0.75, (C) r 5 0.4.
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call is not admitted end-to-end. Under this approach, it suffices to consider the
call admission problem for a single channel. Note that, in the case of call
admission to a multimedia server, the server can also be modeled as a single
resource [Dan et al. 1994].

Consider a communication channel equipped with a buffer of finite or infinite
size, that can transmit up to c units of information (e.g., c ATM cells) per unit of
time. When the buffer is of infinite size a typical performance criterion is P(X .
b) # q where X may represent either the buffer content at arrival epochs in
steady state or the packet delay in steady state. Observe that if X is the
steady-state content of a buffer of infinite size, then P(X . b) # q implies that,
for the case of a buffer with finite capacity b, the cell loss probability does not
exceed q.

Using the bounds established in Section 2, we obtain bounds on the number of
calls that can be admitted to a single resource system. We will observe that use of
the upper bound on the tail of the backlog distribution for the purpose of call
admission results in a larger number of admitted calls than the popular effective
bandwidth approach [Guérin et al. 1991].

In the following, we will only consider a buffer of infinite size. The resource
(communication channel in a network, I/O system in a server) will be modeled as
a single server queuing system with service capacity c.

TABLE II. BOUNDS AND EXACT VALUES FOR P(X . X) FOR MMPP/E2/1 QUEUE WITH 25
HOMOGENEOUS TWO STATE SOURCES; (A) r 5 0.95, (B) r 5 0.75, (C) r 5 0.4.
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4.1. MARKOV ARRIVAL PROCESS. Consider an irreducible, aperiodic Markov
chain (Yn)n with state space 6 :5 {1, . . . , K} and transition matrix P. Let
( An)n be a sequence of {0, 1, 2, . . .}-valued r.v.’s such that ( An, Yn)n is a
Markov chain with transition kernel Gkj( x) 5 P(Yn11 5 j, An # x uYn 5 k).
Then, the process ( An)n is called a Markov Arrival Process (MAP). In the
following, a MAP will be represented by the 4-tuple ( An, Yn, 6, P) whenever
there is a need to specify the Markov environment associated with it; otherwise,
we will simply say that ( An)n is a MAP.

Assume now that the increments (Un)n in (1.1) are given by Un 5 An 2 c,
where is ( An)n a MAP and c is a nonnegative constant. From the definition of a
MAP it is seen that the sequence (Un)n satisfies assumption (A) in Section 1 so
that all of the results obtained in Section 2 will apply to (Xn)n.

Consider now N independent MAP’s, ( An
i , Yn

i , 6 i, Pi), 1 # i # N, and let
( An)n be the process resulting from the superposition of these MAP’s, namely,
An 5 i51

N An
i . It is known that ( An, (Yn

1, . . . , Yn
N), 3 i51

N 6 i, R i51
N Pi) is a MAP

(R denotes the Knonecker product of matrices). By using elementary properties
of Kronecker product of matrices [Brewer 1978; Graham 1981] together with the
independence assumption of MAP’s ( An

i )n it is easily seen that the spectral
radius r(u) of the matrix F*(u) is given by

TABLE III. BOUNDS AND EXACT VALUES FOR P(X . X) FOR MMPP/E5/1 QUEUE WITH 25
HOMOGENEOUS TWO STATE SOURCES; (A) r 5 0.95, (B) r 5 0.75, (C) r 5 0.4.
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r~u ! 5 exp~2uc! P
i51

N

t i~u ! (4.1)

where t i(u ) is the spectral radius of the matrix with ( k, j)-entry given by
E[exp( uAn

i )(Yn11
i 5 j) uYn

i 5 k). Therefore, we deduce from Proposition 2.4.1
that

P~X . x! # C~u !exp~2ux! , x $ 0 if O
i51

N log~t i~u !!

u
# c . (4.2)

The quantity ci(u ) 5 log(t i(u ))/u is called the effective bandwidth of the process
( An

i )n.2

A similar result was presented by Chang and Cheng [1995, Example 3.4] but
with a different coefficient C(u ). The coefficient in Chang and Cheng [1995]
denoted as G(u), is given by G(u) 5 maxi, j r i(u )/rj(u ), where (r1(u ), . . . ,
rK(u ))T is the (positive) right eigenvector of the matrix F*(u) associated with its
spectral radius r(u). In general, the bound in Chang and Cheng [1995] appears to

2 See, for example, Courcoubetis et al. [1994], Elwalid and Mitra [1993], Gibbens and Hunt [1991],
Guérin et al. [1991], and Kelly [1991].

TABLE IV. BOUNDS, APPROXIMATIONS, AND EXACT VALUES FOR P(X . X) FOR MMPP/D/1
QUEUE WITH 25 HOMOGENEOUS TWO STATE SOURCES; (A) r 5 0.95, (B) r 5 0.75, (C) r 5 0.4.

386 Z. LIU ET AL.



be looser that ours. In particular, G(u) is always larger than 1 for u . 0 unlike
C(u ) which maybe smaller than 1 (see Section 4.1.1).

Example 4.1.1 (Computation of C(u ) for discrete time on/off sources). Con-
sider the case when ( An)n is the superposition of N independent and identical
2-state MAP’s ( An

i , Yn
i , {1, 2}, Pi} such that

P~Yn11
i 5 j , An

i # x uYn
i 5 k! 5 pkjFk~ x!

where pkj is the (k, j)-entry of the transition matrix Pi, and Fk( x) 5 P( An
i #

x uYn
i 5 k) for k, j 5 1, 2,. Assume that F1( x) 5 1 for all x $ 0 and that F2( x)

5 1 for all x , l. In other words, each MAP ( An
i )n is a discrete time on/off

source that emits packets at rate l in state 2 and does not emit any packet in
state 1. Then, it can be shown [Liu et al. 1996] that

C~u ! 5 S p1

z1~u !
D N

max
1#r#N
l0#l#N

exp~llu ! O i5l
N SN

i D ~p2/p1!
ia ir

O i5l
N SN

i D ~ z2~u !exp~lu !/z1~u !! ia ir

(4.3)

with p1 5 p21/( p12 1 p21), p2 5 1 2 p1, l0 5 inf{l 5 1, 2, . . . : ll . c},
z1(u ) 5 (exp(ul) 2 n(u))/(exp(ul) 2 1), z2(u ) 5 1 2 z1(u ),

n~u ! 5 ~1 2 p12! 1 ~1 2 p21!exp~lu !

1 ~~1 2 p12! 1 ~1 2 p21!exp~lu !!2 2 4~1 2 p12 2 p21/exp/lu !1/ 2/ 2

and where a ir, the probability that r sources are on at time n given that i sources
were on at time n 2 1, is given by

a ir 5 O
s5max~0,i2r!

min~i,N2r! S i
lD p21

l ~1 2 p21!
i2lS N 2 i

r 2 ~i 2 l !D p12
r2~i2l !~1 2 p12!

N2r2l. e

Consider now the performance criterion P(X . x) # exp(2ux) for x 3 `.
The following holds:

PROPOSITION 4.1.2. If the stability condition Ep[A0] , c is satisfied, and if
the set $ is open, then, for all u [ $ ù (0, `)

lim
x3`

log P~X . x!

x
# 2u if and only if O

i51

N

ci~u ! # c .

PROOF. Assume that Ep[A0] , c and that the set $ is open. Therefore, u* .
0 (cf. discussion after the proof of Proposition 2.2), which in turn implies from
the strict convexity of r(u), the identity r(0) 5 1 and r9(0) , 0 (see the discussion
at the end of Section 2.3) that the condition r(u) # 1, or, equivalently, i51

N

ci(u ) # c from (4.1), holds if and only if 0 # u # u*. From this and (2.17) we
conclude that i51

N ci(u ) # c if and only if limx3`(1/x)log P(X . x)
# 2u. e
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Proposition 4.1.2 is not new, as the same result was announced by Kesidis et al.
[1993] (but proved through a heuristic argument). This proposition was mainly
stated for future reference (see Section 4.1.1) and the proof we gave was
presented for the sake of completeness. The same result can also be obtained in
an even more general context (see Assumptions (C1)–(C3) in Chang [1994])
from the work of Chang [1994, Proposition 3.9] by using the same arguments as
ours. In particular, Chang showed that ci(u ) 5 (1/u )limn3`(1/n)log E[exp(u

m50
n21 Am

i )] [Chang 1994, Example 3.3], which provides a nice interpretation of
the effective bandwidth of a source.

We now consider two applications of the above analysis to call admission in
multimedia systems. The first is to the admission of voice calls to a single T1
(1.536 Mb/s) channel. The second is to the admission of viewers to a video server.

4.1.1. Call Admission in a Network. Consider a single T1 channel serving a
population of voice sessions. For simplicity we discretize time into 16 ms
segments and model each voice source as discrete time on/off source as defined
in Example 4.1.1. We assume that these sources are mutually independent and all
identical, with common transition matrix

P 5 F .975

.045

.025

.955G .

The mean of on and off periods correspond to 352 ms and 650 ms, respectively.
The service rate of the channel is taken to be c 5 48 which corresponds to each
source generating data at a peak rate of 32 Kb/s. Observe that there is no
contention if the number of sources N is less than 49 and that the system is
unstable whenever N . 134.

We ask ourselves the following question: what is the number of voice sessions
that can be supported by the channel such that P(X . b) # q? Here X is the
backlog (measured in ms of data), b the tolerable delay and q a tolerance. Let
Nmax denote this number. The distribution bounds in (4.2) and (2.25) can be
used to obtain bounds on Nmax–namely

Nlb # Nmax # Nub

TABLE V. SUPPORTABLE NUMBER OF VOICE SESSIONS.
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where

Nlb 5 max
49#N#134

HN : lnSC~u*!

q D 2 u*b # 0J
Nub 5 max

49#N#134
HN : lnSB*

q D 2 u*b . 0J
where for each N 5 49, . . . , 134, u* is the unique solution in (0, `) of the
equation i51

N ci(u ) 5 c. The coefficient C(u*) has been computed from (4.3)
for various values of b, q and r. It is worth noting that C(u ) has always been
found smaller than 1, ranging from 1.03 10220 for 49 sources to 0.9995 for 134
sources. The coefficient B has also been computed from (4.3) after substituting
“max” for “min” and u for u*.

Table V reports Nlb and Nub as a function of the tolerable delay, b, for
tolerances of 0.1%, 1% and 5%. Also included are the number of sessions Neb

that can be supported based on the effective bandwidth approach, namely, Neb 5
max{N : i51

N ci(u ) # c} (cf. Proposition 4.1.2). We observe that the quality of
the bounds increases as b and/or q increase. In particular, the relative error re :5
(Nub 2 Nlb)/Nub is such that re # 0.25 for b $ 20, re # 0.2 for b $ 50 and re

# 0.05 for b $ 200. In addition, the effective bandwidth approach turns out to
be very conservative for small delay constraints (say, for b # 100) and lies
between the bounds only for large b (b $ 500). The fact that the effective
bandwidth yields conservative admission controls has been observed elsewhere as
well (see Guérin et al. [1991]) where enhancements have been proposed.

4.1.2. Call Admission in a Video Server. We consider requests to a video
server for movies. Sources are homogeneous, independent, and behave as
follows: Each source cycles between playback of a movie during which it requires
1 resource unit and pause during which it releases its resource. For simplicity,
time is divided into 1/2 second (s) segments. Each source is modeled as a discrete
time on/off source as in Example 4.1.1, with common transition matrix

P 5 F .9996667

.9999444

.0003333

.0000556G .

The playback period has an average length of 30 minutes and the pause period
has average length of 5 minutes. Last, we assume that the video server has 100
resource units. Hence, it can handle a minimum of 100 and a maximum of 116
viewers (stability condition).

We again consider the question— how many viewers can this system handle
such that the start of playback is not delayed beyond b time units with probability
that exceeds q. Using the same approach as with the voice application, we have
determined upper (Nub) and lower (Nlb) bounds for Nmax for .5s # b # 60s for
tolerances of 1, 5, and 10%. For the range given above, the bounds obtained on
Nmax do not depend on b and is presented in Table VI. Also included are the
number of sessions that can be supported as predicted by the effective bandwidth
approach (Neb). Observe that the effective bandwidth approach yields the same
number of sessions as can be supported through a peak rate allocation.
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5. Concluding Remarks

In this paper we have presented upper and lower bounds of an exponential form
for the tail distribution of both Xn and of its stationary regime X, in the case
where (Xn)n is defined by the stochastic recursion (1.1). Applications to queues
have been discussed and our bounds have been numerically compared to other
bounds and to the exact distribution. Last, we have provided an application of
our results in the setting of admission control. Our work has been lately extended
in several directions including more general stochastic recursions in the max-plus
framework [Liu et al. 1995] and more general admission control criteria related
to the probability that k or more customers within a group of n arrive to find the
buffer occupancy greater than some level [Liu et al. 1996]. Also, it has been used
to derive upper and lower bounds on the tail distribution of the stationary
backlog in a multiplexer fed by independent and nonhomogeneous Markov
on/off fluid sources [Artiges and Nain 1996].

Appendix A Proofs of Lemma 2.4.2 and Corollary 2.4.3

PROOF OF LEMMA 2.4.2. Define the set & 5 {( x, j, k) [ [0, `) 3 62 :
Fkj( x) , pkj}. Observe that & is a nonempty set thanks to the assumption that
the set } (see (2.3)) is nonempty.

From the definition of B (see (2.26)) it is easily seen that

B $ inf
~ x, j,k![&

S p~k!

zk~u*!
D gkj~ x!

5 min5 inf
~ x, j,k![&

Dkj,`
1 p~k!

zk~u*!2 gkj~ x!; inf
~ x, j,k![&

Dkj5`
1 p~k!

zk~u*!2 gkj~ x!6
$ min5 min

~ j,k![}

Dkj,`
1 p~k!

zk~u*!2 exp~2u*Dkj!; inf
x$0, j,k[6

Dkj5`
1 p~k!

zk~u*!2 gkj~ x!6 , (A.1)

where gkj( x) 5 ( pkj 2 Fkj( x))/*x
` exp(u*(u 2 x)) Fkj(du).

On the other hand, we deduce from assumption (2.27) that when Dkj 5 ` then
there exist constants dkj , ` and e . 0 such that gkj( x) $ e for all x $ dkj. This
observation readily implies that

inf
x$0, j,k[6

Dkj5`

S p~k!

zk~u*!D gkj~ x! 5 min
j,k[6

Dkj5`

H inf
0#x,dkj

S p~k!

zk~u*!D gkj~ x!; inf
x$dkj

S p~k!

zk~u*!D gkj~ x!J

TABLE VI. SUPPORTABLE NUMBERS OF VIDEO SESSIONS.
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$ min
j,k[6

Dkj5`

H S p~k!

zk~u*!
D exp~2u*dkj!; S p~k!

zk~u*!
D eJ . 0.

(A.2)

Combining (A.1) and (A.2) yields B . 0. e

PROOF OF COROLLARY 2.4.3. Thanks to Lemma 2.4.2, it suffices to show that
jkj . 0 when Fjk( x) has a polynomial-exponential density function for (k, j) [
} since in this case Dkj 5 `.

For all j, k [ 6, let

fkj~ x! 5 O
i51

nkj

akj,ixmkj,i exp~2bkj,i x!

be the density function of Fkj( x), where akj,i’s are nonzero real numbers, mkj,i’s
are nonnegative integers and bkj,i’s are strictly positive real numbers. Assume
without loss of generality that for all j, k [ 6, bkj,1 # bkj,2 # . . . # bkj,nkj

, and
that if bkj,i 5 bkj,i11, then mkj,i . mkj,i11. As fkj( x) $ 0 for all x . 0, it is easy
to see (by letting x go to infinity) that akj,1 . 0 for all j, k [ 6. It then follows
that for all x $ 0, j, k [ 6,

E
x

`

Fkj~du!

E
x

`

exp~u*~u 2 x!!dFkj~u!

5

O i51
nkj akj,i E

x

`

umkj,i exp~2bkj,iu!du

O i51
nkj akj,i E

x

`

exp~u*~u 2 x!!umkj,i exp~2bkj,iu!du

5

O i51
nkj exp~2bkj,i x!akj,imkj,i! O l50

mkj,i
x l

l!

1

bkj,i
mkj,i112l

O i51
nkj exp~2bkj,i x!akj,imkj,i! O l50

mkj,i
x l

l!

1

~bkj,i 2 u*!mkj,i112l

. (A.3)

Dividing both the numerator and the denominator in the right-hand side of (A.3)
by akj,1xmkj,1 exp(2bkj,1x) and using the fact that the couple (bkj,1, 2mkj,1) is
the smallest in the lexicographic order among all couples (bkj,i, 2mkj,i), we
obtain that

lim
x3`

pkj 2 Fkj~ x!

E
x

`

exp~u*~u 2 x!!dFkj~u!

5
bkj,1 2 u*

bkj,1

. 0
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where the strict positiveness is a consequence of the fact that $ 5 {u : u , mink, j

bkj,1} together with the definition of u*. The proof is thus completed. e
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