
IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 9, NO. 4, AUGUST 2001 377 

TCP Performance Over End-to-End Rate Control and 
Stochastic Available Capacity 

San j ay  Shakkottai ,  A n u r a g  Kumar,  Senior Member, IEEE, Adi tya  Karnik ,  and Aj i t  A nve ka r  

Abstract--Motivated by TCP over end-to-end ABR, we study 
the performance of adaptive window congestion control, when it 
operates over an explicit feedback rate-control mechanism, in a 
situation in which the bandwidth available to the elastic traffic 
is stochastically time varying. It is assumed that the sender and 
receiver of the adaptive window protocol are colocated with the 
rate-control endpoints. The objective of the study is to understand 
if the interaction of the rate-control loop and the window-control 
loop is beneficial for end-to-end throughput, and how the param- 
eters of the problem (propagation delay, bottleneck buffers, and 
rate of variation of the available bottleneck bandwidth) affect the 
performance. 

The available bottleneck bandwidth is modeled as a two-state 
Markov chain. We develop an analysis that explicitly models the 
bottleneck buffers, the delayed explicit rate feedback, and TCP's 
adaptive window mechanism. The analysis, however, applies only 
when the variations in the available bandwidth occur over periods 
larger than the round-trip delay. For fast variations of the bottle- 
neck bandwidth, we provide results from a simulation on a TCP 
testbed that uses Linux TCP code, and a simulation/emulation of 
the network model inside the Linux kernel. 

We find that, over end-to-end ABR, the performance of TCP 
improves significantly if  the network bottleneck bandwidth vari- 
ations are slow as compared to the round-trip propagation delay. 
Further, we find that TCP over ABR is relatively insensitive to bot- 
tleneck buffer size. These results are for a short-term average link 
capacity feedback at the ABR level (INSTCAP). We use the testbed 
to study EFFCAP feedback, which is motivated by the notion of 
the effective capacity of the bottleneck link. We find that EFFCAP 
feedback is adaptive to the rate of bandwidth variations at the bot- 
tleneck link, and thus yields good performance (as compared to 
INSTCAP) over a wide range of the rate of bottleneck bandwidth 
variation. Finally, we study if TCP over ABR, with EFFCAP feed- 
back, provides throughput fairness even if the connections have dif- 
ferent round-trip propagation delays. 

Index Terms--Congestion control, TCP over ABR, TCP perfor- 
mance. 

I. INTRODUCTION 

I N THIS paper, we report the results of an analytical and 
simulation study of the interactions between an end-to-end 

adaptive window based protocol (such as TCP), and an explicit 

Manuscript received March 5, 1999; revised July 7, 2000; approved by 
IEEE/ACM TRANSACTIONS ON NETWORKING Editor T. V. Lakshman. This 
work was supported by a grant from Nortel Networks. 

S. Shakkottai was with the Department of Electrical Communication Engi- 
neering, Indian Institute o f Science (IISc), Bangalore 560 012, India. He is now 
with the Coordinated Sciences Lab, University of Illinois, Urbana-Champaign, 
IL 61801 USA (e-mail: shakkott@uiuc.edu). 

A. Kamar and A. Karnik are with the Department of Electrical Communica- 
tion Engineering, Indian Institute of Science (IISc), Bangalore 560 012, India 
(e-mail: anurag@ece.iisc.ernet.in; karnik@ece.iisc.ernet.in). 

A. Anvekar was w,th ";he Department of Electrical Communication Engi- 
neering, Indian Institute o5 Science (IISc), Bangalore 560 012, India. He is now 
with IISc Simputer Conscrtium, Bangalore 560 012, India. 

Publisher Item Identifier S 1063-6692(01)06846-7. 

I ABR Lsource-m ABR ~ = I ~ ABR I 

end-to-end ABR 

Fig. 1. The TCP endpoints are colocated with the ABR endpoints. We call this 
scenario TCP over end-to-end ABR. 

rate-based protocol (such as ABR) for congestion control in a 
packet network. It is assumed that the sender and receiver of 
the adaptive window control protocol are colocated with the 
rate-control end points, as shown in Fig. 1. 

TCP is, by far, the dominant end-to-end transport protocol for 
elastic traffic in the Internet today. TCP uses an adaptive window 
mechanism for flow control, congestion control, and bandwidth 
sharing. The normal behavior of all TCP senders is to gradually 

increase their transmit windows upon receiving acknowledg- 
ments (ACKs), thereby increasing their sending rates. This con- 
tinues until some link gets congested as a consequence of which 
there is packet loss. Implicit loss indications then cause senders 
to reduce their windows. Thus, the TCP transmit window, and 
hence the TCP transmission rate, has an oscillatory behavior that 
can lead to low link utilization. Further, owing to the ACK-based 
self-clocking mechanism, fairness between sessions is also an 
issue. 

The available bit rate (ABR) service in asynchronous transfer 
mode (ATM) networks is primarily meant for transporting best- 
effort data traffic. Connections that use the ABR service (so- 
called ABR sessions) share the network bandwidth left over 
after serving constant bit rate (CBR), e.g., circuit emulation, 
and variable bit rate (VBR), e.g., variable rate-compressed video 
traffic. This available bandwidth varies with the requirements of 
the ongoing CBR/VBR sessions. The switches carrying ABR 
sessions continually calculate a fair rate for each session at each 
output port, and use resource management (RM) cells to ex- 
plicitly feed this rate back to the session sources (see [3]). This 
explicit rate feedback causes the ABR sources to reduce or in- 
crease their cell transmission rates depending on the availability 
of bandwidth in the network. 

Even if the wide-area packet transport technology is ATM 
based, since the ABR service does not guarantee end-to-end 
reliable transport of data, the applications in the end-systems 
use TCP as the end-to-end transport protocol. Moreover, with 
the evolution of gigabit ethernet, ATM has become primarily 
a wide-area networking technology. Hence, ATM endpoints 

1063-6692/01510.00 © 2001 IEEE 



378 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 9, NO. 4, AUGUST 2001 

host 

LAN 

Proxy~ W ~ P r o x y  "-,•host 
N host 

LAN 

Fig. 2. TCP/IP hosts (attached to LANs) communicat ing over a wide area 
network via proxies. There is a single, lon~-lived, "proxy-to-proxy" TCP 
connection over ATM/ABR; the proxies are ATM/ABR endpoints. Each TCP 
session between a pair of end systems is carded over two "local" TCP/IP 
connections over the LANS (between the end-systems and the their respective 
proxies), and over the single TCP/IP/ABR connection over the ATM WAN. 

would typically be in edge devices (such as edge routers or 
proxies) rather than in clients or servers. 

A situation that our work applies to is depicted in Fig. 2. In 
Fig. 2, a proxy at a customer's site has an ATM network in- 
terface card that attaches it to the ATM WAN, and an ethernet 
card on the LAN side. The situation depicted could represent 
an enterprise or a web services provider that is managing (e.g., 
backing up, synchronizing) the data on its web servers across 
two sites, or an Internet brokerage that has its brokers at one 
site and servers at another. One persistent TCP connection can 
be set up over the ATM WAN between the proxies at the two 
sites, and this connection can be shared by all the transactions 
between the sites. Over the local networks, there are short-lived 
TCP connections between the web servers or clients and their 
respective proxies. In this framework, our results in this paper 
would apply to the "proxy-to-proxy" (edge-to-edge) TCP over 
ABR connection. Note that if this is the dominant mechanism 
for transporting elastic traffic over the ATM network, then the 
ATM WAN carries mostly long-lived ABR connections, making 
the end-to-end feedback based ABR approach viable. Further, 
the long-lived TCP connection (between the proxies) can main- 
tain window state from transfer to transfer thus avoiding slow 
start for each short transfer. In addition, each proxy can effec- 
tively pace the local connections by using ack pacing, or explicit 
rate feedback into the TCP senders in the hosts on the LAN. The 
latter approach has been investigated further in [13]. Most im- 
portantly, from the point of view of this paper, this network ar- 
chitecture justifies studying a single long-lived TCP connection 
(or a small number of such TCP connections) over a long-lived 
wide area ATM/ABR virtual circuit(s). 

One of the concerns in an integrated network is that best-ef- 
fort elastic traffic shares the network bandwidth with CBR/VBR 
sessions. Thus, the bandwidth available to elastic traffic is time 
varying and stochastic. Effective rate-control mechanisms for 
ABR can be designed even with stochastic variations in bottle- 
neck bandwidth (see[2]). TCP has an adaptive window-control 
mechanism where the window size oscillates periodically, even 
when the network capacity does not change. The question that 
we wish to answer is that i f  TCP operates over a rate-control 
mechanism such as ABR, whether the interaction is beneficial 
or not, and how the interaction can be improved. 

Many simulation studies have been carded out to study the 
interaction between the TCP and ATM/ABR control loops. A 

study of the buffering requirements for zero cell loss for TCP 
over ABR is reported in [9]. Using simulations, it is shown that 
the buffer capacity required at the switch is proportional to the 
maximum round-trip time (RTT) of all the virtual circuits (VCs) 
through the link, and is independent of the number of sources 
(or VCs). The proportionality factor depends on the switch algo- 
rithm. In further work, the authors in [10] introduce various pat- 
terns of VBR background traffic. The VBR background traffic 
introduces variations in the ABR capacity and the TCP traffic 
introduces variations in the ABR demand. 

In [6], the authors study the effect of ATM/ABR control on 
the throughput and fairness of running large unidirectional file 
transfer applications on TCP-Tahoe and TCP-Reno with a single 
bottleneck link with a static service rate. The authors in [16] 
study the performance of TCP over ATM with multiple con- 
nections, but with a static bottleneck link. The paper reports a 
simulation study of the relative performance of the ATM ABR 
and unspecified bit rate (UBR) service categories in transporting 
TCP/IP flows through an edge-to-edge ATM (i.e., the host nodes 
are not ATM endpoints) network. Their summary conclusion is 
that there does not seem to be strong evidence that for TCP/IP 
workloads the greater complexity of ABR pays off in better TCP 
throughputs. Their results are, however, for edge-to-edge ABR; 
they do not comment on TCP over end-to-end ABR which is 
what we study in this paper. 

All the studies above are primarily simulation studies. There 
are also a few related analytical studies. In [11], the authors 
study the interaction of TCP and ABR control loops with a focus 
on the interaction between the rate increase behavior of the ABR 
source and the ramp-up time of the congestion window during 
TCP slow start. They conclude that the ramp-up time of the TCP 
window can be significantly prolonged over ABR when the RTT 
is small. However, in our study, as noted earlier, we are pri- 
marily interested in WANs with large RTTs, and we focus on 
the long-term throughput of TCP with and without rate control. 
In [4], the authors study TCP over a fading wireless link, which 
is modeled as a Markov chain. The analysis consists of mod- 
eling the arrival process into the buffer of the link as a Bernoulli 
process, thus neglecting TCP window dynamics. This, as they 
note, is different from the arrival stream generated by TCP. 

In this paper, we make the following contributions. 

1) We develop an analytical model for a TCP connection 
over explicit rate ABR when there is a single bottleneck 
link with time varying available capacity. In the analytical 
model, we assume that the explicit-rate feedback is based 
on the short-term average available capacity; we think of 
this as instantaneous capacity feedback, and we call the 
approach INSTCAP feedback. We explicitly model TCP's 
adaptive window dynamics, the bottleneck buffer process, 
stochastic variations of the bottleneck rate, and ABR rate 
feedback with delay. Since we model the buffer process 
at the bottleneck link, unlike the approach in [17], our 
analysis does not need the loss probability as an externally 
provided parameter. 

2) We use a testbed to validate the analytical results. This 
testbed implements a hybrid simulation comprising Linux 
TCP code, and a network emulation/simulation imple- 
mented in the loopback device driver code in the Linux 



SHAKKOTTAI et al.: TCP PERFORMANCE OVER END-TO-END RATE CONTROL AND STOCHASTIC AVAILABLE CAPACITY 379 

kernel. While the analysis has been done only for slow 
bottleneck rate variations, as compared to the RTT, the 
simulations study a wide range of bottleneck rate varia- 
tions. In spite of the fact that many of  our conclusions are 
based on simulations, there is important value in the anal- 
ysis that we have provided. Simulations are often used to 
verify analyses, but the reverse can also be useful. A de- 
tailed simulation of  a protocol as complex as TCP, or a 
modification of TCP code, can often lead to erroneous 
implementations. If  an approximate analysis is available 
for even some situations, it can help to validate the simu- 
lation code. In fact, when doing another related piece of  
work, reported in [13], a serious error in a simulation was 
discovered only because the simulation failed to match an 
analysis. 

3) Then, with the loss sensitivity of TCP in mind, we develop 
an explicit rate feedback that is based on a notion of effec- 
tive service capacity of the bottleneck link (derived from 
large deviations analysis of  the bottleneck queue process). 
We call this EFFCAP feedback. EFFCAP is more effec- 
tive in preventing loss at the bottleneck buffers. Since the 
resulting model is hard to analyze, the results for EF- 
FCAP feedback are all obtained from the hybrid simulator 
mentioned above. Our results show that different types 
of  bottleneck bandwidth feedbacks are needed for slowly 
varying bottleneck rate, rapidly varying bottleneck rate 
and the intermediate regime. EFFCAP feedback adapts 
itself to the rate, of bottleneck rate variation. We then de- 
velop guidelines for choosing two parameters that arise in 
the on-line calculations of EFFCAP. Notions of  effective 
service capacity of  time-varying links, in the context of  
congestion control, have also been introduced and used 
in [4] and [21. 

4) Finally, we study the performance of  two TCP connec- 
tions that pass through the same bottleneck link, but have 
different round-trip propagation delays. Our objective 
here is to determine whether TCP over ABR is fairer 
than TCP alone, and under what circumstances. In this 
study, we only use EFFCAP feedback. 

The paper is organized as follows. In Section II, we describe 
the network model under study. In Section III, we develop the 
analysis of  TCP over ABR with INSTCAP feedback, and of 
TCP alone. In Section IV, we develop the EFFCAP algorithm; 
TCP over ABR with EFFCAP feedback is only amenable to 
simulation. In Section V, we present analysis results for IN- 
STCAP feedback, and simulation results for INSTCAP and EF- 
FCAP. The perfonnarlce of  INSTCAP and EFFCAP feedbacks 
are compared. In Section VI, we study the choice of  two param- 
eters that arise in EFFCAP feedback. In Section VII, we provide 
simulation results for two TCP connections over ABR with EF- 
FCAP feedback. Finailly, in Section VIII, we summarize the ob- 
servations from our work. 

II. THE NETWORK MODEL 

Consider a system consisting of a TCP connection between 
a source and destination node connected by a network with a 
large propagation delay, as shown in Fig. 1. We assume that only 

HOST COMPUTER 

I TCP Source I 
ABR 

adaptive rate 
r 

Segmentation I 
I:luffAr i 

bottleneck link 
with time ~arying 

service rate 

I 
I I 

ABR Rate Feedback 
TCP ack Feedbacks L . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Fig. 3. The segmentation buffer of the system under study is in the host NIC 
card and extends into the host's main memory. The rate feedback from the 
bottleneck link is delayed by one round-trip delay. 

one link (called the bottleneck link) causes significant queuing 
delays in this connection, the delays owing to the other links 
being fixed (i.e., only fixed propagation delays are introduced 
by the other links). A more detailed model of this is shown 
in Fig. 3. The TCP packets are converted into ATM cells and 
are forwarded to the ABR segmentation buffer. This buffer is 
in the network interface card (NIC) and extends into the main 
memory of  the computer. Hence, we can look upon this as an 
infinite buffer. The segmentation buffer server (also called the 
ABR source) gets rate feedback from the network. The ABR 
source service rate adapts to this rate feedback. When we study 
TCP alone, this segmentation buffer is absent from the model. 

The bottleneck link buffer represents either an ABR output 
buffer in an ATM switch (in case of  TCP over ABR), or a router 
buffer (in case of TCP alone). The network carries other traffic 
(CBR/VBR), which causes the bottleneck link capacity (as seen 
by the connection of interest) to vary with time. The bottle- 
neck link buffer is finite, which can result in packet loss due 
to buffer overflow when rate mismatch between the source rate 
and the link service rate occurs. In our model, we will assume 
that a portion of  the link capacity is reserved for best-effort 
traffic, and hence is always available to the TCP connection. 
In the ATM/ABR case, such a reservation would be made by 
using the minimum cell rate (MCR) feature of  ABR, and would 
be implemented by an appropriate link scheduling mechanism. 
Thus, when guaranteed service traffic is backlogged at this link, 
then the TCP connection gets only the bandwidth reserved for 
best-effort traffic, otherwise it gets the full bandwidth. Hence, a 
two-state model suffices for the available link rate. 

III. TCP/ABR WITH INSTCAP FEEDBACK 

Fig. 4 shows a queuing model of the network scenario de- 
scribed in Section II. At time t, the cells in the ATM segmenta- 
tion buffer at the source are transmitted at a time dependent rate 
St -1 which depends on the ABR rate feedback (i.e., St is the 
service time of a packet at time t). The bottleneck has a finite 
buffer Br.ax and has time dependent 1 service rate R t packets/s. 

A. Modeling Assumptions 

In order to simplify an otherwise intractable analysis, and to 
focus on the basic issue of  an adaptive window congestion con- 



380 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 9, NO. 4, AUGUST 2001 

[ 
TCP/ABR Transmitter 

St 

Io 
At 

Bottleneck Link Propagation Delay 

Bmax :. Rt 

] o -  
B t 

Dt 

Fig. 4. Queuing model of TCP over end-to-end. 

trol operating over an adaptive-rate congestion control, we make 
the following modeling assumptions. 

1) We model a longed-lived TCP connection during the data 
transfer phase, hence the data packets are assumed to be 
of fixed length (the TCP segment size). 

2) The ABR segmentation buffer can extend into the main 
memory of the client; hence, the segmentation buffer ca- 
pacity is assumed to be infinite. There are as many packets 
in this buffer as the number of untransmitted packets in 
the TCP window. The (time-dependent) service time St at 
this buffer models the time taken to transmit an entire TCP 
packet worth of ATM cells. We assume that the service rate 
at the segmentation buffer does not change during the trans- 
mission of the cells from a single TCP packet. 

3) The bottleneck link is modeled as a finite buffer queue 
with service rate that is Markov modulated by an inde- 
pendent Markov chain on two states 0 and 1; the service 
rate is higher in state 0. Each packet that enters the buffer 
has a service rate R~-1 at time t, which is assumed con- 
stant over the service time of the packet. 

4) If the bottleneck link buffer is full when a cell arrives at 
it, the cell is dropped. In addition, we assume that all cells 
corresponding to that TCP packet are dropped. This as- 
sumption allows us to work with full TCP packets only. 1 

5) The round-trip propagation delay A is modeled by an infi- 
nite server queue with service time A. Notice that various 
propagation delays in the network (the source-bottleneck 
link delay, bottleneck link-destination delay, and the des- 
tination-source return path delay) have been lumped into a 
single delay element (see Fig. 4). This can be justified from 
the fact that even if the source adapts itself to the change in 
link capacity earlier than one RTT, the effect of that change 
will be seen only after a RTT at the bottleneck link. 

6) On receiving an ACK, the TCP sender may increase the 
transmit window. The TCP window evolution can be 
modeled in several ways (see [15], [14], [17]). In this 
study, we model the TCP window adjustments in the 
congestion avoidance phase probabilistically as follows. 
Every time a nonduplicate ACK arrives at the source, the 
window size Wt increases by one with probability (w.p.) 

1This is an idealization of cell discard schemes, such as partial packet discard 
[18] or early packet discard (EPD), designed to prevent the ATM network from 
wastefully carrying cells that belong to TCP packets some of whose constituent 
cells have been lost. 

7) 

At 

1 
Wt+ = Wt + 1, w.p. Wtt (1) 

Wt , otherwise. 

If a packet is lost at the bottleneck link buffer, the ACK 
packets for any subsequently received packets continue to 
carry the sequence number of the lost packet. Eventually, 
the source window becomes empty, timeout begins and 
at the expiry of the timeout, the threshold window W th 
is set to half the maximum congestion window achieved 
after the loss, and the next slow start begins. 

This model approximates the behavior of TCP without 
fast retransmit. We consider this simple version of TCR as 
we are primarily interested in studying the interaction be- 
tween rate and window control. This version is simpler to 
model and captures the interaction that we wish to study. 

With "packets" being read as "full TCP packets," we 
define the following notation. 

number of packets in the segmentation buffer at the 
host at time t; 

Bt number of packets in the bottleneck link buffer at time 
t; 

D t number of packets in the propagation queue at time t; 

Rt service time of a packet at the bottleneck link; Rt E 
{r0, ri }. We take r0 = l a n d r i  > r0. Thus, all 
times are normalized to the bottleneck link packet 
service time at the higher service rate; 

St service time of a packet at the ABR source. 

We assume that St follows Rt with delay A, i.e., St = 
Rt_A, and St E {to, ri}. For simplicity, we do not 
model the detailed ABR source behavior which additively 
increases the transmission rate in small increments (see 
[1]). We are not driving the rate feedback from variations 
in the bottleneck queue length, but are directly feeding 
back the current available rate at the bottleneck link. 

Since the instantaneous rate of the bottleneck link is 
fed back, we call this the instantaneous-rate feedback 
scheme. (Note that, in practice, the instantaneous rate is 
really the average rate over a small window; that is how 

8) 



SHAKKOTTAI et al.: TCP PERFORMANCE OVER END-TO-END RATE CONTROL AND STOCHASTIC AVAILABLE CAPACITY 381 

Fig. 5. 

Coarse time0ut 0ee~ 
.> l r 0 ~  ~ propagation delay 

k-1 ~ k I k+l ~ k+2 \ k+3 v > 3 + ~ ° ~ 2 ~  

no loss Loss epoch W'mdow reaches w & e, esses to grow Slow start phase 

The embedded process {(Xj, T3), j _> 0}. 

instantaneous-rate feedback is modeled in our simula- 

tions to be discussed later; we will call this feedback IN- 
STCAP). 2 

B. Analysis of the Queueing Model 

Consider the vector process 

{Zt, t > 0} := {(At, Bt, Dr, Rt, St), t >_ 0}. (2) 

This process is hard to analyze directly. Instead, we study an 
embedded process, which with suitable approximations, turns 
out to be analytically tractable. Define tk := kA, k _> 0. Now, 
consider the embedded process 

with Z0 = (1, 0, (I, r0, r0). We will use the obvious notation 
2k = (Ak, Bk, D~, .Rk, Sk). 

For mathematical tractability, we will make the following ad- 
ditional assumptions. 

1) We assume that the rate modulating Markov chain is em- 
bedded at the epochs (to, t l ,  . • .), i.e., the bottleneck link 
rate changes only at multiples of A. Thus, this analysis 
will not apply to cases where the link rate changes more 
frequently than once per A. For these cases, we will use 
simulations. 

2) We assume that packet transmissions do not straddle the 
embedded epocias. 

3) We assume that there is no loss in the slow-start phase 
of TCR In [15], the authors show that loss will occur in 
the slow-start phase if Bmax/[(A/ro) + 1] < 1/3, even 
if no rate change occurs in the slow-start phase. For the 
case of TCP over ABR, as the source and bottleneck link 
rates match, no loss will occur in this phase as long as rate 
changes do not occur during slow-start. This assumption 
is valid for the case of TCP alone only if/~max/[( A/7" 0 ) -1- 
1] > 1/3; hence, with this assumption, we find that our 

2Notice that with ABR alone (i.e., ABR is not below TCP), if the average 
bottleneck link rate is fed back to the source, and the source sends at this rate, 
then we have an "unstable" open queuing model. With TCP over ABR, how- 
ever, the model in Fig. 4 is; a closed queuing network, in which the number 
of "customers" is bounded by the maximum TCP window, Hence, even if the 
ABR source rate is equal to the average service rate at the bottleneck, the system 
will be stable. Also, witb INSTCAP rate feedback, the rate feedback will either 
be TO "1 or  r l  1 ( < t o  1 ). If the source sends at ro 1, then eventually there will 
be a loss, and since TCP is over ABR the system will be "reset." See [2] for 
an approach for explicit rate-based congestion control (without TCP) based on 
the effective service capacily concept, where the source directly adapts to an 
available rate estimate, the rate estimate is chosen, however, to put a certain 
constraint on the queue behavior if the source was to send at that rate. 

analysis overestimates the throughput when TCP is used 
alone (without ABR). 

4) Timeout and Loss-Recovery Model: Observe that packets 
in the propagation delay queue (see Fig. 4) at tk will have 

departed from the queue by tk+l.  This follows as the ser- 
vice time is deterministic, equal to A, and t k+  1 --tk = A.  

Further, any new packet arriving to the propagation delay 

queue during (tk, tk+ 1) will still be present in that queue 
at tk+l.  On the other hand, if loss occurs due to buffer 
overflow at the bottleneck link in (tk, tk+l) ,  we proceed 
as follows. Fig. 5 shows a packet-loss epoch in the in- 
terval (tk, tk+l) .  This is the first loss since the last time 
that TCP went through a timeout and recovery. At this loss 
epoch, there are packets in the bottleneck buffer, and some 
ACKs "in flight" back to the transmitter. These ACKs and 
packets form an unbroken sequence, and hence will all 

contribute to the window increase algorithm at the trans- 
mitter (we assume that there is no ACK loss in the reverse 
path). The transmitter will continue transmitting until the 
window is exhausted and will then start a coarse timer. 
We assume that this timeout will occur in the interval 
(tk+2, tk+3) (see Fig. 5), and that recovery starts at the 
embedded epoch tk+3. Thus, when the first loss (after re- 
covery) occurs in an interval then, in our model, it takes 
two more intervals to start recovery. 3 

At time tk, let Zk = (a, b, d, r, s). If no loss has occurred 
(since last recovery) until tk the TCP window at tk is a + b + 
d. Now, given Zk, we can find the probability that a loss oc- 
curs during (tk, tk+l) ,  and the distribution of the TCP window 

at the time that timeout starts. (This calculation depends on 
the fact that d ACKs will arrive at the TCP transmitter during 
tk, tk+l, and also on the probabilistic window evolution model 
during TCP congestion avoidance; the calculation is explained 
below.) Suppose this window is w, then the congestion avoid- 
ance threshold in the next recovery cycle will be m := Fw/2]. 
It will take approximately Flog 2 m] RTTs (each of length A) to 
reach the congestion avoidance threshold. Under the assump- 
tion that no loss occurs during the slow-start phase, congestion 
avoidance starts at k'  = k + 3 + [log 2 m] ,  and we can determine 
the distribution of Zk'. 

With the above description in mind, define 

T o = t 0 = 0  and X 0 = Z 0 = ( 1 , 0 , 0 ,  ro, r0). (4) 

3TCP samples some RTTs of transmitted packets, and uses an exponentially 
weighted moving average for estimating an average RTT and a measure of vari- 
ation of RTT. The retransmission time out (RTO) is then obtained from these 
two statistics. It is not possible to capture this mechanism in a simple Markov 
model. Hence, in our simulations, we modified TCP code so that the RTO was 
fixed at two times the RTT. 



382 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 9, NO. 4, AUGUST 2001 

F o r k >  1 

T~ = I 
r k - 1  '}- /k 

Tk-l-I'- (3-I- [log2 2 ] )  A, 

if no loss occurs in 

(Tk-~, Tk-~ + A) 

if loss occurs in 

(Tk-~, T~_~ + A) 

and the loss window 
is w 

(5) 

and X,~ = ZTk. For a particular realization of Xk, we will write 
Xk = x where x = (a, b, d, r, s). Define 

p(x) = Pr{loss occurs during (Tk, Tk + A)]Xk = x} (6) 

and 

Uk -- ( Tk + l - Tk ) for k > 0. (7) 
A 

Given Xk = x, we have 

Uk = I w.p. 1 - p(x). (8) 

We now proceed to analyze the evolution of {Xk, k >_ 0}. 
The bottleneck link-modulating process, as mentioned 

earlier, is a two-state Markov chain embedded at {tk, k _> 0} 
taking values in {r0, 7"1}. Let P01, Pl0 be the transition 
probabilities of the Markov chain. Notice that Sk = Rk-1, 
hence (Rk, Sk) is also a discrete-time Markov chain (DTMC). 
Let Q be the transition probability matrix for (Rk, Sk). 
Then, Q n ( i l j l ;  i2j2)  = Pr{Rk+n = i2, Sk+n = j 2 [Rk  = 
i l ,  Sk = j l} ,  where il ,  j l ,  i2, j2 E {ro, 7"1}. 

As explained above, given Xk = ( Ak, Bk, Dk, Rk, Sk ), the 
TCP congestion window is 

Wk = Ak + Bk + Dk. (9) 

For particular Xk = (a, b, c, r, s), Xk+l can be determined 
using the probabilistic model of window evolution during the 
congestion avoidance phase. Consider the evolution of Ak, 
the segmentation buffer queue process. If no loss occurs in 
(Tk, Tk+l) 

Ak+l = a + d + N k -  (10) 

where Nk is the increment in the TCP window in the interval, 
and is characterized as follows. During (Tk, Tk+l), for each 
ACK arriving at the source (say, at time t), the window size 
increases by one with probability 1/Wt. However, we further 
assume that the window size increases by one with probability 
1/Wk (where Wk = a + b + d), i.e., the probability does not 
change after every arrival but, instead, we use the window at 
Tk. Then, with this assumption, due to d arrivals to the source 
queue, the window size increases by the random amount Nk. We 
see that for d ACKs, the maximum increase in window size is d. 
Let us define Nk such that Nk ,.o Binomial(d, [1/(a+b+ d)]). 
Then, Nk = rain(Ark, Wm~x - (a + b + d)). We can similarly 
get recursive relations for Bk+l and Dk+l [19]. 

Let us now define 

a(x; w) = 
Pr{window achieved is w[Xk = x, loss in (Tk, Tk + A)}. 

(11) 

When no loss occurs, Uk is given by (8). When loss occurs, 
given Xk = x = (a, b, c, il, j l ) ,  the next cycle begins after 
the recovery from loss which includes the next slow-start phase. 
Suppose that the window was 2rn when loss occurred. Then, 
the next congestion avoidance phase will begin when the TCP 
window size in the slow-start phase after loss recovery reaches 
m. This will take [log z m] cycles. At the end of this period, the 
state of various queues is given by (Ak, Bk, Dk) = (0, 0, m).  
The channel state at the start of the next cycle can be described 
by the transition probability matrix of the modulating Markov 
chain. Hence 

Uk = 3 + [log z m] w.p. p(x).a(x; 2m) (12) 

and 

X k + l  = (0, O, m ,  i2, j2) 

w.p. p(x).a(x; 2m).Q (a+l°g2 m)(il,  j l ; i2 ,  j2)- (13) 

From the above discussion, it is clear that given Xk, the dis- 
tribution of Xk+l can be computed without any knowledge of 
its past history. Hence, {Xk, k >_ 0} is a Markov chain. Further, 
given Xk, the distribution of Tk+l can be computed without any 
knowledge of past history. Hence, the process { (Xk, Tk), k _> 
0} is a Markov Renewal Process (MRP) (See [21]). It is this 
MRP that is our model for TCP/ABR. 

C. Computation of Throughput 

Given the Markov Renewal Process {(Xk, Tk), k >_ 0}, we 
associate with the kth cycle (Tk, Tk+l) a "reward" Vk that ac- 
counts for the successful transmission of packets. Let 7r(x) de- 
note the stationary probability distribution of the Markov chain 
{Xk, k _> 0}. Denote by ")'TCP/ABR, the throughput of TCP 
over ABR. Then, by the Markov renewal-reward theorem [21], 
we have 

E~V 
(14) ")'TCP/ABR- E~.U 

where E~ (.) denotes the expectation w.r.t, the stationary distri- 
bution 7v(x). 

The distribution ~r(x) is obtained from the transition proba- 
bilities in Section III-B. We have 

= ( 1 5 )  

X 

where V(x) is the expected reward in a cycle that begins with 
X = x. Denote by A(x), B(x) and D(x) the values of A, B 
and D in the state x. Then, in an interval (Tk, Tk + A) where 
no loss occurs, we take 

V(x) = D(x) w.p. 1 - p(x). (16) 

Thus, for lossless intervals, the reward is the number of ACKs 
retumed to the source; note that this actually accounts for packets 
successfully received by the receiver in previous intervals. 



SHAKKOTTAI et al. : TCP PERFORMANCE OVER END-TO-END RATE CONTROL AND STOCHASTIC AVAILABLE CAPACITY 383 

Loss occurs only if the ABR source is sending at the high 
rate and the link is transmitting at the low rate. When loss oc- 
curs in (Tk, Tk + A),  we need to account for the reward in the 
interval starting from Tk until Tk+l when slow-start ends. Note 
that at Tk, the congestion window is A(x) + B(x) + D(x). The 
first component of  tile reward is D(x) ;  all the B(x) buffered 
packets will resuh in ACKs, causing the left edge of  the TCP 
window to advance. Since the link rate is half the source rate, 
loss will occur when 2(B . . . .  - B(x)) packets enter the link 
buffer from the ABR source; these packets succeed and cause 
the left edge of the window to further advance. Further, we as- 
sume that the window grows by 1 in this process. Hence, fol- 
lowing the lost packet, at most A(x) + B(x) + D(x) + 1 packets 
can be sent. Thus, we bound the reward before timeout occurs 
by D(x) + B(x) - 2 ( B ~ x  - B(x)) + A(x) + B(x) + D(x) + 1 
= A(x) + 2D(x)  + 2Bronx + 1. After loss and timeout, the en- 
suing slow-start phase successfully transfers some packets (as 
described earlier). Hence, an upper bound on the "reward" when 
loss occurs is A (x I + 2D (x) + 2B . . . .  + 1 + S s l o w s t a r  t ( x ) ,  where 

S s l o w s t a r t ( X )  =: E a ( x ;  w ) ( 2  l °ge (w/2)  -- 1) ( 1 7 )  

113 

the summation index w being over all window sizes. Actually, 
this is an optimistic reward, as some of  the packets will be trans- 
mitted again in the next cycle, even though they have success- 
fully reached the receiver. We could also have a conservative 
accounting, where we: assume that if loss occurs, all the packets 
transmitted in that cycle are retransmitted in future cycles. In the 
numerical results, we shall compare the throughputs with these 
two bounds. It follows that 

¢" 

E . V  = Z  ~- (x) ( (1- -p(x) )D(x)  + p(x) 
x 

] 

• (d (x )  + 2D(x)  + 2Bma x q- 1 

Similarly, we have 

E!~U = Z 7r(x)U(x) (19) 
x 

where U(x) is the mean cycle length when X = x at the begin- 
ning of the cycle. 

From the analysis in Section III-B, it follows that 

W 

U ( x ) =  ( 3 + [ l o g 2 ~ l ) a ( x ; w ) ,  otherwise. 

Hence 

E,~U= Z ~  r(~:) ( ( 1 - p ( x ) ) + p ( x ) Z w  a(x; w) 

• 

(20) 

(21) 

"~'~'- Bm~'--"~" Ct 

Constant Rate ~ O 
Arrival Process 

t ~ 

Fig. 6. Single-server queue with time-varying service capacity, being fed by a 
constant rate source. 

D. TCP without ATM/ABR 

Without the ABR rate control, the source host would transmit 
at the full rate of  its link; we assume that this link is much 
faster than the bottleneck link and model it as infinitely fast. 
The system model is then very similar to the previous case, the 
only difference being that we have eliminated the segmentation 
buffer. The assumptions we make in this analysis, however, lead 
to an optimistic estimate of the throughput. The analysis is anal- 
ogous to that provided above. 

IV. TCP/ABR WITH EFFCAP FEEDBACK 

We now develop another kind of  rate feedback. To motivate 
this approach, consider a finite buffer single server queue with a 
stationary ergodic service process (see Fig. 6). Suppose that the 
ABR source sent packets at a constant rate. Then, we would like 
to find that rate which maximizes TCP throughput. Hence, let 
the input process to this queue be a constant-rate deterministic 
arrivalprocess. Given the buffer size Bma,, and a desired quality 
of service (QoS) (say a cell-loss probability _< e), we would like 
to know the maximum rate of the arrival process such that the 
QoS guarantee is met. 

We look at a discrete-time approach to this problem (see 
[20]); in practice, the discrete-time approach is adequate, as 
the rate feedback is only updated at multiples of  some basic 
measurement interval. Consider a slotted-time-queuing model 
where we can service Ci packets in slot i and the buffer can 
hold Bma x packets. {Ci} is a stationary and ergodic process; 
let EC be the mean of  the process and Cmin be the minimum 
number of packets that can be served per slot. A constant 
number of  packets (denoted by 7) arrive in each slot. We would 
like to find 7m~x such that the desired QoS (cell loss probability 
_< e) is achieved. In [20], the following asymptotic condition 
is considered. If  X is a random variable that represents the 
stationary queue length, then, with 5 > 0, 4 

1 
lim - -  l o g P ( X  > Bmax) < - 6  (22) 

Bm~x ---~ ° °  Bmax 

i.e., for large Bmax, the loss probability is better then e - 6 B  . . . .  . 

It is shown that this performance objective is met if 

1 1 
7 < ~ -  lim - - l o g E e x p  - 5  Ci • (23) 

n---,oo ?'t -t- 1 i=0 

For the desired QoS, we need 5 = - log e/B . . . .  Let us denote 
the expression on the right-hand side of  (23) as Feet. Then, Feff 
can be called the effective capacity of the server. If  c ~ 1, then 
Fe~ --+ EC and as e --+ 0, F~ff ~ C m i n  which is what we 
intuitively expect. For all other values of e, FefF C (Groin, EC).  

4All logarithms are taken to the base e. 



384 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 9, NO. 4, AUGUST 2001 

Let us apply this effective capacity approach to our problem. 
Let the ABR source (see Fig. 3) adapt to the effective bandwidth 
of the bottleneck link server. In our analysis, we have assumed 
a Markov-modulated bottleneck link capacity, with changes 
occurring at most once every A units of time, A being the 
round-trip propagation delay. Hence, we have a discrete-time 
model, with "7 being the number of packet arrivals to the 
bottleneck link in A units of time and Ci being the number of 
packets served in that interval. We will compute the effective 
capacity of the bottleneck link server using (23). However, 
before we can do this, we still need to determine the desired 
QOS, i.e., e, or equivalently, 6. 

To find 6, we conduct the following experiment. We 
let the ABR source transmit at some constant rate, say /t; 
# E (EC, Cmln). For a given Markov modulating process, we 
find the # that maximizes TCP throughput. We will assume 
that this is the effective capacity of the bottleneck link. Now, 
using (23), we can find the smallest ~ that results in an effective 
capacity of this/z. If the value of 6 so obtained turns out to be 
consistent for a wide range of Markov modulating processes, 
then we will use this value of 6 as the QoS requirement for 
TCP over ABR. 

The above discrete-time queuing model for TCP over ABR 
can be analyzed in a manner analogous to that in Section III-B. 
We find from the analysis that for several sets of parameters, 
the value of ~ which maximizes TCP throughput is consistently 
very large (about 60-70) [19]. This is as expected, since TCP 
performance is very sensitive to loss. 

A. Algorithm for Effective Capacity Computation 

In practice, we do not know a priori the statistics of the modu- 
lating process. Hence, we need an on-line method of computing 
the effective bandwidth. In this section, we develop an algorithm 
for computing the effective capacity of a time varying bottleneck 
link carrying TCP traffic. The idea is based on (23), and the ob- 
servation at the end of the previous section that 6 is very large. 

We take the measurement interval to be s time units; s is also 
the update interval of the rate feedback. We shall approximate 
the expression for effective bandwidth in (23) by replacing n -+ 
cx~ by a large finite M 

, (M) 
Feff ~ ~ - ~  log E exp - a  E Ci • 

i=1 

What we now have is an effective capacity computation per- 
formed over Ms units of time. We will assume that the process 
is ergodic and stationary. Hence, we approximate the expecta- 
tion by the average of N sets of samples, each set taken over 
M s  units of time. Note that since the process is stationary and 
ergodic, the N intervals need not be disjoint for the following 
argument to work. Then, denoting Cij as the ith link capacity 
value (i E {1, M}) in the jth block of M intervals (j E 
{1, N}), we have 

reff ~ ~ log ~ E exp - 6  Cij 
j = l  

- 1  log 1 1 log E exp - 6  Cij (26) 
M 5  N M b  j = l  i=1 

As motivated above, we now take ~ to be large. This yields 

~ l o g e x p  - 5  min E Cij (27) 
~ jEN i=1 

M 
1 

= jENmin ~ E Cq. (28) 
i=1 

We notice that this essentially means that we average capacities 
over N sliding blocks, each block representing Ms  units of time, 
and feed back the minimum of these values (see Fig. 7). 

The formula that has been obtained [(28)] has a particularly 
simple form. The above derivation should be viewed more as 
a motivation for this formula. The formula, however, has inde- 
pendent intuitive appeal (see below). In the derivation, it was 
required that M and N should be large. We can, however, study 
the effect of the choice of M and N (large or small) on the per- 
formance of effective capacity feedback. This is done in Sec- 
tion VI, where we also provide guidelines for selecting values 
of M and N under various situations. 

The formula in (28) is intuitively satisfying; we will call it EF- 
FCAP feedback. Consider the case when the network changes 
are very slow. Then, all N values of the average capacity will be 
the same, and each one will be equal to the capacity of the bot- 
tleneck link. Hence, the rate that is fed back to the ABR source 
will be the instantaneous free capacity of the bottleneck link; 
i.e., in this situation, EFFCAP is the same as INSTCAP. When 
the network variations are very fast, EFFCAP will be close to 
the mean capacity of the bottleneck link. Hence, EFFCAP be- 
haves like 1NSTCAP for slow network changes and adapts to 
the mean bottleneck link capacity for fast changes. For inter- 
mediate rates of changes, EFFCAP is (necessarily) conservative 
and feeds back the minimum link rate. 

W. NUMERICAL AND SIMULATION RESULTS 

In this section, we first compare our analytical results for the 
throughput of TCP, without ABR and with ABR with INSTCAP 

(24) feedback, with simulation results from a hybrid TCP simulator 
involving actual TCP code, and a model for the network im- 
plemented in the loopback driver of a Linux Pentium machine. 
We show that the performance of TCP improves when ABR is 
used for end-to-end data transport below TCP. We then study 
the performance of the EFFCAP scheme and compare it with 
the INSTCAP scheme. 

We recall from the previous section that the bottleneck link is 
Markov modulated. In our analysis, we have assumed that the 
modulating chain has two states, which we call the high state 
and the low state. In the low state, with some link capacity being 
used by higher priority traffic, the link capacity is some fraction 
of the link capacity in the high state (where the full link rate is 
available). We will assume that this fraction is 0.5. To reduce 

(25) the number of parameters we have to deal with, we will also 
assume that the mean time in each state is the same, i.e., the 



SHAKKOTrAI et al.: TCP PERFORMANCE OVER END-TO-END RATE CONTROL AND STOCHASTIC AVAILABLE CAPACITY 385 

t i m e  

I I L I 1 I . . . . . . . . . . . . . . . . . . . . .  I I I I I I 
" ~  M S a m p l e s  ~ "  

• N Averages  :" 

Fig. 7. Schematic of the windows used in the computation of the effective 
capacity-based rate feedback. 

g- 

"15 

0.9 

0.8 

0.7 

0.6 

0.5 

0.4 

0.3 

y "Conservative Analysis, 10 packets" - -  
!¢ "Conservative Analysis 12 packets" - ..... 

"Optimistic Analysis, 10 packets" - ...... 
"Optimistic Analysis 12 packets" • ............ 

"Testbed results, 10 packets" - ...... 
"Testbed results, 12 packets" - ..... 

I I I I I I I I I 

20 40 60 80 100 120 140 160 180 200 
Mean time per state (rtd) 

Fig. 8. Analysis  and simalation results: INSTCAP feedback. Throughput of 
TCP over ABR: the round-trip propagation delay is 40 t ime units. The bottleneck 
link buffers are either :0  or 12 packets. 

Markov chain is symmetric. We denote the mean time in each 
state by 7-, and denote the mean time in each state normalized 
to A by ~, i.e., ¢ :--= T /A .  For example, if A is 200 ms, then 
¢ = 2 means that the mean time per state is 400 ms. Note that 
our analysis only applies to ¢ > 1; in this section, we provide 
simulation results for a wide range of  ¢ ,  much smaller than 1, 
close to 1, and much larger than 1. A large value of  ¢ means that 
the network changes .are slow compared to A, whereas ¢ << 1 
means that the network transients occur several times per RTT. 
In the Linux kernel implementation of  our network simulator, 
the Markov chain can make transitions at most once every 30 
ms. Hence, we take this also to be the measurement interval, 
and the explicit rate fi~edback interval (i.e., s = 30 ms). 

We denote one packet transmission time at the bottleneck link 
in the high-rate state as one  t i m e  unit. Thus, in all the results 
presented here, the packet transmission time in the low-rate state 
is two time units. Thus, if A is given in these time units, then 
the bandwidth-delay product in the high-rate state is A packets, 
and in the low-rate state it is A / 2  packets. 

We plot the bottleneck link efficiency vs. mean time that 
it spends in each state (i.e., ¢).  We define efficiency as the 
throughput as a fraction of  the mean capacity of  the bottleneck 
link. We include the TCP[IP headers in the throughput, but 
account for ATM headers as overhead. We use the words 
throughput and efficiency interchangeably. With the modu- 
lating Markov chain spending the same time in each state, the 
mean capacity of the link is 0.75. 

Finally, before presenting the results, we note that A is an 
absolute parameter in the curves we present since it governs 
the round-trip "pipe." Thus, although ~ is normalized to A, the 
curves do not yield wdues for fixed ~b and varying A. Separate 
curves need to be plotted if A is changed. 

A. Results for INSTCAP Feedback 

Fig. 8 shows the throughput of TCP over ABR with the IN- 
STCAP scheme. 5 Here, we compare an optimistic analysis, a 
conservative one (see Section III-C), and the testbed (i.e., sim- 
ulation) results for different buffer sizes. In this example, the 
bandwidth delay product in the high-rate state is 40 packets, and 
the buffer sizes considered are 10 and 12 packets, respectively, 
50% and 60% of the bandwidth delay product in the low-rate 
state. 

In our analysis, the processes are embedded at multiples of  
one round-trip propagation delay, and the feedback from the bot- 
tleneck link is sent once every RTT. This feedback reaches the 
ABR source after one round-trip propagation delay. In the sim- 
ulations, however, feedback is sent to the ABR source every 30 
ms. This reaches the ABR source after one round-trip propaga- 
tion delay. 

We see that, except for very small ¢ ,  the analysis and the 
simulations match to within a few percent. Both the analyzes 
are less than the observed throughputs by about 10%-20% 
for small ¢.  In our analysis, we have assumed that packets 
leave back-to-back from the ABR source. When the bottleneck 
link-rate changes from high to low, as the packets arrive 
back-to-back, and the source sends at twice the rate of the 
bottleneck link, then for every two packets arriving at the 
bottleneck link, one gets queued. However, in reality, the 
packets need not arrive back-to-back and, hence, the queue 
buildup is slower. This means that the probability that packet 
loss occurs at the bottleneck link buffer is actually lower than 
in our analytical model. This effect becomes more and more 
significant as the rate of  bottleneck link variations increases. 
However, we observe from the simulations that this effect is 
not significant for most values of  ~. 

Fig. 9 shows the throughput of  TCP without ABR. We can 
see that the simulation results give a throughput of upto 20% 
less than the analytical ones (note the scales of Figs. 9 and 8 are 
different). This occurs due to two reasons. 

i) We assumed in our analysis that no loss occurs in the 
slow-start phase. It has been shown in [15] that if the 
bottleneck link buffer is less than 1/3 of  the bandwidth- 
delay product (which corresponds to about 13 packets or 
6500 B buffer in the high-rate state), loss will occur in the 
slow-start phase. 

ii) We optimistically compute the throughput of  TCP by 
using an upper bound on the "reward" in the loss cycle. 

We see from Figs. 8 and 9 that ABR makes TCP throughput 
insensitive to buffer size variations. However, with TCP alone, 
there is a worsening of throughput with buffer reduction. This 
can be explained by the fact that once the ABR control loop has 
converged, the buffer size is immaterial, as no loss takes place 
when source and bottleneck link rate are the same. However, 
without ABR, TCP loses packets even when no transients occur. 

An interesting result from this study is that TCP dynamics do 
not play an important part in the overall throughput for large ~. 
This is intuitively understandable for the reason described above 

5Even if  ~ ~ oc, the throughput of TCP over ABR will  not go to 1 because 
of ATM overheads. For every 53 B transmitted, there are 5 B of ATM headers. 
Hence, the asymptotic throughput is approximately 90%. 



386 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 9, NO. 4, AUGUST 2001 

,,=, 

0.95 , 

0.9 

0.85 

0.8 

0.75 

0.7 

0.65 ...................... ~'CiS"Anaiysis, 10 packets" - -  
/ ;/ s .... ~ ......... "FGP Analysis, 12 packets" - ..... 
L / / . ........ "-roe testbed, t0  packets" - ...... 

0.6 / / J  .. ........ "FCP testbed, 12 packets" - ........... 

0.55 

0.5 
0 20 40 60 80 100 120 140 160 180 200 

Mean time per state (rtd) 

Fig. 9. Analysis and simulation results: throughput of TCP without ABR. The 
round-trip propagation delay is 40 time units. The bottleneck link buffers are 
either 10 or 12 packets. 

o" 

n -  
I L l  

0.9 

0.85 

0.8 

0.75 

0.7 

0.65 

0.6 

0.55 

0.5 

0.45 

0.4 
0 

12 packets ......... 
8 packets" ........... 

~ackets" ....... ~ ~ a c k e t s  . . . . . . . .  

i i i i i i i i i 

20 40 60 80 100 120 140 160 180 200 
Mean time per state (rtd) 

Fig. 10. Simulation results: comparison of the EFFCAP and INSTCAP 
feedback schemes for TCP over ABR for various bottleneck link buffers (8-12 
packets). A is 40 time units. Here, N ---- 49 and M ---- 7 (see Fig. 7). In this 
figure, we compare their performance for relatively large ~h. 

(i.e., the TCP dynamics are "smoothed out" at the ABR buffer 
at the source once the ABR loop has converged). This point can 
also be seen from the fact that, even though our analysis of TCP 
window dynamics is approximate, it leads to a surprisingly good 
match with the simulations for TCP/ABR. However, as noted 
before, in the case of  TCP alone, the simulation and analysis do 
not match very well, as the TCP dynamics plays an important 
role in the overall throughput. 

B. Results for EFFCAP and 1NSTCAP Feedback 

In Fig. 10, we use results from the testbed to compare the rela- 
tive performance of  EFFCAP and INSTCAP feedback schemes 
for ABR. Recall that the EFFCAP algorithm has two parame- 
ters, namely M,  the number of  samples used for each block av- 
erage, and N,  the number of blocks of  M samples over which 
the minimum is taken. In this figure, the EFFCAP scheme uses 
M = 7, i.e., we average over one round-trip propagation delay 6 
worth of  samples. We also maintain a window of 8 A worth of 

averages, i.e., we maintain N = (8 - 1) × 7 = 49 averages 

6A new sample is generated every 30 ms. The A is 200 ms in this example. 
Hence, M = 200/30 = 6.667, which we round up to 7. 

,,=, 

0.9 

0.85 

0.8 

0.75 

0.7 

0.65 

0.6 

0.55 

0.5 

0.45 

0.4 
0.1 

, , , , i i 

", "Effective Capacity, 8 packets" - -  
f.. "Effective Capacity, 10 packets" - ..... 
~,,".. "Effective Capacity, 12 packets" - ...... 
~i',, ". "Instantaneous rate feedback 8 packets" • ........... 
~\~" ,  '.. "Instantaneous rate feedback 10 packets" - ...... 

, , " . .  "Instantaneous rate feedback, 12 packets" - . . . .  

0 2 0.3 0.4 0 5 0.6 0.7 0.8 0.9 
Mean time per state (rtd) 

Fig. 11. Simulation results: comparison of the EFFCAP and INSTCAP 
feedback schemes for TCP over ABR for various bottleneck link buffers (8-12 
packets). A is 40 time units. Here, N = 49 and M = 7 (see Fig. 7). In this 
figure, we compare their performances for small values of ~. 

over which the bottleneck link returns the minimum to the ABR 
source. (We will discuss issues regarding choice of  M and N 
in Section VI below.) The source adapts to this rate. In the case 
of  the INSTCAP scheme, in the simulation, the rate is fed back 
every 30 ms. 

We can see from Fig. 10 that for large ~b, the throughput with 
EFFCAP is worse than that with the INSTCAP scheme by about 
3%-4%. This is because of the conservative nature of  the EF- 
FCAP algorithm; it takes the minimum of the available capacity 
over several blocks of  time in an interval, and hence may feed 
back a lower rate than necessary. This result also shows that 
when ~ is large since rate changes are infrequent, it is sufficient 
to feedback the short term average rate. 

However, we can see from Fig. 11 that for small ~b, the EFFCAP 
algorithm improves over the INSTCAP approach by 10%-20%. 
This is a significant improvement and it seems worthwhile to lose 
a few percent efficiency for large ~b to gain a large improvement 
for small ~b. When ~h is close to 1, if the short-term average rate is 
fed back (as INSTCAP does) then there are frequent mismatches 
between the source rate and the bottleneck service rate. The EF- 
FCAP algorithm takes a minimum of the service-rate averages 
over several intervals, and hence, most probably feeds back the 
minimum link rate, thus minimizing rate mismatches. Note that 
the minimum link rate (0.5) normalized to the average rate (0.75) 
is 0.67. We will see in Section VI that with appropriate choice of  
M and N the throughput with EFFCAP can me made to approach 
this best case value. 

To summarize, in Figs. 12 and 13, we have plotted the 
throughput of  TCP over ABR using the two different feedback 
schemes. We have compared these results with the throughput 
of  TCP without ABR. We can see that for ~b > 20 (Fig. 12) the 
throughput of  TCP improves if ABR is employed for link level 
data transport, and the INSTCAP feedback is slightly better. 
When A is comparable to the time for which the link stays in each 
state (Fig. 13), then TCP performs better than TCP/ABR with 
INSTCAP feedback. This is because, in this regime, by feeding 
back the short-term average rate, the source rate and link rate are 
frequently mismatched, resulting in losses or starvation. On the 
other hand, EFFCAP feedback is able to keep the throughput 



SHAKKOTTAI et aL: TCP PERFORMANCE OVER END-TO-END RATE CONTROL AND STOCHASTIC AVAILABLE CAPACITY 387 

0.9 

0.85 

0.8 

0.75 

0.7 

0.65 

0.6 

0.55 

0.5 

0.45 

/;~"" . .............................................................................. 

. "1 nst an t a n ;ou se ~'ate,~.Cp~lalalal~o~e ' ! ! ~!!kk!~i 

o 6'0 'o . . . . .  20 4 8 1 O0 120 140 160 180 200 
Mean time per state (rtd) 

Fig. 12. Simulation result:;: comparison of throughput of TCP over ABR with 
effective capacity scheme, instantaneous rate feedback scheme and TCP without 
ABR for a buffer of ten packets, the other parameters remaining the same as in 
other simulations. 

0.9 

0.85 

0.8 

0.75 

0.7 

0.65 

0.6 

0.55 

0.5 

0.45 
0.1 

"Effective Capacity,  10 packets" - -  
" Instantaneous rate feedback,  10 packets" - . . . . .  

'q 'CP alone, 10 packets" - . . . . . .  

"'~"~"---..~ ................................................... 
i i i i i i i i 

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 
Mean time per state (rid) 

Fig. 13. Simulation results,;: comparison of throughput of TCP over ABR with 
effective capacity scheme, instantaneous rate feedback scheme and TCP without 
ABR for a buffer of ten packets, the other parameters remaining the same as in 
other simulations. 

better than that of TCP even in this regime. These observations 
clearly bring out the merits of  the EFFCAP scheme. Implicitly, 
EFFCAP feedback adapts to ~b, and performs better than TCP 
alone over a wide range of  ¢ .  EFFCAP, however, requires the 
choice of  two parameters M and N ;  in the next section, we 
provide guidelines for this choice. 

VI. CHOICE OF M AND N FOR EFFCAP 

From Figs. 10 and 11, we can identify three broad regions of  
performance in relation to ¢ .  

For ~b = 7-/A ver~ large (~ > 50), the rate mismatch oc- 
curs for a small fraction of 7-. Also the rate mismatches are 
infrequent, implying infrequent losses, and higher throughput. 
Hence, it is sufficient to track the instantaneous available ca- 
pacity by choosing small values of  M and N .  This is verified 
from Fig. 10 which shows that the INSTCAP feedback performs 
better in this region. 

On the other hand, when 7- is a small fraction of A (~ < 0.2), 
there are frequent rate mismatches, but of  very small durations 
as compared to A Because of  the rapid variations in the ca- 
pacity, even a small M provides the mean capacity. Also, all the 

N averages roughly equal the mean capacity. Thus, the source 
essentially transmits at the mean capacity in EFFCAP as well as 
INSTCAP feedback. Hence, a high throughput for both types of 
feedback is seen from Fig. 11. 

For the intermediate values of  ¢ (0.5 < ¢ < 20), 7- is 
comparable to A. Hence, rate mismatches are frequent, and 
persist relatively longer, causing the buffer to build up to a 
larger value. This leads to frequent losses. The throughput is 
adversely affected by TCP 's  blind adaptive window control. In 
this range, we expect to see severe throughput loss for sessions 
with large A.  Therefore, in this region, we need to choose M 
and N to avoid rate mismatches. The capacity estimate should 
yield the minimum capacity (i.e., the smaller of  the two rates in 
the Markov process), implying the need for small M and large 
N .  A small M helps to avoid averaging over many samples and 
hence helps to pick up the two rates of  the Markov chain, and a 
large N helps to pick out the minimum of the rates. 

The selection of  M and N cannot be based on the value of  
¢ alone; however, A is an absolute parameter in TCP window 
control and has a major effect on TCP throughput, and hence 
on the selection of  M and N.  The above discussion motivates 
a small value of M for all the ranges of  ¢ ,  a small N for large 
¢ ,  and large N for ¢ close to 1 or smaller than 1. We also note 
that small values of  ¢ are more likely to occur in practice. 

In the remainder of  this section, we present simulation results 
that support the following rough design rule. If  the measurement 
interval is s, then take M to be [A/sT, i.e., the averages should 
be over one RTT. Take N to be in the range 8 [ A / s ]  to 12 [A/s~ ; 
i.e., multiple averages should be taken over 8-12 RTTs, and the 
minimum of  these fed back. 

We note here that the degradation of  throughput in the inter- 
mediate range of values of  ¢ depends on the buffers available at 
the bottleneck link. This aspect is studied in [12]. 

A. Simulation Results and Discussion 

Simulations were carried out on the hybrid simulator that was 
also used in Section V. As before, the capacity variation process 
is a two state Markov chain. In the high state, the capacity value 
is 100 kB/s, while in the low state it is 50 kB/s. The mean ca- 
pacity is thus 75 kB/s. In all the simulations, the measurement 
and feedback interval s = 30 ms and link buffer is 5 kB (or 10 
packets). 

We introduce the following notation in the simulation re- 
sults. M : A means that each average is calculated over [A/s~ 
measurement intervals. N : hA means that (k - 1) x [A/s 7 
averages are compared (or the memory of  the algorithm is k 
RTTs). For example, let A = 200 ms and s = 30 ms, then, 
M : A ~ M = 7 measurement intervals, N : 2A ~ N = 
(2 - 1) x 7 = 7 (i.e., minimum of 7 averages). Similarly, 
N : 8 A  ~ N = (8 - 1) x 7 = 49 (i.e., minimum of  49 
averages). 

1) Study of N: 
Case 1: Fixed A;  varying ~- 

Fig. 14 shows the effect of  N on the throughput for a 
given A,  when T (or equivalently the rate of  capacity varia- 
tion) is varying. These results corroborate the discussion at 
the beginning of  Section VI for fixed A. Notice that when 



388 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 9, NO. 4, AUGUST 2001 

c 

. o  

I L l  

L U  

0.9 

0.85 

0.8 

0.75 

0.7 

0.65 

0.6 

0.55 

0.5 

0.45 

i i i i i i i i i 

[ N:4 Delta -+-- 
N:8 Delta -Era- 

0.9 

0.85 

0.8 

0.75 

0.7 

0.65 

0.6 

0.55 

0.5 

0.45 

I I I I I I I I I 

20 40 60 80 100120140160180 200 
Mean Time per State (rtd) 

I I I I I I I I 

~ ,  N:2 Delta --e-- 
N:4 Delta -~--- 
N:8 Delta -n-- 

) ,  

I I I I I I I I 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 
Mean Time per State (rtd) 

Fig. 14. Efficiency versus ~b for increasing values of N. M : A and N : 
2A, 4A, 8A. We take A = 200 ms. Thus, M = 7 and N = 7~ 14, 49. T is 
varied from 32 ms to 40 s. 

0.3 < ~h < 1, as expected, an improvement in efficiency is 
seen for larger N .  
Case 2: Fixed ?-; varying A 

Figs. 15 and 16 show the Efficiency variation with ~ for 
different values of  N when ~- is fixed and A is varied. Note 
that, N is different for different As  on a N : h A  curve. 
For example, N on the N : 4A curve for A = 50 ms and 
A = 100 ms is respectively 6 and 12. 

Notice that, compared to Fig. 14, Figs. 15 and 16 show 
different efficiency variations with ~h. This is because, in 
the former case, ?- is varied and A is constant, whereas 
in the latter case, ?- is fixed and A varied. As indicated in 
Section VI, A is an absolute parameter which affects the 
throughput (~h = 2 in Fig. 15 corresponds to A = 50 ms 
and in Fig. 16 it corresponds to 500 ms). The considerable 
throughput difference demonstrates the dependence on the 
absolute value of A.  

In Fig. 15, a substantial improvement in the throughput 
is seen as N increases. In addition, a larger N gives better 
throughput over a wider range of  A. This is because, for 
a given A,  a larger N tracks the minimum capacity value 
better. The minimum capacity is 50 kB/s, which is 66% 
of the mean capacity 75 kB/s. Hence, as N increases, ef- 
ficiency increases to 0.6. Similarly, in Fig. 16, for ¢ < 8, 
larger values of N improve the throughput. When ~b > 10, 
we see that smaller N performs better, but the improve- 
ment is negligible. 

Note that for large ¢ ,  N as low as 4 A  to 6A yields high 
throughput whereas for small ~b, N needs to be consider- 
ably higher (10A to 12A) to achieve high throughput. This 

0.65 ~ . .  

0.6 

0.55 -~'"'?i':¢~" - . . . . . . . . . . . .  

~, 0.5 !.....",¢ 

° l d /  + - .  
,,, 0.4 

~'/  N:8 Delta --~ ..... 
0.35 ~ N:10 Delta ~--- 

0.3 

0.25 
0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 

Mean Time per State (rtd) 

Fig. 15. Efficiency versus ~h. 7 is 100 ms. A is varied (fight to left) from 50 
to 500 ms.M : A 

0 . 5 5  =< = ' " w ' ~ ' : ~ ' ~ ' - ' ~ ' = ~  = "  = " - " " ~  r=~ < 

0.5 
I ~,>'",.;~ N :4 Delta -+--. 

" 0.45 I ~ ' ]  N:6 Delta -B-- 
.~ ~i ~ / ~ L ' 8  Delta --x ..... 
~j 0.4 I~."// N:10 Delta --~-.- 

0.35 

0.3 

0.25 
2 4 6 8 10 12 14 16 18 20 

Mean Time per State (rtd) 

Fig. 16. Efficiency versus ~p. T is 1000 ms. A is varied (fight to left) from 50 
to 500 ms. M : A. 

can be explained as follows. We use M : A,  which implies 
that for small ¢ ,  the average over A yields the average 
rate, whereas for large ¢ ,  it yields the peak or minimum 
rate. Thus, for large ¢ ,  the minimum over just  few As is 
adequate to yield a high throughput, whereas for small ¢ ,  
many more averages need to be minimized over to get the 
minimum rate. Notice, however, that for large ¢ ,  increasing 
N does not seriously degrade efficiency. 

In conclusion, the choice of  N is based on ¢ and A,  but 
a value of  N in the range 8 [ A / s ]  to 12 [ A / s ]  is a good 
compromise.  

2) Study of M: It is already seen from Fig. 10 that for ~b > 
60, a small value of  M should be selected. To study the ef- 
fect of  M on the lower ranges of  ¢ ,  M is varied from 1 to l0  
measuring intervals (i.e., s). Also, two settings of  N are consid- 
ered to differentiate its effect. The results are shown in Fig. 17 
(T : 1000 ms) and Fig. 18 0- : 100 ms). The values of  A are 
50, 100, and 200 ms. Thus, the range of ~b(= T / A )  is 5 to 20 in 
Fig. 17, and 0.5 to 2 in Fig. 18. 

Recall  that, in the intermediate range of  ~b the bott leneck ca- 
pacity estimate should yield the minimum capacity. With small 
M ,  the minimum value can be tracked better. This is seen from 
Fig. 17 for A = 50 ms (~b = 20); the throughput decreases 
slowly with increasing M .  Notice from Fig. 17 that a larger 
value of  N improves efficiency, as more samples implies a better 
chance of  picking up the minimum rate. In Fig. 18, for N : 2A,  
the throughput is insensitive to the variation in M .  Again  in- 
creasing N improves throughput. Insensitivity to M is observed 



S H A K K O T T A I  et al.: T C P  P E R F O R M A N C E  O V E R  E N D - T O - E N D  R A T E  C O N T R O L  A N D  S T O C H A S T I C  A V A I L A B L E  C A P A C I T Y  3 8 9  

:1= 
L U  

d )  

U J  

0.7 

0.65 

0.6 

0.55 

0.5 

0.45 

0.4 

0.7 

0.65 

0.6 

0.55 

0.5 

0.45 

0.4 

i i i i i i i i 

Delta: 50ms o 
Delta: 100ms -+--- 
Delta: 200ms -~-- 

. . . .  . - - - - ' " - . - - - . . _ . . . . . . - - . - - . . . . . . _ _ . ,  

I I I I I I l I 

2 3 4 5 6 7 8 9 
Window Size (measurement intervals 

I I I I I I I I 

Delta: 50ms o 
Delta: 100ms -+--- 
Delta: 200ms -r~-- 

10 

" ' [ 3 "  - - "~"  " - "  

- -  I I I I I I I I 

2 3 4 5 6 7 8 9 10 
Window Size (measurement intervals) 

Fig. 17. Efficiency versu~ .~4.7- is 1000 ms and A takes values 50, 100, and 
200 ms. The top grapl~ has N : 2A and the bottom graph N : 12A. 

O 

L U  

0.6 

0.58 
0.56 
0.54 

0.52 

0.5 
0.48 

0.46 

0.44 

0.42 

0.4 

0.9 

0.8 

0.7 

"= 0.6 L U  

0.5 

0.4 

I i I i I I I I 

Delta: 50ms o 
Delta: 100ms -~--- 
Delta: 200ms -n-- 

. . . .  . 4¢"  " . - - - . _ _ . _ _ _ . _ _ _ . _ _ . _ . .  

- -  I I I I I I I I 

2 3 4 5 6 7 6 9 
Window Size (measurement intervals 

i i I i i I I i 

Delta: 50ms o 
Delta: t00ms -+--- 
Delta: 200ms -r~-- 

10 

- -  I I I I I I I I 

2 3 4 5 6 7 8 9 I0 
Window Size (measurement intervals) 

Fig. 18. Efficiency vs M. ~- is 100 ms and A takes values 50, 100, and 200 
ms. The top graph has V : 2A and the bottom graph N : 12A. 

in the case of N : 17,A for ~b = 0.5, but for larger ¢ ,  1 or 2, 
i.e., A = 100 or 50 ms, a 10%-15% decrease in the throughput 
is seen for larger values of M .  This is because N : 12A is not 
sufficient to track the minimum with larger values of  M .  

We conclude that in the intermediate range of ¢ ,  the 
throughput is not very sensitive to M .  For small A and larger 

(e.g., A = 50 ms, ~ = 20), a small M performs better 
since it is possible to track the instantaneous rate. In general, a 
small value of M improves the throughput in all the ranges. In 
Figs. 17 and 18, s = 30 ms and we have FA/s 1 equal to 2, 4, 
and 7. We notice that, as a rule of thumb, M : A gives good 
performance in each case. 

B. Implementation of EFFCAP when A is Not Known 

The simulation results presented in Sections VI-A-1 and -2 
have supported the guidelines for choosing M and N presented 
in Section VI. We find that these parameters depend on the RTT 
A for the connection, a parameter that will not be known at the 
switch at which the EFFCAP feedback is being computed. How- 
ever, A would be (approximately) known at the source node. 
This knowledge could come either during the ATM connection 
setup, or from the RTT estimate at the TCP layer in the source. 
Hence, one possibili ty is for the network to provide INSTCAP 
feedbacks (i.e., the short term average capacity over the mea- 
surement interval s), and the source node can then easily com- 
pute the EFFCAP feedback value. The INSTCAP feedback can 
be provided in ATM Resource Management (RM) cells [1]. 

VII. TCP/ABR WITH EFFCAP FEEDBACK: FAIRNESS 

It is seen that TCP alone is unfair toward sessions that have 
larger RTTs. It may be expected, however, that TCP sessions 
over ABR will get a fair share of the available capacity. In 
[19], the fairness of  the INSTCAP feedback was investigated 
and it was shown that for slow variations of  the available ca- 
pacity, TCP sessions over ABR employing the INSTCAP feed- 
back achieve fairness. In this section, we study the fairness of  
TCP sessions over ABR with the EFFCAP feedback scheme. 

Denote by A1 and A2, the RTTs of  Session 1 and Session 
2, respectively. Other notations are as described earlier (sub- 
scripts denote the session number). In the simulations, we use 
A1 = 240 and A2 = 360 ms. The link buffer size is 9000 B (18 
packets). In the following graphs ~ is 7- (mean time per state 
of the Markov chain) divided by larger Ai ,  i.e., A2 = 360 ms. 
Simulations are carried out by calculating the EFFCAP by two 
different ways, as explained below. 

A. Case 1: Effective Capacity with Mi : Ai  

In this case, we calculate the EFFCAP for each session inde- 
pendently. This is done by selecting Mi proportional to Ai ,  that 
is (with a 30-ms update interval) we select M -- 8 for Session 
1 and M = 12 for Session 2. We take N~ : 12A~, i.e., N1 is 88 
and N2 is 132 (see Section VI). EFFCAPi  is computed with Mi 
and N~; session i is fedback 1/2 of  EFFCAPi .  

Fig. 19 shows the simulation results for ~b _< 1. Fig. 20 shows 
the comparison o fTCP throughputs and TCP/ABR throughputs. 
It can be seen that for very small values of~b (~b < 0.3), the ses- 
sions receive equal throughput. However, for 0.3 < ¢ < 20, 
unfairness is seen toward the session with larger propagation 
delay. This can be explained from the discussion in Section VI. 
In this range of  ¢ ,  due to frequent rate mismatches and hence 
losses, TCP behavior is dominant. A packet drop leads to greater 



3 9 0  I E E E / A C M  T R A N S A C T I O N S  O N  N E T W O R K I N G ,  V O L .  9 ,  N O .  4 ,  A U G U S T  2 0 0 1  

o 

LH 

0.6 

0.55 

0.5 

0.45 

0.4 

0.35 

0.3 

0.25 

0.2 

I I I I I I 

session 1:240ms -o--  
session 2:360ms -+--- 

I I I I I I I I I 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 
Mean time per state (larger rtd) 

Fig. 19. Efficiency versus ~b (mean time per state normalized to A2 = 360 
ms). Mi : Ai and N~ : 12AI. Each session is fed back the fair share (half) of 
the EFFCAP calculated. 

0.8 i 

O 
E 
o 

,,i 

0.7 

0.6 

0.5 

0.4 

0.3 

0.2 

0.1 

• J3- . . . . . . .  {3 . . . . . . . . . . . . .  -El . . . . . . . . . .  []  . . . . . . . .  

. [ ] "  

, '  ^ . . . . . . .  

, ~ . . - ) 4  . . . . . . . . . . . .  X ................ N ............ ' " X ' "  . ........... X ................. 

session 1: EFFCAP o 
session 2: EFFCAP -+--- 

session 1: TCP alone • • • -  
session 2: TCP alone ...x ...... 

I I I I I I I I I 

20 40 60 80 100 120 140 160 180 200 
Mean time per state (larger rtd) 

Fig. 20. Comparison between Efficiency of sessions with TCP alone and TCP 
over ABR employing EFFCAP feedback (Case 1: M~ : Ai). 

throughput decrease for a session with larger A than for a ses- 
sion with smaller A.  The throughputs with TCP over ABR are, 
however, fairer than with TCP alone which results in grossly un- 
fair throughputs. 

B• Case 2: Effective Capacity with M : (A1 + A2)/2 

In this simulation, M corresponds to the average of  A1 
and A2, i.e., 300 ms (ten measurement intervals). With 
N : 12[(A1 + A2) /2] ,  we have N = 110. By choosing M 
and N this way, the rate calculation is made independent of  
individual RTTs. 

Fig. 21 shows results for ~b < 1. Fig. 22 shows results for 
TCP, as well as TCP/ABR. We notice that EFFCAP calculated 
in this way yields somewhat better fairness than the scheme used 
in Case 1. It is also seen that better fairness is obtained even 
in the intermediate range of  ~b. However, there is a drop in the 
overall efficiency. This is because the throughput of  the session 
with smaller A is reduced. 

There is a slight decrease in the overall efficiency with TCP 
over ABR, but note that with TCP over ABR, the link actu- 
ally carries 10% more bytes (the ATM overhead) than with TCP 
alone! We have also found that for ~b < 20, EFFCAP gives rel- 
atively better fairness than INSTCAR based on the results for 
the latter that were reported in [19]. 

t ' -  
o 

ILl 

0.6 

0.55 

0.5 

0.45 

0.4 

0.35 

0.3 

0.25 

0.2 

I I I I I I 

session 1:240ms -e--  
session 2:360ms -+--. 

% 
¢ 

I I I I I I I I I 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 
Mean time per state (larger rtd) 

Fig. 21. Efficiency versus ~/, (mean time per state normalized to A2 = 360 
ms). M = [(A1 + A2)]/2 = 10 measurement intervals. N = 110 averages. 
Each session is fed back the fair share (half) of the EFFCAP calculated. 

0 . 8  i i i i 

o t -  

• ¢~  
t l =  
U l  

0•7 

0.6 

0.5 

0.4 

0.3 

0.2 

0.1 

, ~ . [ ] • • • •  •••El- . . . . . . .  G . . . . . . . . . . . . .  G . . . . . . . . .  [ ]  . . . . . . . .  " 1  

4~ - - - ~' - -  - ~ -  

4 
session 1: EFFCAP 0 | 
session 2: EFFCAP -~- -  -4 

session 1 : TCP alone -D-- / 
session 2: TCP alone ...x ..... _] 

/ 
I I I I I I I I I I 

20 40 60 80 100 120 140 160 180 200 
Mean time per state (larger rtd) 

Fig. 22. Comparison between Efficiency of sessions with TCP alone and TCP 
over ABR employing EFFCAP feedback [Case 2: ~I = (At + /X2 )/2]. 

Finally, we observe that if EFFCAP is implemented with the 
approach suggested in Section VI-B, then the Case 1 (Mi : Ai )  
discussed in this section is actually achieved• 

VIII. CONCLUSION 

In this paper, we set out to understand if  running an adaptive 
window congestion control (TCP) over an endpoint-to-endpoint 
explicit  rate control (ATM/ABR) is beneficial for end-to-end 
throughput performance. We have studied two kinds of  explicit  
rate feedback: INSTCAP, in which the short-term average 
capacity of  the bottleneck link is fed back, and EFFCAP, in 
which a measure motivated by a large deviations effective 
service capacity, and based on the longer term history is fed 
back. We have seen, from the analysis and simulation results, 
that the throughput of  TCP over ABR depends on the relative 
rate of  capacity variation with respect to the round-trip delay in 
the connection. For  slow variations of  the link capacity (the ca- 
pacity varies over periods of  over 20 times the round-trip delay) 
the improvement with INSTCAP is significant (25%-30%),  
whereas if  the rate variations are over durations comparable to 
the round-trip delay, then the TCP throughput with ABR can be 
slightly worse than with TCP alone. An interesting observation 
is that TCP dynamics do not appear to play an important part in 
the overall throughput when the capacity variations are slow. 



SHAKKOTTAI et al.: TCP PERFORMANCE OVER END-TO-END RATE CONTROL AND STOCHASTIC AVAILABLE CAPACITY 391 

EFFCAP rate feedback has the remarkable property of au- 
tomatically adapting what it feeds back to the rate of varia- 
tion of the bottleneck link capacity, and thus achieves higher 
throughputs than INSTCAP, always beating the throughput of 
TCP alone. The EFFCAP computation involves two parameters 
M and N;  at each update epoch, EFFCAP feeds back the min- 
imum of N short-term averages, each taken over M measure- 
ment intervals. For FFFCAP to display its adaptive behavior, 
these parameters need to be chosen properly. Based on extensive 
simulations, we find that, as a broad guideline (for the buffer 
sizes that we studied) for ideal performance, EFFCAP should 
be used with each average being taken over a RTT, and the min- 
imum should be taken over several averages taken over the pre- 
vious 8-12 RTTs. 

Finally, we find that TCP over ABR with EFFCAP feedback 
provides throughput fairness between sessions that have dif- 
ferent RTTs. 

REFERENCES 

[1] The ATM Forum Traffic Management Specification Version 4.0, Apr. 
1996. 

[2] S. P. Abraham antE A. Kumar, "A new approach for distributed ex- 
plicit rate control of elastic traffic in an integrated packet network," 
IEEE/ACM Trans. Networking, vol. 9, pp. 15-30, Feb. 2001. 

[3] E Bonomi and K. W. Fendick, "The rate-based flow control frame- 
work for the available bit rate ATM service," 1EEENetwork, pp. 25-39, 
Mar./Apr. 1995 

[4] H. Chaskar, T. V. Lakshman, and U. Madhow, "TCP over wireless with 
link level error conlrol: Analysis and design methodology," IEEE/ACM 
Trans. Networking, vol. 7, pp. 605-615, Oct. 1999. 

[5] C. Fang, H. Chen, and J. Hutchins, "A simulation of TCP performance 
in ATM networks," in Proc. IEEE Globecom'94, 1994. 

[6] B. Feng, D. Ghosal, and N. Kannappan, "Impact of ATM ABR con- 
trol on the performance of TCP-Tahoe and TCP-Reno," in Proc. IEEE 
Globecom'97, 1997. 

[7] V. Jacobson. q1990, Apr.) Modified TCP Congestion Avoidance 
Algorithm. end2end-interest mailing list . [Online]. Available: 
ftp://ftp.isi.edu/end2end/end2end-interest- 1990.mail. 

[8] S. Kalyanaraman, P,. Jain, S. Fahmy, R. Goyal, and B. Vandalore, "The 
ERICA Switch Algorithm for ABR Traffic Management in ATM Net- 
works," IEEE/ACM Trans. Networking, vol. 8, pp. 81-98, Feb. 2000. 

[9] S. Kalyanaraman et al., "Buffer requirements for TCP/IP over ABR," in 
Proc. IEEEAZ~'96 Workshop, San Francisco, CA, Aug. 1996. 

[10] S. Kalyanaraman et al., "Performance of TCP over ABR on ATM back- 
bone and with various VBR traffic patterns," in Proc. ICC'97, Montreal, 
Canada, June 1997. 

[11] L. Kalampoukas and A. Varma, "Analysis of source policy and its ef- 
fects on TCP in rate-controlled ATM networks," IEEE/ACM Trans. Net- 
working, vol. 6, pp. 599-610, Oct. 1998. 

[12] A. Karnik, "PerTormance of TCP congestion control with rate feedback: 
TCP/ABR and rate adaptive TCP/IE" M. Eng. thesis, Indian Institute of 
Science, Banga]ore India, Jan. 1999. 

[13] A. Karnik and A. K:amar, "Performance of TCP congestion control with 
rate feedback: Rate adaptive TCP (RATCP)," in Proc. IEEE Globecom 
2000, San Francisco, CA, Nov. 2000. 

[14] A. Kumar, "Comparative performance analysis of versions of TCP in a 
local network x~ith a lossy link," IEEE/ACM Trans. Networking, vol. 6, 
pp. 485-498, Aug. 1998. 

[15] T. V. Lakshman and U. Madhow, "The performance of TCP/IP for 
networks with high bandwidth delay products and random loss," 
IEEE/ACM Trans. Networking, vol. 5, pp. 336-350, June 1997. 

[16] T.J. Ott and N. Aggarwal, "TCP over ATM: ABR or UBR," unpublished. 
[17] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose, "Modeling TCP 

throughput: A simple model and its empirical validation," IEEE/ACM 
Trans. Networking. vol. 8, pp. 133-145, Apr. 2000. 

[18] A. Romanov and S. Floyd, "Dynamics of TCP traffic over ATM net- 
works," IEEE J. Select. Areas Commun., vol. 13, pp. 633-641, May 
1995. 

[19] S.G. Sanjay, "TCP over end-to-end ABR: A study of TCP performance 
with end-to-end rate control and stochastic available capacity," M. Eng. 
thesis, Indian Institute of Science, Bangalore, India, Jan. 1998. 

[20] G. de Veciana and J. Walrand, "Effective bandwidths: Call admission, 
traffic policing and filtering for ATM networks," Queuing Systems 
Theory and Applications (QUESTA), 1994. 

[21] R. Wolff, Stochastic Modeling and the Theory of  Queues. Englewood 
Cliffs, NJ: Prentice-Hall, 1989. 

Sanjay Shakkottai received the B.E. degree in elec- 
tronics and communications engineering from Uni- 
versity Visvesvaraiya College, Bangalore, India, and 
the M.E. degree in communications engineering from 
the Indian Institute of Science, Bangalore. He is cur- 
rently working toward the Ph.D. degree at the Uni- 
versity of Illinois at Urbana-Champaign. 

Anurag  K u m a r  (S '81-M'81-SM'92)  received the 
B.Tech. degree in electrical engineering from the In- 
dian Institute of Technology, Kanpur, in 1977, and the 
Ph.D. degree from Comell University, Ithaca, NY, in 
1981. 

He was with AT&T Bell Labs, Holmdel, NJ, for 
over six years. Since 1988, he has been with the In- 

v dian Institute of Science (IISc), aangalore, India, in 
the Department of Electrical Communication Engi- 
neering, where he is now a Professor. His research in- 
terests are in the areas of modeling, analysis, control, 

and optimization problems arising in communication networks and distributed 
systems. 

Dr. Kumar is a Fellow of the Indian National Academy of Engineering. 

Aditya Karnik  received the B.E. degree in elec- 
tronics and communications engineering from the 
University of Pune, Pune, India, and the M.E. degree 
in communications engineering from the Indian 
Institute of Science, Bangalore, where he is currently 
working toward the Ph.D. degree in communications 
engineering. 

Ajit Anvekar  received the B.E. degree in electronics 
and communications engineering from SIT, Tumkur, 
India. 

He was a Project Assistant in the ERNET Lab, 
Electrical Communication Engineering Department, 
Indian Institute of Science (IISc), Bangalore, until 
October 2000. He is now with the IISc Simputer 
Consortium, Bangalore, India. 


