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ABSTRACT
There has been considerable recent interest in probabilistic
packet marking schemes for the problem of tracing a se-
quence of network packets back to an anonymous source.
An important consideration for such schemes is the num-
ber of packet header bits that need to be allocated to the
marking protocol. Let b denote this value. All previous
schemes belong to a class of protocols for which b must be
at least log n, where n is the number of bits used to repre-
sent the path of the packets. In this paper, we introduce
a new marking technique for tracing a sequence of packets
sent along the same path. This new technique is e�ective
even when b = 1. In other words, the sequence of packets
can be traced back to their source using only a single bit in
the packet header. With this scheme, the number of pack-
ets required to reconstruct the path is O(22n), but we also
show that 
(2n) packets are required for any protocol where
b = 1. We also study the tradeo� between b and the num-
ber of packets required. We provide a protocol and a lower
bound that together demonstrate that for the optimal pro-
tocol, the number of packets required (roughly) increases ex-
ponentially with n, but decreases doubly exponentially with
b. The protocol we introduce is simple enough to be useful
in practice. We also study the case where the packets are
sent along k di�erent paths. For this case, we demonstrate
that any protocol must use at least log(2k� 1) header bits.
We also provide a protocol that requires dlog(2k+1)e header
bits in some restricted scenarios. This protocol introduces a
new coding technique that may be of independent interest.

1. INTRODUCTION
In recent years, the Internet has seen an alarming increase

in what are known as denial-of-service attacks. Such an at-
tack consists of a malicious party sending enormous volumes
of traÆc to a remote host or a network, thereby denying
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legitimate users access to this shared resource. Unfortu-
nately, such attacks are easy to perform, and in fact there
are well known techniques for mounting attacks against a
single shared resource that are coordinated to occur simul-
taneously from a large number of distributed hosts [5]. To
make matters worse, in the current and foreseeable routing
architectures of the Internet, a host transmitting packets can
use a forged source address for those packets. This means
that there is little or no accountability for the source of these
attacks and the process of halting an attack in progress is
both slow and requires signi�cant resources. Thus, one of
the most important tools needed to �ght denial-of-service
attacks is an automated technique for tracing a stream of
packets back to its source. This is known as the IP trace-
back problem.
A number of di�erent approaches to the IP traceback

problem have been suggested. In this paper, we study one
of the most promising, which is called probabilistic packet
marking, or PPM (for advantages of PPM over other tech-
niques, see [4] and [16].) PPM was suggested in [4], with the
�rst actual schemes for PPM described in [16] and [7]. In
[16], Savage et. al. propose the following clever approach to
the IP traceback problem: some �xed number of bits in the
packet header are allocated to IP traceback, and are used
to store a router ID and a hop count. Every router that
forwards a packet, independently with some probability p,
writes its unique ID to those bits, and sets the hop count to
0. With probability 1 � p, the router ID is left unchanged,
and the hop count is incremented. Now, say an attacker is
performing a denial-of-service attack on a victim by sending
a stream of packets along a path of length `. If p = �(1=`),
then after the victim has received O(` log `) packets, with
high probability this scheme provides the victim with the
entire path back to the attacker.
The elegant PPM scheme of [16] has produced a urry

of activity in the networking community, and in the rela-
tively short time since [16] and [7] appeared, a number of
variations on PPM have been introduced to improve and fur-
ther analyze the [16] technique [6, 12, 18] (see also [10] and
[13]). One important concern in this literature is reducing
the number of header bits required for PPM. In [16], they
further re�ne their scheme so that they require 16 header
bits, and can reconstruct the entire path with high proba-
bility after a few thousand packets have been received. This
has subsequently been improved to 13, achieved by a scheme
in [6], which is the minimum required bits achieved prior to
the work described in this paper.
There has also been signi�cant e�ort to develop PPM
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techniques that are e�ective when the packets travel to the
victim of the attack along multiple paths [6, 18]. This is
a concern both since the attacker may send packets from a
number of distributed sources simultaneously, and also since
packets from a single source may travel to the victim using
a number of di�erent paths.
Despite the number of papers in this area, a rigorous theo-

retical analysis of PPM has been lacking. There has been no
real understanding of how the number of header bits and the
number of packets required grow as the size of the underlying
network increases. Also, there has been no understanding
of the interplay and inherent tradeo�s between the number
of header bits used, the number of paths of attack, and the
number of packets required to reconstruct (with high prob-
ability) the path or paths used by the attacker. In addition
to the signi�cant practical importance of PPM, it turns out
that developing a thorough understanding of these questions
is an interesting and challenging theoretical problem.
Furthermore, all previous techniques for PPM have used

techniques that belong to a restrictive class of protocols. In
particular, all previous PPM protocols encode the path in-
formation in such a manner that the victim only uses the
information of what packets it receives, and it can ignore the
information of how many of each type of packet it receives.
Let b be the number of header bits allocated to IP trace-
back, and let n be the number of bits required to represent
a path of attack (the de�nition of n will be made precise in
Section 2). For any protocol with this property, if b < log n
then there is some attacker path that can only be correctly
identi�ed with probability less than 1=2.1 Thus, log n is a
lower bound on b for this class of protocols.

1.1 Summary of results
In this paper, we consider two di�erent scenarios for the

IP traceback problem: the important special case (studied in
[12], [7], and [16]) where the attacker sends all of its packets
along the same path, and the more general case where there
are multiple paths of attack. For the case of a single path
of attack, we introduce a new type of PPM technique that
does not belong to the class of protocols described above,
allowing for a more eÆcient encoding of the path descrip-
tion. This new technique allows any path to be revealed
to the victim even when b = 1. In other words, this new
scheme requires using only a single header bit, which is ob-
viously the minimum possible. Unfortunately, this requires
�((2+�)2n) packets to be received by the victim, for any con-
stant � > 0, and thus is only appropriate for small values of
n. However, we also provide an information theoretic lower
bound demonstrating that 
(2n) packets are necessary for
any one-bit protocol where the victim is able to determine
the correct path with probability greater than 1=2.
The large number of packets required by one-bit proto-

cols leads to the following question: how does the number
of packets required decrease as b increases? In this paper
we provide a good understanding of the optimal tradeo�
between these two quantities. We demonstrate that the op-
timal number of packets that must be received for given

1To see this, note that there are 22
b

di�erent sets of pack-
ets that can be received. Since there are 2n possible n-bit
strings, if the victim must determine each possible correct

attacker path with probability at least 1=2, then 22
b

must
be at least 2n=2. Assuming that n � 2, the fact that b must
be an integer implies that b � log n.

values of n and b grows exponentially with n, but decreases
doubly exponentially with b. Speci�cally, we provide a pro-

tocol that requires only O(bn22b(2 + �)4n=2
b

) packets, for
any constant � > 0, to reconstruct the path (w.h.p.), as
well as an information theoretic lower bound showing that


(2b2n=2
b

) packets are necessary for the victim to be able
to determine the correct path with probability greater than
1=2. The protocol that achieves the upper bound is simple
(although its analysis is not simple), and the communication
model is realistic, and thus we expect the protocols for the
single path case to be quite e�ective in practice.
For the case of multiple paths of attack, we demonstrate

that one-bit protocols are not possible, no matter how many
packets the victim receives. In particular, let k represent the
number of paths used by the attacker. We provide a lower
bound demonstrating that any correct protocol must use at
least log(2k � 1) header bits, regardless of the number of
packets received by the victim. This lower bound reveals an
inherent limitation of all existing PPM protocols that has
not been addressed previously. We also provide a protocol
demonstrating that for a restricted class of attacker strate-
gies, dlog(2k + 1)e bits are suÆcient. This protocol relies
on a new encoding technique that is based on a novel use of
Vandermonde matrices, looks promising in terms of leading
to an upper bound for an unrestricted adversary, and may
also be of independent interest.

2. THE MODELS
We use slightly di�erent models for the protocols and for

the lower bounds, where the lower bound model is at least
as powerful as the upper bound model. We �rst describe the
model used for the protocols. We assume that from the per-
spective of the victim, the routing topology of the network
consists of a tree rooted at the victim. Thus, any packet
sent to the victim travels up this tree until it reaches the
victim. At the start of the attack, the attacker chooses a
set of nodes of the tree, and then for each packet, it deter-
mines which of these nodes sends that packet to the victim.
We �rst examine the case where the attacker only chooses a
single path; additional details on the model where there are
multiple paths are provided in Section 4.
For the purposes of this version of the paper, we introduce

the protocols by making a number of simplifying assump-
tions about the network. We demonstrate in the full version
of the paper [1] that our results can easily be extended to
hold in scenarios where these assumptions are relaxed. In
particular, we start by assuming that the tree is a com-
plete binary tree of height n, with the victim forming an
additional node connected to the root of the tree. We also
assume that when a packet is sent to a node, that node is
able to distinguish which child of the node the packet came
from. Finally, we also assume that the victim has complete
knowledge of the topology of the routing tree. Again, we
want to emphasize that the full version of the paper [1] de-
scribes how each of these assumptions can be removed. For
example, our results apply to an arbitrary routing topology
that is unknown to either the victim or the intermediate
nodes2.
The header of each packet contains b bits that are allo-

cated to traceback information. No other bits of the packet

2We point out that under this assumption, the resulting
value of n can be larger.
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can be utilized for IP traceback, and thus we assume that
each packet consists of only these b bits. For each packet
that is forwarded from the attacker to the victim, the at-
tacker sets the initial value of these bits, and then each of
the intermediate nodes is allowed to alter them, but no other
communication occurs.
We also make the restriction that protocols do not require

any state information at the intermediate nodes. Due to the
memoryless nature of Internet routing, the lack of state in-
formation is an important requirement for PPM protocols:
it is impractical for routers to store any information on in-
dividual ows. All of our protocols have the property that
for each node, the set of b bits that the node forwards to
its parent in the tree are only a function of the incoming b
bits, which child of that node the packet arrives from, and
random bits (that are not remembered). The victim, on the
other hand, does have storage.
For a given placement of the attacker at a leaf of the tree,

we shall refer to the node on the path from the root to the
attacker at distance i from the victim as Ni (where the vic-
tim is N0, and the attacker is Nn+1). Since we are assuming
a binary tree, we can represent the path as a binary string
B = B1B2 : : : Bn, where Bi = 0 if the path goes to the left
child of Ni, and Bi = 1 otherwise. Note that when deter-
mining the outgoing bits for any packet, node Ni has access
to one bit of the string B: the bit Bi. It does not require
state information to use this bit when setting the header bits
of a packet it forwards, since every incoming packet reveals
the value of this bit.
The objective is for the intermediate nodes to inform the

victim of the string B. In the case that the attacker chooses
a leaf node, the string B uniquely identi�es the identity of
the attacker, thereby solving the IP traceback problem. On
the other hand, if the attacker chooses a node that is not
a leaf of the tree, it may be able to set the initial bits of
the packets in such a manner that it exactly simulates what
would occur if one of the children of the chosen node were
sending the packets. In other words, the path would look
like it extends beyond its actual source. Various ways of
dealing with this have been suggested, including using cryp-
tographic techniques [18], or topological knowledge [16]. For
simplicity, we assume here that it is suÆcient to determine
a path that contains the correct path from the victim to the
attacker as a pre�x.
For the lower bound, we assume a stronger model (i.e., a

model where the problem is at least as easy to solve as in
the model for the protocols). For the lower bound model, we
assume a system consisting of only two parties, called the
Victim and the Network. The Network has an n-bit string
to send to the Victim. No communication occurs from the
Victim to the Network. The Network is allowed to send b-
bit packets to the Victim, but it is stateless: for each packet
it sends, it has no memory of the previous packets that it
has sent. This lower bound model actually captures the
diÆculty of sending information from a memoryless node
using packets consisting of a bounded number of bits. This
seems like a fundamental problem, and may be of interest
beyond the context of the IP traceback problem.
It is easy to show that any protocol for the upper bound

model can be simulated in the lower bound model, and thus
lower bounds for the lower bound model also apply to the
upper bound model. Furthermore, it seems likely that the
lower bound model is strictly more powerful than the upper

bound model, since the lower bound model has the advan-
tage that a single party knows the entire n-bit string, instead
of that string being distributed across n nodes. Also, in the
upper bound model, the protocol must deal with a malicious
attacker that sets the bits of the initial packet the n nodes
receive.

3. SINGLE PATH OF ATTACK
We start by providing a protocol for the case where b =

1. The basic idea behind this protocol is to encode the
string B into p, the probability that the bit received by the
victim is a 1. For example, consider the encoding where
p =

Pn
i=1Bi(

1
2
)i. With such an encoding, if the victim

receives enough packets to determine the bias of p (with
the required con�dence) within an additive term of ( 1

2
)n+2,

then it is able to determine all n bits of the binary string B.
All of our protocols use variations on this kind of encoding
to transmit information to the victim, and so we start by
proving a general lemma concerning such encodings.

Lemma 1. Consider any set of bits B1 : : : B`, and any
protocol where the victim is able to determine real numbers
p, �, and c1 : : : c`, that satisfy the following conditions:

1. jp�
P`
j=1 cjBj j � �.

2. For all i, 1 � i � `� 1, ci > 2� +
P`
j=i+1 cj.

3. c` > 2�.

These values allow the victim to eÆciently and uniquely de-
termine the bits B1 : : : B`.

Proof. We demonstrate that for any i, 1 � i � `, if the
victim knows B1 : : : Bi�1 (or none of the bits in the case
that i = 1), then it can determine the value of Bi. To do

so, let p0 = p�
Pi�1
j=1 cjBj . If p

0 � ci � �, then it must be

the case that Bi = 1. On the other hand, if p0 < ci � �, it
must be the case that Bi = 0. Thus, the values of the Bi
can be computed in a greedy fashion, starting with B1 and
working one bit at a time towards B`.

Let DECODE(p; �; c1; : : : ; c`) be the result of perform-
ing this decoding using the real numbers p, �, and c1; : : : ; c`.
It turns out that the encoding (described above) where ci =
( 1
2
)i can be achieved if we assume that the attacker always

sets the initial bit to 0. However, if the attacker is allowed to
set the initial value arbitrarily, then the resulting protocol
does not quite uniquely specify the encoded string.3 Thus,

we use the encoding where ci =
ri�1

2
, for r = 1=2 � �, for

any � such that 0 < � < 1=2. To achieve such an encoding
using only one-bit packets, we describe what any node Ni
does on the receipt of a packet from its neighbor. Note that
there are only four possible inputs for the node Ni, di�eren-
tiated by the bit Bi and the bit that Ni receives from node
Ni+1. The following table describes the probability that Ni
forwards a 1 to node Ni�1 on the four possible inputs:

Incoming bit

Bi 0 1

0 0 1=2 � �
1 1/2 1� �

3Speci�cally, the attacker can make lexicographically adja-
cent strings encode to the same probability.
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Otherwise, in all four cases, Ni forwards a 0. The victim
uses the following decoding process: Obtain

F = 6 ln(2=�)

�2r2n
packets. Let x be the number of 1s in this set of

packets, and let p = x=F�rn=2. Let � = rn=2+�rn. Set the
bits B1 : : : Bn according to the processDECODE(p; �;

1
2
; r
2
;

r2

2
; : : : ; r

n�1

2
). We call this protocol Single-Bit.

Theorem 1. With probability 1 � �, protocol Single-
Bit allows the victim to determine the correct values of
B1 : : : Bn.

Proof. For t 2 f0; 1g, let pti be the probability that the
bit received by node Ni is a 1, given that the attacker sets
the initial bit to t.

Claim 1. For t 2 f0; 1g, it holds that pt0 = t � rn +Pn
i=1 Bi

ri�1

2
.

Proof. We see that for i � n, if Bi = 0, then pti�1 = rpti.
If Bi = 1, then pti�1 = (1� �)pti +

1
2
(1� pti) = rpti +

1
2
. The

claim now follows by induction.

From this claim, we see by a Cherno� bound that Pr[jp�
p00j > rn=2+�rn] � �. When jp�p00j � rn=2+�rn, condition
1 of Lemma 1 is satis�ed. To see that condition 3 is always
satis�ed, note that rn=2 + �rn < rn�1=4 is equivalent to
requiring that r( 1

2
+ �) < 1=4, which follows from the fact

that r = 1=2 � �. To see that condition 2 is also always

satis�ed, note that for all i, 1 � i � `� 1, ci �
P`
j=i+1 ci >

cn. Thus, by Lemma 1, the victim is able to determine the
entire string with probability 1��.

Note that this algorithm requires a number of packets that
is exponential in n. We show in Section 3.1 that for the case
where b = 1, such a dependence is necessary. Since this
makes the protocol impractical for all but small values of
n, we must use a larger value of b. We next describe how
to extend the one bit scheme to the case where b > 1. In
fact, it is possible to obtain a doubly exponential decrease
in the number of packets required as b increases. To do
so, we partition the nodes of the path into d = 2b�1 sets,
numbered 0 to d� 1, where node Ni is in the set i mod d.
Each of these sets performs the one-bit protocol (almost)
independently, thereby decreasing the e�ective length of the
path encoded using the one-bit protocol by a factor of d. The
doubly exponential improvement comes from the fact that
the number of packets required grows exponentially with n,
and we decrease the e�ective value of n by a factor that is
exponential in b.
To see how to develop this idea into a valid protocol, we

�rst consider an idealized scenario, where for every packet,
the attacker sets the initial b bits by choosing a random
sample from the uniform distribution over all 2b possible set-
tings. We then describe how to convert this into a protocol
where the attacker can set the b initial bits arbitrarily. De-
note the b bit positions in the header as h0 : : : hb�1. For the
idealized setting, in each packet, the nodes in one cell of the
partition perform the one bit protocol using the bit h0. The
remainder of the bits are used as a counter to specify which
cell of the partition participates in the one bit protocol. In
particular, for a packet P , let IPi be the integer correspond-
ing to the binary representation of the bits h1 : : : hb�1 that

are received at node Ni. Thus, we say node i sets I
P
i�1 = j to

mean that on packet P , the bits h1 : : : hb�1 sent from node
Ni to node Ni�1 are set to the binary representation of j.
Each node Ni performs the following protocol for each

packet P :

� If IPi = 0, then perform the one bit protocol using the
received bit h0. Forward h0 as the resulting bit of the
one bit protocol, and set IPi�1 = 1.

� Otherwise, forward h0 unchanged, and set I
P
i�1 = IPi +

1 mod d.

It is not hard to see that for each possible setting of the
initial bits by the attacker, only one cell of the partition
participates in the one bit protocol. Let tk be the number
of packets received that are involved in the one bit protocol
for cell k of the partition. If the total number of packets

received is �
�
d(1=�rn=d)2 log(d=�)

�
, then as long as n �

d, tk � �
�
(1=�rn=d)2 log(d=�)

�
with probability at least

1��=d. This result follows from a Cherno� bound; we omit
the details since we give a full treatment for the analysis of
the full version of the protocol below. For this value of tk,
the e�ect is the same as performing the one bit protocol on a
path of length n=d. Thus, the victim is able to reconstruct
all of the bits in cell k of the partition with probability
1��=d, and hence is able to reconstruct all of the bits with
probability 1��.
To make this algorithm work for an attacker that is al-

lowed to set the initial bits arbitrarily, we need to modify
the protocol slightly. Note that otherwise the attacker could,
for example, set the initial bits to the same value for every
packet, which would only inform the victim of the bits in
one cell of the partition. The change to the protocol is sim-
ple: with a probability � (which can be any probability such
that � 6= 0 and � 6= 1, but ideally � = 1=n), each node Ni
performs what is called a reset: it ignores the incoming bits
completely, and sets IPi�1 = 1. Bit h0 is forwarded as Bi
with probability 1

2
and as 0 otherwise. This has the e�ect

of resetting the counter with some probability, thereby al-
lowing the bits from every cell of the partition to be sent to
the victim.
With this more powerful attacker, we also need to de-

velop a more complicated decoding procedure. We start
with some intuition for this decoding algorithm by devel-
oping an expression for the probability that a packet has
h0 set to 1 when it arrives at N0. Let vnk be the proba-
bility that a packet P is reset by some node between Nn
and N1, inclusive, and IP0 = k. If z(n; k) is the number
of integers i, 1 � i � n, such that i mod d = k, we see

that vnk =
Pz(n;k)
j=1 �(1 � �)(j�1)d+k�1. Also, let �kj be the

probability that a packet that arrives at N0 is reset last by
some node between Nn and Nk+(j�1)d, given that it is reset

by some node between Nn and N1, and that IP0 = k. From

Bayes rule, we obtain �kj =
1
vn
k

Pz(n;k)
t=j �(1� �)(t�1)d+k�1:

Let Pk be the set of packets P such that IP0 = k. For
0 � k � d� 1, let qnk be the fraction of packets in Pk such
that no node betweenN1 andNn (inclusive) performs a reset
on the packet. Note that qnk is not a value readily available to
the victim; an important portion of the decoding algorithm
is computing for each k a value �qnk that serves as an estimate
for qnk . Consider a packet chosen uniformly at random from
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the set of packets in Pk for which the attacker sets h0 = t,
for t 2 f0; 1g. The probability that the packet has h0 set to
1 when it arrives at N0 is

ptk = t � qnk r
z(n;k) +

z(n;k)X
j=1

Bk+(j�1)d(q
n
k + (1� qnk )�

k
j )
rj�1

2
:

Thus, if we knew exactly the values qnk , the decoding pro-
cess would not be very di�erent from the single bit protocol.
However, without at least a fairly accurate estimate for qnk ,
such a decoding process would not be able to determine the
string B uniquely. We next describe a decoding algorithm
that computes such an estimate. We here describe this algo-
rithm for the case where the value of n is known. However,
the same process applies for any value of ` � n determined
by the victim: the victim can decode any pre�x of the path
up to the attacker. We here also describe the easier case of
the decoding process where � � 1

n
. We also want to em-

phasize that for this version of the paper, we have made no
attempt to optimize the constants of the algorithm. The
algorithm works as follows:

� N0 waits until it has received

F =

��
48e2

�rbn=dc

�2 �
4ed
n�

�
ln(4d=�)

�
packets.

� For 0 � k � d � 1, t 2 f0; 1g, let f tk be the total
number of packets in Pk for which the value of the bit
h0 received at N0 is t. Note that F =

Pd�1
k=0(f

1
k + f0k ).

� Let �qnk =
f1k+f

0
k�v

n
k �F

f1
k
+f0

k

:

� For k = 0 to d� 1:

{ For j = 1 to z(n; k),

� Let ckj = (�qnk + (1� �qnk )�
k
j )
rj�1

2
.

{ Let �k = (�qnk + (1� �qnk )�
k
z(n;k))

rz(n;k)

2
:

{ Let pk =
f1k

f1
k
+f0

k

�
�qnk r

z(n;k)

2
.

{ Set the bits Bi, for i = k + 1 + (j � 1)d, 1 � j �
z(n; k), according to the process
DECODE(pk; �k; c

k
1 ; : : : ; c

k
z(n;k)).

We call the resulting combination of the encoding algo-
rithm at the nodes and the decoding algorithm at the vic-
tim the protocol Multi-bit. Note that in the case that
� = �(1=n), the number of packets required by Multi-bit

is O
�

2bn2

r4n=2
b ln(2

b=�)
�
. Also note that protocol Multi-bit

is reasonably eÆcient in terms of memory requirements at
the victim: O(d log F ) bits of memory are suÆcient. Fi-
nally, note that the interesting case of the algorithm is when
2 � b � dlog ne, since Single-Bit handles the case when
b = 1, and when b > dlog ne, then techniques such as those
used in [16] are suÆcient.

Theorem 2. If 2 � b � dlog ne and � � 1=8, then with
probability at least 1��, protocol Multi-bit allows the vic-
tim to determine the correct values of Bi, 8i, 1 � i � n.

Proof. We here show that each of the d decoding pro-
cesses produces the correct answer with probability at least
1 � �=d, from which the theorem follows directly from a

union bound. For each call to the decode process, we demon-
strate that the conditions of Lemma 1 are satis�ed. For
condition 2, we must show that for 1 � j � z(n; k) � 1,

ckj > 2�k +
Pz(n;k)
t=j+1 c

k
t . Note that since the expression (�qnk +

(1 � �qnk )�
k
j ) is monotonically nonincreasing as j increases,

and r < 1=2, we see that ckj �
Pz(n;k)
t=j+1 c

k
t > rz(n;k)�1=2.

Since �qnk+(1��qnk )�
k
z(n;k) � 1, we have that �k � rz(n;k)�1=4,

implying condition 2. Also note that condition 1, i.e., that
ckz(n;k) > 2�k, follows directly from the de�nitions of ckz(n;k)
and �k, and the fact that r < 1=2.
Thus, we only have left to prove that condition 1 holds

with probability at least 1 ��=d, or that

Pr

2
4
������pk �

z(n;k)X
j=1

ckjB(j�1)d+k

������ � �k

3
5 � 1��=d:

If it were the case that our estimates of qnk were exact, and
the fraction of packets for which h0 = 1 at N0 were exactly
the expectation, then condition 1 would follow easily. Of
course, the probability of these random variables being ex-
actly their expectation is too small for our purposes, but
we can demonstrate that, with suÆciently high probability,
they do not deviate far from their expectation.
To do so, we use two versions of the Cherno� bound [11].

In particular, if X1 : : : Xt are i.i.d. random variables, such
that Pr[Xi = 1] = p, and Pr[Xi = 0] = 1 � p, then for any
Æ such that 0 � Æ � 1,

Pr

"
tX
i=1

Xi � (1 + Æ)tp

#
� e�Æ

2tp=3;

and

Pr

"
tX
i=1

Xi � (1� Æ)tp

#
� e�Æ

2tp=2:

We �rst use these bounds to demonstrate that it is likely
that Pk is large enough to provide good estimates on the
quantities of interest. In particular, we show the following:

Claim 2. Let � =
�

48e2

�rz(n;k)

�2
ln(4d=�). It holds that

Pr
�
f0k + f1k < �

�
� �

4d
:

Proof. Regardless of what the attacker does, for any
packet P , Pr[IP0 = k] � vnk . Thus, we can de�ne a set
of i.i.d. indicator variables X1 : : : XF such that Xj = 1 if

packet j is in Pk. We see that f0k + f1k =
PF
j=1Xj , and

Pr[Xj = 1] � vnk . Since the probability that f0k + f1k is too
small is maximized when Pr[Xj = 1] = vnk , we can assume
that this is the case. From the de�nition of vnk , we see that

vnk � z(n;k)�
e

, which by the assumption that b � dlog ne
implies that vnk � n�

2ed
. The claim now follows from the

second Cherno� bound above, using Æ = 1
2
.

We next demonstrate that our estimate of qnk is quite ac-
curate:

Claim 3. Given that f0k + f1k � �, it holds that

Pr
h
j�qnk � qnk j >

�rz(n;k)

12e2

i
� �

4d
:
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Proof. Let �vnk be the actual fraction of the F pack-
ets P which are reset by some node and IP0 = k. Since

qnk =
f1k+f

0
k��vnk �F

f1
k
+f0

k
, we see that j�qnk � qnk j =

�vnk �F�v
n
k �F

f1
k
+f0

k
: If

we do not condition on f0k + f1k � �, then the fact that

Pr
h
j�vnk � F � vnk � F j >

�rz(n;k)

24e2
vnkF

i
� �

5d
follows from the

Cherno� bounds above and the fact that vnk � �n
2ed

. If we

then condition on f1k + f0k � �, by Claim 2, this increases

Pr
h
j�vnk � F � vnk � F j >

�rz(n;k)

24e2
vnkF

i
to at most �

4d
. Thus,

with probability at most �
4d
, j�qnk � qnk j >

�rz(n;k)

24e2
vnkF

�
�

�rz(n;k)

12e2
, where the second inequality again uses the fact that

vnk �
�n
2ed

.

We next demonstrate what the implications of this are on
our algorithm:

Claim 4.������p0k �
z(n;k)X
j=1

ckjB(j�1)d+k

������ � j�qnk � qnk j � (j�qnk � qnk j)r
z(n;k)

Proof. Since �kj � 1,
���p0k �Pz(n;k)

j=1 ckjB(j�1)d+k

��� �Pz(n;k)
j=1 j�qnk � qnk j

rj�1

2
� j�qnk � qnk j � (j�qnk � qnk j)r

z(n;k):

Claim 5. Given that f0k + f1k � �, Pr
�
jpk � p0kj >

�qnk
2
rz(n;k) + (j�qnk � qnk j)r

z(n;k) + �rz(n;k)

12e2

i
� �

4d
:

Proof. We here bound the probability that pk is too
large; the bound on the probability that pk is too small

is similar. It is easy to see that Pr
h
pk � p0k >

�qnk
2
rz(n;k)+

(j�qnk � qnk j)r
z(n;k) + �rz(n;k)

12e2

i
is maximized when the attacker

sets all initial values of h0 to 1, and thus we assume that the
attacker does so. Note that this implies that E[pk] = p1k �
�qnk r

z(n;k)

2
= p0k+q

n
k r

z(n;k)�
�qnk r

z(n;k)

2
� p0k+

�qnk
2
rz(n;k)+(j�qnk�

qnk j)r
z(n;k):We now let Xj , for 1 � j � tk, be a random vari-

able, where Xj = 1 if the jth packet in Pk arrives to N0 with
h0 = 1 and Xj = 0 otherwise, where tk = f1k + f0k . We shall

bound the probability that
Ptk
j=1Xj > tk(p

1
k +

�rz(n;k)

12e2
).

Unfortunately, we can not use a Cherno� bound on this
sum directly, since conditioning on f0k + f1k � � can re-
sult in a small amount of dependence between the Xjs (this
is actually somewhat subtle). To remove this dependence,
we partition the integers from 1 to tk into two sets, where
j 2 S0 if packet j arrives without being reset, and j 2 S1
otherwise. The variables Xj for j 2 S0 are independent, as
are the variables Xj for j 2 S1. Let s0 = Pr[Xj = 1] for

j 2 S0. We see that s0 = rz(n;k) +
Pz(n;k)
j=1 Bk+(j�1)d

rj�1

2
.

Likewise, let s1 = Pr[Xj = 1] for j 2 S1. We see that

s1 =
Pz(n;k)
j=1 Bk+(j�1)d�

k
j
rj�1

2
.

We show that for w 2 f0; 1g, Pr
hP

j2Sw
Xj > jSwjsw+

tk
�rz(n;k)

24e2

i
� �=16d. Since jS0j = qnk tk and jS1j = (1 �

qnk )tk, this implies that Pr
hPtk

j=1Xj > tk(p
1
k +

�rz(n;k)

12e2
)
i
�

�=8d, from which the claim follows. By the �rst Cherno�

bound above,

Pr

"X
j2Sw

Xj > jSwjsw + tk
�rz(n;k)

24e2

#
� e

�

�
tk�r

z(n;k)

24e2jSwjsw

�2
jSwjsw

3 :

This probability is maximized by making jSwjsw as large as
possible, but it must be the case that jSwjsw � tk. Thus,
we may consider only the case where jSw jsw = tk. Now,
since we are conditioning tk � �, and we have that b � 2
and � � 1=8, we see that

e
�

�
tk�r

z(n;k)

24e2jSwjsw

�2
jSwjsw

3 � �=16d:

Now note that Claims 2, 3, 4, and 5 together give us that

Pr

2
4
������pk �

z(n;k)X
j=1

ckjB(j�1)d+k

������ >
�qnk r

z(n;k)

2
+
�rz(n;k)

6e2

3
5 � 3�=4d:

Thus, we only have left to show that

�qnk r
z(n;k)

2
+
�rz(n;k)

6e2
�
�
�qnk + (1� �qnk )�

k
z(n;k)

� rz(n;k)
2

;

or that �
3e2

� (1� �qnk )�
k
z(n;k). We have that

�kz(n;k) �
�(1� �)n�1Pz(n;k)

t=1 �
;

and so using the assumption that � � 1=n, we see that
�kz(n;k) � 1

ez(n;k)
. Thus, we only need to show that 1 �

�qnk � z(n;k)�
3e

. By the de�nition of �qnk , this is equivalent to

f1k + f0k �
3e

z(n;k)�
� vnk � F . Since v

n
k � z(n;k)�

e
, we only need

that f1k + f0k � 3F . This follows simply from the fact that
at worst, all the packets are in the set Pk.

3.1 Lower bound for a single path of attack
Recall that the lower bound model requires the memo-

ryless Network to send an n-bit string to the Victim using
b-bit packets. For any protocol P, let E(P) be the expected
number of packets received by the Victim when the input is
chosen uniformly at random from the set of all 2n possible
inputs. Let w(P) be the probability that using P, the Vic-
tim does not return the input string given to the Network
when that input is chosen uniformly at random from the set
of all 2n possible n-bit strings.

Theorem 3. For any protocol P, if E(P) � 2b�1
8e

2n=2
b

�

2b�2, then w(P) � 1=2.

Proof. Any algorithm employed by the Victim can be
thought of as a (possibly randomized) procedure for decid-
ing, for each possible sequence of packets that the Victim
has received, whether or not to continue receiving packets,
and if the Victim decides to not continue, then the procedure
must specify a (possibly deterministic) probability distribu-
tion over possible results for the Victim to output. We refer
to such an algorithm as a general protocol. A restricted
class of protocols is Monte Carlo protocols, where the Vic-
tim waits until it has received exactly T packets, where T
depends only on n and b. The protocol maps the set of T re-
ceived packets to a distribution over possible results, which
the Victim uses to produce an output.
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Lemma 2. For any general protocol P, there is a Monte
Carlo protocol P 0, such that E(P 0) = 4E(P), and w(P 0) �
w(P) + 1=4.

Proof. We de�ne P 0 as follows: collect T = 4E(P) pack-
ets. Using the order that the packets arrive at the Victim,
simulate the protocol P. If P produces a result before it re-
ceives T packets, then P 0 produces the same result, ignoring
the remainder of the packet that it has. If P has not pro-
duced a result after receiving T packets, then P 0 speci�es to
the Victim to output a result chosen uniformly at random
from the set of all 2n possible outputs. The bound on w(P 0)
follows from the fact that by Markov's inequality, the prob-
ability that P has not produced a result after receiving T
packets is at most 1/4.

We shall demonstrate that for any Monte Carlo proto-
col, if the number of packets received is too small, then the
probability that the protocol makes a mistake is at least 3/4.
This result, combined with Lemma 2, implies the theorem.
Thus, we henceforth only consider Monte Carlo protocols.
The input to the Victim can be described via a receipt se-

quence: a sequence (r1 : : : rT ), where ri is a b-bit string de-
scribing the ith b-bit packet that is received by the Victim.
Any Monte Carlo protocol for the Victim is a function that
maps a receipt sequence to a probability distribution over
n-bit strings. Another kind of description of the input to the
Victim is a receipt pro�le: a 2b-tuple R = (f0; : : : ; f2b�1),
where fi is the number of packets of type i received by the

Victim. Note that
P2b�1
j=0 fj = T . For any receipt pro�le

R, let S(R) be the set of receipt sequences S such that for
all i, 0 � i � 2b � 1, the number of packets of type i in
the sequence S is exactly fi. Let a permutation oblivious
algorithm for the Victim be a function that maps a receipt
pro�le to a probability distribution over n-bit strings. Intu-
itively, a permutation oblivious algorithm is a Monte Carlo
algorithm that ignores the permutation information of the
input, and only uses the receipt pro�le of the input.

Lemma 3. For any Monte Carlo algorithm P 0 for the
Victim, there is a permutation oblivious algorithm P 00 for
the Victim, such that E(P 00) = E(P 0), and w(P 00) = w(P 0).

Proof. Given a Monte Carlo algorithm P 0 for the Vic-
tim, we de�ne P 00 as follows: on an input receipt pro�le R,
choose a receipt sequence S from S(R) uniformly at random.
The probability distribution over n-bit strings returned by
P 00 is the same as P 0 would return when the input is S.
To see that w(P 00) = w(P 0), note that since the Network
is memoryless, on any n-bit string that is input to the Net-
work, and for any receipt pro�le R, the probability that the
receipt sequence is any receipt sequence in S(R) is the same
for all receipt sequences in S(R). Thus, it does not matter
whether the Network \chooses" a receipt sequence uniformly
at random from the set of receipt sequences in the receipt
pro�le, or whether the Victim makes this same choice.

Thus, we can simply show a lower bound for permutation
oblivious algorithms, and this will imply a lower bound for
all possible algorithms. Let  (T ) be the set of all possible
receipt pro�les for which the total number of packets re-
ceived is exactly T . Let �(n) be the set of all 2n inputs to

the Network. For any � 2  (T ) and I 2 �(n), let p(�; I)
be the probability that the algorithm outputs I when the
receipt pro�le is � . Note that for any input I, the proba-
bility that the algorithm outputs I, given that the Network
receives the input I, is at most

P
�2 (T ) p(�; I). Thus, for

any permutation oblivious algorithm P 00,

w(P 00) �

P
I2�

�
1�

P
�2 (T ) p(�; I)

�
2n

:

Now, note that X
�2 (T );I2�(n)

p(�; I) � j (T )j:

This implies that w(P 00) � 1� j (T )j
2n

: Thus, if j (T )j � 2n=4,
the permutation oblivious protocol must make a mistake
with probability at least 3=4. Thus, we only need to compute
j (T )j for a given value of b. By a standard combinatorial
argument, the number of receipt pro�les in  (T ) is simply 

T + 2b � 1

2b � 1

!
�

�
(T + 2b � 1)e

2b � 1

�2b�1

:

Thus, w(P 00) � 3=4, provided that
�
(T+2b)e

2b�1

�2b
� 2n=4,

or that T � 2b�1
2e

2n=2
b

�2b. By Lemmas 2 and 3, this implies
that for any general protocol P, p(P) � 1=2, provided that

E(P) � 2b�1
8e

2n=2
b

� 2b�2.

We also point out that a slightly tighter analysis using the
same techniques gives us that when b = 1, the lower bound
is 
(2n). Furthermore, a tighter analysis of the protocol for
the case where the attacker sets the initial bits randomly

leads to an upper bound of O(b2b24n=2
b

). Since such an at-
tacker can be simulated in the lower bound model, this is
also an upper bound for the lower bound model. Asymptot-
ically, this di�ers from our lower bound by only a factor of
4 in the exponent, and a factor of b.

4. MULTIPLE PATHS OF ATTACK.
We next consider the case where the packets sent to the

victim travel on multiple paths. For protocols, we assume
the same model as in the single path of attack case (i.e.,
complete binary tree of height n and every node sees which
child it receives any given packet from.) In addition, there
is a parameter k that represents an upper bound on the
number of paths of attack. We assume that at the start of
the attack, the attacker chooses a set of at most k nodes,
and then for each packet it sends, it chooses which of the k
nodes sends that packet to the victim. A protocol should
work correctly as long as the attacker chooses k or less paths
of attack, but can have any behavior in the case that the
attacker uses more paths.
We also introduce a second parameter �. To see why,

notice that if the attacker sends all but one of its packets
along one path, for small values of b it is not possible for
the victim to determine the path used by the single packet
that takes a di�erent path. The parameter � represents the
relative bias in the number of packets that must be sent
along a path in order for the victim to recover that path.
In particular, we say that a protocol is �-sensitive, if during
any given attack, the victim is able to reconstruct (with
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suÆciently high probability) all paths P , such that at least
a fraction of �

k
of the packets the attacker sends travel along

P . Note that protocols where � > 1 are not of interest to
us, since the attacker could choose to send an equal number
of packets along every path, in which case an �-sensitive
protocol with � > 1 would not be guaranteed to return any
path information.
We here also make the assumption that the attacker sends

each packet with the initial b header bits set to 0. The lower
bounds we prove also hold without this restriction, since the
attacker can always choose to do this. This assumption does
restrict the applicability of the protocol that we introduce.
However, we consider protocols in this model an important
step towards a full solution. We also state without proof
that the technique for the multiple path protocol can be
adapted to work for a number of di�erent restrictions on
the adversary (for example, it can be adapted to a model
where the attacker chooses the initial bits using a uniform or
any other known distribution). Furthermore, the technique
we use for this model looks promising in terms of a general
solution, and may also be of independent interest.
For the lower bounds, we assume the same model as the

lower bounds for the single path of attack case, except that
the Network now has k strings to send to the Victim, but it
only has access to one of these strings for each packet that it
sends to the Victim. Each time the Network sends a packet,
the Attacker is allowed to choose which of the n strings the
Network sees. Since the Network has no memory, it can only
use the current string in determining the contents of each
b-bit packet. We shall refer to each of the n-bit strings of
the Victim as a path to be determined.

4.1 Intuition
We demonstrate that if b � log(2k� 2), then the attacker

is information theoretically able to hide its location in the
network. Speci�cally, regardless of the number of packets
received by the victim, the victim is not able to determine
even a single path P such that the probability that P is
an actual path of attack is greater than 1=2. On the other
hand, if b � dlog(2k + 1)e, then there is a protocol such
that for any � and �, with probability at least 1 ��, the
packets received by the victim encode all paths used to send
a fraction of at least �

k
of the packets. To see why b must

grow as k grows, consider �rst the case where k = 2 and
b = 1. We describe why increasing k from 1 to 2 allows the
attacker to "hide" its location in the network.
As is described in the single path of attack case, a pro-

tocol communicates information to the victim by specifying
the probability distribution of the header bits that arrive
at the victim for a packet that travels along a given path.
For any path P , let p1(P ) be the probability that a packet
traveling along P has the single header bit set to 1 when it
arrives at the victim. Now, consider the case where there are
three possible paths of attack P1; P2 and P3, out of which the
attacker is allowed to choose up to k = 2. We can assume
w.l.o.g. that p1(P1) � p1(P2) � p1(P3). Consider two di�er-
ent attacker strategies: 1) the attacker sends all packet along
path P2, and 2) for each packet independently, the attacker

sends the packet along P1 with probability
p1(P2)�p1(P3)
p1(P1)�p1(P3)

and

along P3 with probability 1� p1(P2)�p1(P3)
p1(P1)�p1(P3)

= p1(P1)�p1(P2)
p1(P1)�p1(P3)

.

In both attacker strategies, the probability that the header
bit of any packet is 1 is p1(P2), but the two cases do not

share any paths. Thus, when the probability of receiving a
1 is p1(P2), the victim is not able to do better than guess-
ing between the two cases. Also note that obtaining more
packets does not give any information beyond a better esti-
mate of p1(P2), and thus increasing the number of packets
received is not helpful.
With this motivation, we now see that the encoding for

the paths is as follows: for any path P , let pi(P ) be the
probability that a packet sent along path P arrives at the
victim with the header bits set to the binary representation
of i. Each path P can be represented by a vector V 0(P ) of
length 2b, where component i of V 0(P ), for 1 � i � 2b � 1,
is pi(P ), and component 2b is p0(P ). Since it must be the

case that
P2b

i=1 pi(P ) = 1, we can represent the distribution
as the vector V (P ), which is the same as the vector V 0(P )
except it does not have component 2b, and thus has length
2b � 1.
Let A1 : : : Ak be the k paths used by the attacker. For

the moment, assume that the attacker decides on a set of
probabilities �1 : : : �k such that �i is the probability that
a packet is sent on path i. With such a strategy, for any
packet, there is a probability qi that a packet received by
the victim has the header bits set to i. Let W be the vector
with 2b�1 components such that entry i of W is qi. We see
thatW =

Pk
j=1 �jV (Aj). Thus, in order to have a encoding

for the set of 2n paths P1 : : : P2n that allows the victim to
correctly determine the paths of attack being used, we need a
set of 2n vectors V (P1) : : : V (P2n) such that for any two sets
of k paths S1 = fA1; : : : ; Akg and S2 = fA0

1; : : : ; A
0
kg, there

are no two sets of probabilities �1 : : : �k and �01 : : : �
0
k, such

that
Pk
j=1 �jV (Aj) =

Pk
j=1 �

0
jV (A

0
j), and either for some j

such that Aj 62 S2, �j > 0, or for some j such that A0
j 62 S1,

�0j > 0. Note that this is a weaker requirement than that the
set of vectors be 2k-wise independent in the following sense:
if the vectors are 2k-wise independent, then they satisfy our
requirement. However, a set of vectors that satis�es our
requirement is not necessarily 2k-wise independent.

4.2 Lower bound for multiple paths of attack
Note that if the requirement on the set of vectors were

exactly that they be 2k-wise independent, then we would
immediately have a lower bound of b � log(2k+1), since any
smaller value of b would result in vectors with less than 2k
components. Still, we can demonstrate the following lower
bound of log(2k � 1) by using the actual requirement on
the vectors. We point out that this bound is information
theoretic, and thus applies to all previous PPM techniques
for the case of multiple paths of attack.

Theorem 4. If b � log(2k � 2) and there are at least 2k
paths out of which the k paths of attack are chosen, then the
Attacker can cause a situation where regardless of how many
packets the Victim receives, it is not able to determine any
path P such that P is one of the paths of the Network with
probability at least 1=2.

Proof. We �rst demonstrate that if the Attacker can
cause the same distribution of header bits to be received
at the Victim for two disjoint sets of paths, then the At-
tacker can cause the situation described. Given two sets of
paths S1 = fP1; P2; : : : ; Pkg and S2 = fP 0

1; P
0
2; : : : ; P

0
kg, we

say that S1 and S2 are convex equivalent if there are prob-
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abilities �1; : : : ; �k; �
0
1; : : : ; �

0
k such that

Pk
j=1 �jV (Pj) =Pk

j=1 �
0
jV (P

0
j);
Pk
i=1 �i = 1 and

Pk
i=1 �

0
i = 1, .

Lemma 4. For any protocol, if there exist two disjoint
sets of paths S1 and S2 that are convex equivalent and are
each of size at most k, then the Attacker can create a situ-
ation such that the Victim is unable to return a single path
P that is held by the Network with probability greater than
1=2.

Proof. Let A1 be an Attacker strategy where the Net-
work has the set of paths S1, and the Attacker chooses the
path for each packet by choosing path Pj with probability
�j independently of the choice for all previous packets. Let
A2 be an Attacker strategy where the Network has the set
of paths S2 and the Attacker chooses path P 0

j with prob-
ability �0j independently of all previous packets. For both
Attacker strategies, the probability distribution over header
bits received by the Victim is the same. LetW be the 2b�1
dimensional vector that describes this distribution. We con-
sider the scenario where the Attacker chooses each of the
strategies A1 and A2 with probability 1/2.
If, at the start of the attack, we reveal to the Victim some

additional side information, in particular the vectorW , then
(by what is referred to as the "little birdie" principle) this
cannot make the Victim's task any harder. If the Victim
knows W , then the packets that arrive to the victim do not
provide it with any additional information, since it knows
W , and could simulate any such packets without actually
seeing them. Therefore, regardless of how many packets the
Victim receives, the Victim does not obtain any information
past the vector W . However, with W , both strategy A1 and
strategy A2 are equally likely. Since sets S1 and S2 are
disjoint, the Victim is not able to determine any path that
is in the set of paths of the Network with probability greater
than 1/2.

To complete the proof of the Theorem, we show that if
b � log(2k � 2) and there are at least 2k possible paths
out of which the k paths of the Network are chosen, then
there exist two disjoint sets of paths S1 and S2 of size at
most k that are convex equivalent. Let the 2k paths be
P0; P1; : : : ; P2k�1. Let Z be the zero vector. We �rst show
that we can assume that V (P0) = Z.

Claim 6. For a given value of b, if for any arbitrary
V (P1) : : : V (P2k�1) and V (P0) = Z there exist two disjoint
sets of paths S1 and S2, each of size at most k, that are con-
vex equivalent, then it is also the case that for any arbitrary
V (P0) : : : V (P2k�1) there exist two disjoint sets of paths S1
and S2, each of size at most k, that are convex equivalent.

Proof. Given an arbitrary set of path vectors V (P0) : : :
V (P2k�1), for 0 � i � 2k� 1, let Vi = V (Pi)�V (P0). Thus
V0 = Z. Given probabilities �i, 0 � i � 2k � 1, such thatPk�1
i=0 �i = 1 and

P2k�1
i=k �i = 1, if

Pk�1
j=0 �jVj =

P2k�1
j=k �jVj ,

then
Pk�1
j=0 �j(V (Pj)�V (P0)) =

P2k�1
j=k �j(V (Pj)�V (P0)).

This implies that
Pk�1
j=0 �jV (Pj) =

P2k�1
j=k �jV (Pj).

Thus, we henceforth assume that V (P0) = Z. Further-
more, we can also assume that V (Pi) 6= Z, for i > 0, since
the theorem is trivial if two path vectors are the same.

Claim 7. If there exist �1 : : : �2k�2 such that 8j; �j � 0,

9j such that �j > 0, and
Pk�1
j=1 �jV (Pj) =

P2k�2
j=k �jV (Pj),

then there exist two disjoint sets of paths S1 and S2, each of
size at most k, that are convex equivalent.

Proof. Let Q1 =
Pk�1
i=1 �i, and let Q2 =

P2k�2
j=k �j . We

can assume w.l.o.g. that Q2 � Q1. The two sets are S1 =
fP0; : : : ; Pk�1g and S2 = fPk; : : : ; P2k�1g. If we let �0j =

�j=Q2, for 1 � j � 2k�2, �00 = 1� Q1
Q2

, and �02k�1 = 0, then

we see that
P2k�1
j=k �0j = 1, and

Pk�1
j=0 �

0
j = 1. Furthermore,

it must be the case that
Pk�1
j=0 �

0
jV (Pj) =

P2k�1
j=k �0jV (Pj),

since we have merely multiplied both sides by a scalar, and
added the zero vector.

Thus, we only need to �nd such �1 : : : �2k�2. If b �
log(2k � 2), the dimension of the vectors is at most 2k � 3,
and thus there must exist some Pi and Pj , i; j > 0 and
j 6= i, such that V (Pi) and V (Pj) are each a linear com-
bination of the 2k � 3 other non-zero vectors. We can
assume w.l.o.g. that i = 1 and j = 2. Thus, there ex-
ist �1 : : : �2k�1 such that

P2k�1
i=1 �iV (Pi) = V (P0), where

�1 = �1 and �2 = 0. Similarly, there exist �01 : : : �
0
2k�1 such

that
P2k�1
i=1 �0iV (Pi) = V (P0), where �

0
1 = 0, and �02 = �1.

Let T+
1 (T+

2 ) be the set of i such that �i > 0 (�0i > 0,
respectively), let T�

1 (T�
2 ) be the set of i such that �i < 0

(�0i < 0, respectively), and let T 0
1 (T 0

2 ) be the set of i such
that �i = 0 (�0i = 0, respectively). If jT+

1 j � k � 1 and
jT�

1 j � k� 1, then we can obtain �1 : : : �2k�2 by renumber-
ing the Pi so that the Pi with i 2 T+

1 are numbered using
integers from [1; k�1], the Pi with i 2 T

�
1 are numbered us-

ing integers from [k; 2k� 2], and the remainder of the paths
are numbered arbitrarily to �ll in the remaining integers.
By renumbering the �i in the corresponding fashion, and
by negating �i for i 2 T�

1 , we obtain the required values
of �i. Thus, we henceforth assume that either jT+

1 j � k
or jT�

1 j � k. In fact, since we could multiply all of the �i
by �1, we shall assume that jT+

1 j � k. Similarly, we can
assume that jT�

2 j � k.
Using the fact that jT�

2 j � k, we see that there exists R
such that for any r > R, the number of values of i such
that �i + r�0i < 0 is at least k. Since jT+

1 j � k, there must
exist some value s, 0 < s � R such that the number of
values of i such that �i + s�0i > 0 is at most k � 1, and
the number of values of i such that �i + s�0i < 0 is also
at most k � 1. Thus, we can obtain �1 : : : �2k�2 by setting
�1 : : : �k�1 to nonnegative values of �i+s�

0
i, and �k : : : �2k�2

to the negation of nonpositive values of �i � s�0i, where the
0 values are assigned so as to ensure that both sets have
exactly k � 1 elements. To satisfy the conditions of Claim
7, we also renumber the paths as appropriate.
This gives us the required order on the paths and required

values of �1 : : : �2k�2. Thus, by Claim 7 and Lemma 4, there
is an Attacker strategy such that there is no path P that the
Victim can determine such that probability that P is held
by the Network is greater than 1/2.

4.3 Upper Bound for Multiple Paths of Attack
We saw in the previous subsection that if there are two

disjoint sets of paths S1 and S2 that are convex equivalent,
then the attacker is able to hide in the network. In this
section we demonstrate how to encode an arbitrarily large
set of paths in such a way that the resulting vectors produce
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no such sets S1 and S2. In fact, our technique produces a
set of vectors that satisfy a stronger criteria: every set of
2k vectors is linearly independent. In order to do so, let
d = 2b�1. We shall consider a curve in d-dimensional space
such that any set of 2k distinct vectors with endpoints on
this curve are linearly independent. With our encoding, the
vector for every path lies on this curve.
This curve is de�ned in terms of a parameter t. Let

V(t) be the d-dimensional vector such that the ith com-
ponent of V(t) is ti. As in the case of a single path of at-
tack, let any path P be described by bits B1(P ) : : : Bn(P ),
which specify the entire path from the victim to the at-
tacker. To determine the path P , it is suÆcient to deter-
mine the value XP =

Pn
i=1Bi(P )=2

i. To encode the path
P , we use the probability distribution de�ned by the vector
V (P ) = V( 1

4
XP ).

We �rst demonstrate how to compute the vectors on this
curve in a distributed fashion. Our technique works cor-
rectly provided that b � dlog(2k + 1)e, i.e., that d + 1 (the
number of possible headers) is at least 2k + 1. This tech-
nique does not require the intermediate nodes of the network
to know the value of k; they are only required to know the
value of b. Recall that pi(P ) is the probability that a packet
sent along path P arrives at the victim with the header
bits set to i. We describe a protocol for each of the dis-
tributed nodes such that pi(P ) = ( 1

4
XP )

i, for i > 0, and

p0(P ) = 1�
Pd
i=1 pi(P ).

Let pei;j be the probability that a node holding the bit
e, for e 2 f0; 1g, forwards the header j when it receives
the header i. Note that it must be the case that 8i; e,Pd
j=0 p

e
i;j = 1. When a node holds the bit 0, the proba-

bility transitions are de�ned as follows:

� For 0 < i � d, p0i;i = 2�i, and p0i;0 = 1� 2�i.

� For i 6= j, and j 6= 0, p0i;j = 0.

� p00;0 = 1.

When a node holds the bit 1, the probability transitions
are de�ned as follows:

� For 1 � i � j � d, p1i;j = 22i�3j
�
j
i

�
+ 2�3j .

� For 1 � j < i � d, or i = 0 < j � d, p1i;j = 2�3j .

� For j = 0 � i � d, p1i;j = 1�
Pd
j=1 p

1
i;j :

Claim 8. For each possible header received by a node,
this protocol de�nes a valid probability distribution over head-
ers that the node forwards. In particular, 8i; j; e, 0 � pei;j �

1, and 8i; e,
Pd
j=0 p

e
i;j = 1.

Proof. The proof of this fact is easy for the case where
e = 0, as well as the case where e = 1 and i = 0. Thus, we
here show that for any i, 1 � i � d,

Pd
j=1 p

1
i;j < 1. Since

p1i;0 = 1�
Pd
j=1 p

1
i;j , the claim then follows easily. For any i,

we see that
Pd
j=1 p

e
i;j =

Pd
j=1 2

�3j +
Pd
j=i 2

2i�3j
�
j
i

�
. Since

we know that
Pd
j=1 2

�3j < 1=7, we only need to demon-

strate that the second sum is at most 6/7. We see thatPd
j=i 2

2i�3j
�
j
i

�
= 2�i +

Pd
j=i+1 2

2i�3j
�
j
i

�
. Since

�
j
i

�
< 2j ,

this sum is less than 1
2
+
Pd
j=i+1 2

2i�2j = 1
2
+
Pd�i
j=1 2

�2j <
5
6
< 6

7
.

Claim 9. For any path P and 1 � i � d, pi(P ) =
�
XP
4

�i
.

Proof. We prove this by induction on n. We start with
the inductive step: if we assume that the claim is true for
paths of length n�1, we can show that it is true for paths of
length n. Let pn�1

i (P ) be the probability that a packet sent
on path P received by the node just prior to the victim has
the header bits set to i. Since all nodes perform the same
protocol, the inductive hypothesis gives us that pn�1

i (P ) =�
Xn�1
P
4

�i
, where Xn�1

P =
Pn
i=2 bi(P )2

1�i. By the de�ni-

tion of the p0i;j , if b1(P ) = 0, then pi(P ) = 2�ipn�1
i (P ), and

thus pi(P ) =

�
Xn�1
P
8

�i
=
�
XP
4

�i
.

Similarly, for the case where b1(P ) = 1, we only need to

show that pj(P ) =

�
Xn�1
P
8

+ 1
8

�j
. In the following, we use

the standard convention that
�
j
i

�
= 0 if j < i. We see that

for all j > 0,

pj(P ) =
dX
i=0

pn�1
i (P )p1i;j =

 
1�

dX
i=1

�
Xn�1
P

4

�i!
2�3j +

dX
i=1

�
Xn�1
P

4

�i 
22i�3j

 
j

i

!
+ 2�3j

!
=

2�3j +
dX
i=1

�
Xn�1
P

4

�i
22i�3j

 
j

i

!
=

jX
i=0

�
Xn�1
P

4

�i
22i�3j

 
j

i

!
=

jX
i=0

 
j

i

!�
Xn�1
P

8

�i�
1

8

�j�i
=

�
Xn�1
P

8
+

1

8

�j
The base case of the inductive proof follows from a similar

argument, since we assume that the attacker must set all
header bits to 0 in the packets it transmits.

We next demonstrate that with high probability, this pro-
cess provides the victim with information that speci�es all
paths P that receive a large enough fraction of packets.

Theorem 5. After the victim has collected

6
h
48k2

�
2(2k

2+k)(n+2)
i2
ln 2k

�
packets, with probability at least

1��, the victim is able to determine all paths P such that at
least a fraction of �

k
of the packets the attacker sends travel

along P .

Proof. We here provide the proof for the case where
there are at least 2k possible paths for the attacker to choose
from; it is not diÆcult to remove this assumption. For con-
venience, we also assume that the encoding is done in such
a manner that there is no path P such that XP = 0. This
can be assured either by using an encoding of the paths that
does not have such a path, or by having the victim append
a 1 to the end of every path description. Denote the k paths
used by the attacker as P1 : : : Pk. Let �i be the fraction
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of the received packets that are sent by the attacker along
path Pi. If the attacker uses only k0 paths, for k0 < k,
then choose an arbitrary set of k � k0 other paths so that
there are k disjoint paths, and set the corresponding values
of �i = 0. The probability that a randomly chosen packet
from the set of received packets has its header bits set to i
is qi =

Pk
j=1 �jpi(Pj). The set of received packets provides

the victim with an estimate on the values of the qi.
To get some intuition, let's �rst assume that the victim

knows the values of the qi exactly. We demonstrate that
this uniquely determines the entire set of paths used by the
attacker. To prove this, we show that if we assume that it
does not uniquely determine this set of paths, we reach a
contradiction. In particular, assume that there is some set
Pk+1 : : : P2k of paths and fractions �k+1 : : : �2k such thatPk
j=1 �jV (Pj) =

P2k
j=k+1 �jV (Pj). For the set of paths

to not be uniquely determined, it must be the case that
there is some path Pj , such that �j > 0 and if j � k then
Pj 62 fPk+1; : : : ; P2kg, and if j > k then Pj 62 fP1; : : : ; Pkg.
Assume here that such a path is path P2k; the case where
j � k is similar. In this case, we see that

�2kV (P2k) =

kX
j=1

�jV (Pj)�

2k�1X
j=k+1

�jV (Pj):

This in turn implies that there is some set of 2k distinct
paths P 0

1 : : : P
0
2k and real numbers �01 : : : �

0
2k, with �

0
2k > 0,

such that

�02kV (P
0
2k) =

2k�1X
j=1

�0jV (P
0
j): (1)

Now, consider the 2k � 2k matrix M where entry Mi;j =
pi(P

0
j). From (1), we see that the columns ofM must be lin-

early dependent. However, from Claim 9, we see thatMi;j =�
XP 0

j

4

�i
. The matrix M 0, where entry M 0

i;j =

�
XP 0

j

4

�i�1

,

is a Vandermonde matrix. Since the paths P 0
1 : : : P

0
2k are

distinct, if i 6= j then XP 0
i
6= XP 0

j
, and thus M 0 has full

rank. Since we assume that for all paths P , XP 6= 0, this
implies that the matrix M has full rank as well, which con-
tradicts the assumption that the columns of M are linearly
dependent. Therefore, the exact values of the qi exactly
determines all paths Pj , 1 � j � k, such that �k > 0.
We next examine the e�ect of the fact that the victim does

not know the values of the qi exactly. In this case, with high
probability the victim determines a good estimate on all of
the qi values. We demonstrate that with this estimate, any
path that is used to send a large enough fraction of the
packets can be determined. The estimate used is as follows:
let Yi be the number of times that header i is seen in the

N = 6
h
48k2

�
2(2k

2+k)(n+2)
i2
ln 2k

�
packets. We set �qi = Yi=N .

The victim returns any path Pj such that Pj is contained
in a linear combination of at most k path vectors, with the
coeÆcient associated with Pj being at least �

k
, such that

the Euclidean distance of the resulting linear combination
from the corresponding point de�ned by the �qis is at most

h0 =
1
3
�
k
2�(2k2+k)(n+2).

To see that this protocol does in fact return every path P
such that a fraction of at least �

k
of the packets travel on P ,

let Dq =
qP2k

i=0(qi � �qi)2. Standard Cherno� bound tech-

niques demonstrate that withNpackets, the values �q0; : : : ; �q2k
are such that Pr[Dq > D0] � �. Thus, with probability at
least 1��, every required path is returned by the protocol.
We next show that there is no path P , such that P is not

used by the attacker, but the probability that the protocol
returns P is greater than �. If such a path exists, then
there must be some set of paths P1 : : : P2k, where P1 : : : Pk
are the paths used by the attacker, Pk+1 : : : P2k are the paths
contained in the incorrect linear combination, and P2k is the
path returned incorrectly. Thus, P2k 62 fP1; : : : ; Pkg, and
there exist fractions �1 : : : �2k, with �2k �

�
k
, such that

Pr

2
64
vuuut 2kX

i=1

0
@ 2kX
j=k+1

�jpi(Pj)�
kX
j=1

�jpi(Pj)

1
A

2

�Dq � D0

3
75 > �

This in turn implies that there are 2k distinct paths
P 0
1; : : : ; P

0
2k and real numbers �01 : : : �

0
2k, with �

0
2k �

�
k
, such

that vuut 2kX
i=1

 
�02kpi(P

0
2k)�

2k�1X
j=1

�0jpi(P
0
j)

!2

� 2D0 (2)

Let D1 be the Euclidean distance in <2k from the point
�02kV (P

0
2k) to the subspace spanned by V (P 0

1); : : : V (P
0
2k�1).

For (2) to be true, it must be the case that D1 � 2D0. Thus,
to demonstrate that no such incorrectly returned path P2k
can exist, it is suÆcient to show that D1 �

�
k
2�(2k2+k)(n+2).

To see that this is the case, let V1 be the 2k-dimensional
volume of the parallelepiped de�ned by the vectors
V (P 0

1); : : : ; V (P
0
2k�1); �2kV (P

0
2k) in <2k, and let V2 be the

(2k � 1)-dimensional volume of the parallelepiped de�ned
by the vectors V (P 0

1); : : : ; V (P
0
2k�1) in <2k. We see that

D1 =
V1
V2
. Since all of the vectors V (P 0

1) : : : V (P
0
2k�1) have at

most unit length, V2 � 1. Due to the convenient form of the
vectors V (P 0

1); : : : ; V (P
0
2k), we can determine a lower bound

on V1. In particular, a standard result from linear algebra
is that V1 is equal to the absolute value of the determinant
of the matrix T , where column j of T , for 1 � j � 2k� 1, is
V (P 0

j), and column 2k is the vector �2kV (P
0
2k).

To compute jdet(T )j, consider the matrix T 0, where col-
umn j of T 0, for 1 � j � 2k, is 4

XP 0
j

Vj . By Claim 9, the

matrix T 0 is Vandermonde, and thus

det(T 0) =
Y

1�i<j�2k

 
XP 0

i

4
�
XP 0

j

4

!
:

Since for any i 6= j,

����XP 0
i

4
�

XP 0
j

4

���� � 1
2n+2 , we see that

jdet(T 0)j � ( 1
2n+2 )

(2k2 ): Since it is also the case that 8j,
XP 0

j

4
� 1

2n+2 , this implies that

jdet(T )j �
�

k
(

1

2n+2
)2k(

1

2n+2
)(

2k
2 ):

Thus, V1 � �
k
( 1
2n+2 )

2k2+k. This implies that

D1 �
�
k
( 1
2n+2 )

2k2+k, completing the proof of the theorem.

We also point out that this use of Vandermonde matrices
is fundamentally quite di�erent from how they have been

417



previously used in coding theory. There are constructions
of linear codes where the generator matrix is Vandermonde
(see, for example, [15]). On the other hand, in our use of
Vandermonde matrices, the "codewords" themselves (i.e.,
the probability distributions over packet headers) have the
property that any set of 2k codewords form a Vandermonde
matrix. In fact, the traditional type of Vandermonde en-
coding was already used for PPM in [6], which relies on a
technique from [2]. We point out that this technique re-
sults in a PPM encoding that falls into the class of proto-
cols described in the introduction (where the victim only
checks what packet headers it has received, as opposed to
how many of each it has received), and hence is subject to
the log n lower bound on b provided there.

5. CONCLUSION
We have studied two scenarios for using PPM to solve the

IP traceback problem: the case of a single path of attack,
as well as the case of multiple paths of attack. For a single
path of attack, we have introduced upper and lower bounds
on the optimal tradeo� between the number of bits allocated
to PPM and the number of packets that must be received to
determine the source of the attack. For the case of multiple
paths of attack, we have provided a lower bound on the
number of header bits required as a function of the number
of paths of attack. We also provide a nearly matching upper
bound that applies to some restricted scenarios.
A number of interesting open problems remain. For the

case of a single path of attack, it would be interesting to
close the gap between the upper and lower bounds. For the
case of multiple paths of attack, we have barely scratched
the surface of obtaining a complete understanding of PPM.
One interesting question is designing a protocol that does
not rely on the restrictions on the attacker required by the
protocol of Section 4.3. Furthermore, we have not addressed
the issue of computational eÆciency with respect to the de-
coding portion of that algorithm: it only provides an en-
coding that information theoretically speci�es the correct
paths. Finally, to obtain a complete understanding of the
problem, we must incorporate the number of packets into
the results for multiple paths of attack. In particular, we
would like to obtain matching upper and lower bounds on
the tradeo�s between the number of header bits used, the
number of paths of attack, as well as the number of packets
required.
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