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Effective Bandwidths for Multiclass
Markov Fluids and Other ATM Sources

George Kesidis, Member, IEEE, Jean Walrand, Fellow, IEEE, and Cheng-Shang Chang, Senior Member, IEEE

Abstract— We show the existence of effective bandwidths for
mtdticlass Markov fluids and other types of sources that are
used to model ATM traffic. More precisely, we show that when
such sources share a buffer with deterministic service rate, a
constraint on the tail of the buffer occupancy distribution is a
linear constraint on the number of sources. That is, for a small
loss probability one can assume that each source transmits at a
fixed rate called its effective bandwidth. When traffic parameters
are known, effective bandwidths can be calculated and may
be used to obtain a circuit-switched style call acceptance and
routing algorithm for ATM networks. The important feature of
the effective bandwidth of a source is that it is a characteristic
of that source and the acceptable loss probability only. Thus, the
effective bandwidth of a source does not depend on the number
of sources sharing the buffer or tbe model parameters of other
types of sources sharing the buffer.

I. INTRODUCTION

E

FFECTIVE bandwidths have been discovered for cer-
tain traffic models and certain performance criteria (see

[17], [13], [12], [4],[18],[3]). For example, consider a buffer of
infinite size with service rate c cells/second. Assume that the
buffer sources and occupancy are in steady state. Let X be
the number of cells in the buffer found by a typical arriving
cell. Suppose that

P{X > 13} < e-B6 (1)

must be satisfied (the performance criterion). Suppose further
that there are ivl independent on/off Markov fluids [1] of type
j(j=l,2, . ... K) sharing the buffer. There exist functions cYj
that depend only on the parameters of a type j source and 6,
such that the constraint ( 1) holds for B6 >> 1 if and only if

j=l

We call aj the effective bandwidth of an onloff Markov fluid of
type j (see [12] and [13] for proofs of this result and numerical

examples that explore the accuracy of the effective bandwidth
approach).

In general, effective bandwidths depend on both the traf-
fic/buffer models and the performance criterion. Kelly [17]
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finds effective bandwidths for G1/G/I queues under (1) and

for M/G/l queues with the performance criterion taken to
be the buffer utilization (fraction of time X # O) or mean
workload (EX < EJ). Courcoubetis and Walrand [4] find

effective bandwidths for stationary Gaussian sources under (1).
Recently, Elwalid and Mitra [8] obtained effective bandwidth
results for the case of continuous-time Markovian sources
under (1) (c f., Sections III-C and III–D and the Conclusions).
The open question answered in this note is the existence of
effective bandwidths for more general source models under

(l).
We start by heuristically deriving an expression for P{X >

II} for general source models. Consider an infinite buffer with
service rate c shared by Ni sources of type i, i = 1, ... . K.
All the sources are assumed independent. For all Mi greater
than the average rate of cells produced by a source of type i,
assume that the probability that a source of type z produces
MiT cells over a period of time of length T is approximately
exp( – THi (&li )) where Hi is convex and nonnegative (this
assumption is motivated by the theory of large deviations and
will be discussed). This approximation is sharpest for T >> 1.

By independence, the probability that for j = 1, ... . Ni the
~th source of type i produces ~jT cells over time T is about

‘XP(-TZH
Consequently, the probability that all sources of type i produce
a total of Ni M~T cells over large time T is about

x ‘xp(-T:Hfl:~ p, =N, M,

where w = (PI, .. . , WN, ). Indeed, each choice of p such that

E Vi = Ni~i is one particular way for NaAliT cells to get
produced. This sum of exponential cart be approximated by
the largest term (originally an argument of Laplace):

x ‘xp(-TEp:~p,=iv, iw

(z exp — inf T~J7i(~j)
P:~P,=N,A{, j=l )

= exp (–TNiHi(J4i))

where the last equality is due to the convexity of Hi. There-
fore, by independence, the probability that for i = 1, ... . K the
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sources of type i produce N, Af, T cells over time T is about where

(
~

(’xp )–T~fviHi(MJ .
,=1

Thus, the probability that. starting from an empty buffer, the
sources of type i produce cells at rate NiAli until the buffer
occupancy exceeds B is

Indeed, T = 13/(~ NiiWi – C) is the time the buffer

occupancy takes to reach B when the aggregate cell arrival rate
is ~ N, Ml. By the argument of Laplace, the probability that

the buffer occupancy, starting from empty, reaches B before
it returns to empty is aboul

Given the effective bandwidths of a buffer’s sources, one
can determine its spare capaciry to accept more calls at any

time, For instance. say we want to determine if a call of type

j can be accommodated (i.e., constraint ( I ) is preserved) in
a buffer that is currently being used by N, calls of type i,
; = I..... K. lf o,(A) < c – ~~11 Nlmi(fi), then the call can

be accommodated; otherwise, it cannot. See, for example, [ 10],
[13].[ 14], and [ 19] for further discussion on how effective
bandwidths can be used for network resource management.

This note is organized as follows. In Section II, we show
the existence of effective bandwidths in the multiclass case
when the sources satisfy certain conditions. In Section III,

we give expressions for the effective bandwidths of Markov-

mochdated Poisson processes, Markov-modulated fluids (or
just “Markov fluids”), and discrete-time Markov sources.
Finally, conclusions are drawn in Section IV.

11. GENERAL EFFECTIVE BANDWIDTHS

We now show the existence of effective bandwidths. First
some assumptions on the sources are made, then effective
bandwidths are defined by considering the single-source case,

and finally the muhiclass case is considered.
Consider an infinite buffer with deterministic service rate c

cellsJsecond, shared by N, independent sources of type i, i =

1. ... . K. Denote by [, .] (he scalar product. Let f’, E (().X]

(respectively ~1 E [[~.x)) denote the maximum (respectively
minimum) possible cell arrival rate of a type i source. Let

7, E (0. X] be the average arrival rate of a type i source.
We assume that

,VEC:={,VEZ~:[,V.r]>( and [N, T] <c]

where Z+ = {().1.2,...}, T = (T1 . .. ..TK). and r :=
(rl.....rl{). Let .11 = (Afl . .. ..)lh-).

Motivated by (2), we take the measure of congestion in the
buffer to be

cxp(-BI(N. (:) + o(B)) (3)

and A(N, c) := {M E R$’ : -y, < M, < r, Vi and
[N, M] > c} (cf., (5) for the definition of H,). Thus, when
Bfi >> 1, the constraint ( 1) is

Assume that the sources are stationary and ergodic. Consider
a single source of type i. Let the number of arrivals of this type
i source in the time interval [0, t] be Ai (t). Assume that .4i

satisfies the conditions of the Gartner-Ellis Theorem [11], [6],
[2]. That is, assume that the asymptotic log moment generating

function Of .4~,

exists and is finite for all real h, and that hi is differentiable. We
can directly verify that h, is convex, positive, and increasing
for fi > ().

By the Gartner-Ellis Theorem, H, is the Legendre transform
of hi:

(5)

We can directly verify that Hi is nonnegative, convex, differ-
entiable, H,(7, ) = O, and H,(M) = x for all A4 > I’, or
M < ~i. We also assume that If, is strictly convex on the
interval (Ti, r,).

Consider the case of a single source of type i. For A >0,
define mi (/i) to be the value of a such that

where Ai(u) := {Aft : a < M, < r,}. Thus, m,(fi) = l,-l(A)
can be interpreted as the rate at which to serve a single source
of type i so that constraint (4) is satisfied. We call ~i the
eflective bamh’idth of type i traffic. The following theorem
gives us a more manageable form for fti.

Lemma I: Under these conditions, for all h >0,

Proofi Since H, and h, are convex conjugates, hi (I3) =
Supjf {Affi – H, (Al) }. It then follows from the differentiability
of )7, and h< and the strict convexity of H, that

h,(h) = AH;-l (h) - H,(H:-l (A)). (6)

Define the function g, (Af) := Af – H, (M)/H~ (M). From the
strict convexity of H,, it follows that ,9, is strictly increasing
on (v,, 17t). Thus, we can define ,y,–l as the inverse of g,;

i.e., for a E (~i. r,), g;l(a) is the solution of a = Af –

H,(A4)/Hj(.Tl). Since H’ > 0 on (Ti, f’,), g,-l(a) > a
so that ,g,-l(a) E A,(a), Thus, l,(a) = H~(.q-’(a)) and,

in conjunction with (6), we have that 1,–1(h) = h, (h)/h as
desired. ~

With this lemma, the following “effective bandwidth” the-

orem for multiclass sources is immediate by independence.
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Theorem 1: Assume that the arrival processes Ai all satisfy
the conditions of the Gartner-Ellis Theorem and that the Hi
are all strictly convex. For any 6 > 0 and N E C,

Proof Let h be the log-moment generating function for

the aggregate arrival process. Clearly,

h(b) = ~ Nih2(6).

Let the inverse of 1(N..) be 1,~1. Thus,
the preceding lemma,

by the argument in

as desired. b
This theorem shows that, under weak conditions on the

arrival processes, effective bandwidths exist for the measure of
congestion (3). The large deviations approach used is a unified
framework to handle buffer sources modeled in different ways,
as we shall see in the next section.

III. MODELS OF ATM BUFFER SOURCES

We now consider several models of buffer sources used to

characterize bursty ATM traffic. In each case, an expression
for the effective bandwidth is found.

A. Constant Rate and Memoryless Sources

For sources with a constant arrival rate of R cellslsecond,
A(t) = Rt for t > 0.Thus, h(6) = R6, H(R) = O, and
H(M) = w for all M # R. Therefore, the hypothesis of
Theorem I is satisfied and the effective bandwidth of this
source is a(fi) = R. Note that, in the notation of Section H,
T = 17 = R for a constant rate source.

For memoryless (Poisson) sources with intensity R
cells/second, h(t) = R(eb – 1). Thus, H(M) =

M log(M/R) – M + R. So, the hypothesis of Theorem 1
is satisfied and the effective bandwidth of this source is
{r(b) = R(eb — 1)/6. Note that T = O and l_ = w for a
Poisson source.

B. Discrete-Time Marko\ Sources

We call a buffer source a discrete-time Markov source if

there is a discrete-time Markov chain Z and a real constant
R such that the number of arrivals to the buffer in interval
of (continuous) time (nR– 1, (n + 1)R– 1) is a function of
Zm. We take the state space of Z to be 1,2, . ...m and we
let Q be its irreducible and aperiodic transition probability
matrix. Let A~ be the number of cells that arrive in the
interval (nR–l, (n + l)R–l) when 2. = i. We assume

O S Ai < A,+l < cc for all i = 1, . ...m — 1. Therefore,
in the notation of Section 11, T = RA1, 17 = RA~, and

~ := R xi ~iAi where T is the invariant of Q: TQ = x.
By an argument using the backward equation and Perron-

Frobenius Theory [3],

h(b) = Rlog [p(e’’Q)] (7)
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where A = diag(A1, .... Am), and p(F’) is the spectral radius

of matrix F’.
h is differentiable (and analytic) as a consequence of the

perturbation theory of matrices (see [2, pp. 190-191]) and,
therefore, satisfies the conditions of the Gartner-Ellis Theorem.
In Section II, we established that h is convex. A simple
consequence of [16, Lemma 3.4] is that either h is affine or
strictly convex.

h(0) = O implies that the affine case is the constant rate

source of Section III-A. If h is strictly convex, by direct
calculation starting from (5) we get that H’ = h’– 1. Thus, H’
is strictly increasing which implies that H is strictly convex
as well. So, the hypothesis of Theorem 1 is satisfied, and the
effective bandwidth of this source is a(6) = h(6)/6. This
source is a special case of [3, Example 2.3], wherein the rates
Ai are random.
Tn’o-State Discrete-Time Markov Source Example: If the

Markov chain considered is of the two-state (m = 2) type,
then by direct calculation,

[
h(b) = Rlog ~ (a(/i) + / a’(b) + 46(6))]

where

a(6) = Q1,1e6’i’ + Q2,2e6”2

and

6(6) = eb(’~’+i’)(l – Ql,l – Q2,2).

C. Markov Fluids

A source is called a Markov fluid if its time derivative is
a function of a continuous-time Markov chain on a finite-
state space. As for the discrete-time Markov sources, we let
1,. ... m be the state space. Let Q be the irreducible transition
rate matrix of the Markov fluid’s time derivative and Ai

be the arrival rate of cells when the time derivative of the
Markov fluid is in state i. We make the same assumption on
the parameters Ai that we made in the discrete-time Markov
source case.

By an argument similar to that for discrete-time Markov
sources (see the Appendix),

h(b) = p(Q + 6A)

where A is defined and u(F) is the largest real eigenvalue

of the matrix F. The same argument used for discrete-time
Markov sources verifies that the hypothesis of Theorem 1 is
satisfied.

Tn~o-State Markov Fluids Example: If the Mmkov

considered is of the two-state (m = 2) type, then by
calculation

h(b) = ; (-a(c$) + {a’(b) - 4b(6))

where

a(b) = Q1,2 + Q2,1 – 6(A2 – Al)

and

b(6) = 6*A’AI – 6( Q1,2A2 + Q2,1AI).

This is the effective bandwidth result in [12], [13].

fluid
direct
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D. Market-Alodulated Poisson Process

A source to a buffer is called a Markov-modulated Poisson
process (MMPP) if the cell arrivals are Poisson with intensity
A, where A is a function of a continuous-time Markov chain.
We assume that the space Al. . .. .~m of intensities satisfies

the conditions of the previous examples and that the transition

rate matrix Q is irreducible.
By an argument similar to that for discrete-time Markov

sources (again, see the Appendix )

h(h) = p(Q+(c~ – 1).1)

and the hypothesis of Theorem I is satisfied.

IV. CONCLLKIONS

Effective bandwidth results for the continuous-time Mar-
kovian sources of Sections III-C and III-D were also obtained
in [8] using spectral decomposition methods [2 I ], [9]. They
found the same effective bandwidth formulas and establish (2)
for buffers with mtdticlass Markov fluid sources and buffers
with multiclass MMPP sources. The effective bandwidth
results in Section II (using the large deviations approach) are

more general than those of [8] and our measure of congestion

(3) allows us to handle a buffer with sources modeled in

different ways (e.g., a buffer with two sources: one modeled
as a Markov fluid and the other as a MMPP). Recently, in [5],
(2) was established for the stationary Lindley buffer process
(discrete time) and they found an effective bandwidth result
for a buffer using the simple “randomized priority” processor
sharing rule [20].

In summary, we have shown the existence of effective

bandwidths for a large class of sources commonly used to
model ATM traffic. Given the effective bandwidths of a

buffer’s sources (i.e., the functions (k; for the buffer of Section
II), one can determine its spare capacity to accept more calls,
r – ~fll IV,o, (fi), which can be an integral part of network
resource management [ 13]. [ 141, [ 19].

APPENDIX

BACKWARD EQLIATION APPROACH TO EVALUATE THE

EFFECTIVE BANDWIDTH FOR MARKOVIAN SOURCES

For the Markov fluid source of Section 111-C, let A(s. t) be

the number of arrivals in the interval (s. t ), .r be the irreducible
modulating Markov chain with rate matrix Q and invariant
distribution m, and ~J(fi. t) = E[cxp(iiA(O. t))l.r(()) = j].

The claim is that

h(h) := )il: t-’ logE(’xp(rl.4(o, t))

= p(Q + h.4).

To show this, we begin with a standard backward equation
argument: for positive f << 1:
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1 + 6dAj + O(C), we get (after a little rearrangement)

@,(d.t)- dJ, (h-f) _
—

O,(fil t – f~(Q(.j..j) + fil~l)+

~?l(fi~ - f)Q(.ji) +O(C).

I #j

Letting f ~ O, we get

In matrix form, this equation is

:W(fi,t) = (Q+ hA)W(&t)

where ~~(h.t) = (Ifl(fi. t). . ...d~. ”(h.t)). Thus,

V(6. () = exp((Q + h.4)t)l

where 1 = T(6. O) is a column of I ‘s.
Therefore,

h(r’)) = & ; log (7r~exp((Q + A’i)t)l).

First note that exp( Q + A.4) is a nonnegative matrix (see [15,
Exercise 6.5.4e and Theorems 6.2.9(g) and 6.2.38]). Choose u

large enough such that ~~1+ Q + 6A z O. This is possible
since Qi,j ~ o for all i # j. Thus, exp(Q + r5A) =

cxp(d + Q + (5.4)cx[)(–al) z f:–” exp(d + Q + AA) ~ 0.
Because of the irreducibility assumption, we can use the same
Perron-Frobenius argument in [3] on the matrix exp(Q + fiA)
to obtain h(h) = log(p(exp(Q+fiA)) ). The result then follows
from p(exp(~)) = exp(p(~)). where 1~(~) is the largest

eigenvalue of F.
For the case of the MMPP source of Section III-D, we

use the fact that if < is a Poisson random variable with
mean fA1, then Evxp(fit) = Pxp(c.4, (r* – 1)). SO, this
argument will give us the formula
by simply substituting the expression
“exp(f6A, )“ in (9).
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